Math Biology, Bioinformatics and Computational Biology

Frank Gao, Ph.D.
Research Interests: Interface of Probability Theory, Functional Analysis and Convex Geometry. In particular, small deviations of Gaussian processes; metric entropy of function spaces and operators; and intrinsic volumes of convex bodies.
» View Frank Gao's profile
Paul Joyce
Paul Joyce, Ph.D.
Dean of College of Science & Professor
My research focuses on developing and rigorously testing statistical methods and stochastic models to describe genetic phenomena. These include models and methods to: predict how viruses adapt; show the effect of antibiotic resistance genes encoded on plasmids; predict ancestral relationships among species; and to understand the ecological structure of bacterial communities in biofilms. This broad focus has lead to collaborations with researchers in phylogenetics, population genetics, theoretical ecology, mircobial ecology, experimental evolution, conservation genetics, and the list is growing.
» View Paul Joyce's profile
Steve Krone
Steve Krone, Ph.D.
Research interests: Stochastic Processes and Mathematical Biology; especially interacting particle systems, population genetics and evolutionary biology, coalescent theory, spatial models in (microbial) ecology and epidemiology, combining experimental and theoretical approaches, diffusion processes and differential equations.
» View Steve Krone's profile
Craig Miller
Craig Miller, Ph.D.
Research Assistant Professor
» View Craig Miller's profile
Chris Remien
Chris Remien, Ph.D.
Assistant Professor
Research Interests: I am broadly interested in mathematical biology, developing and applying mathematical techniques to answer important biological questions. Much of my research uses mathematical methods to analyze how animals process nutrients and toxins with applications in medicine and ecology. I have applied mathematical methods to issues as diverse as acetaminophen (paracetamol, Tylenol) overdose, incorporation of stable isotopes into animal tissues, and microbial detoxification of ingested toxins in mammals. The mathematics are diverse, including dynamical systems, bifurcation theory, probability, inverse methods, statistics, numerical analysis, and simulations.
» View Chris Remien's Profile