
# Predicted palindromic thyroid hormone response elements affect the thyroid hormone regulation of opsin expression in zebrafish

**Idris Korol** 

Department of Biological Sciences, University of Idaho, Moscow Idaho

### Introduction

# Figure 1. Zebrafish *lws1/2* and human *LWS/MWS* loci.



**Fig. 1:** The known and predicted regulatory sequences for *lws1* and *lws2* in zebrafish and human *LWS* loci include LAR (*lws* activating region)<sup>6</sup>, ppTRE1, and ppTRE2. The ppTRE elements are hypothesized to regulate *lws1/2* through TH. Additionally, for *LWS* and *MWS*, the regulatory sequences include LCR (locus control region)<sup>7</sup> and predicted ppTRE1/2-like elements (e1like and e2like) identified via genome alignment tools.

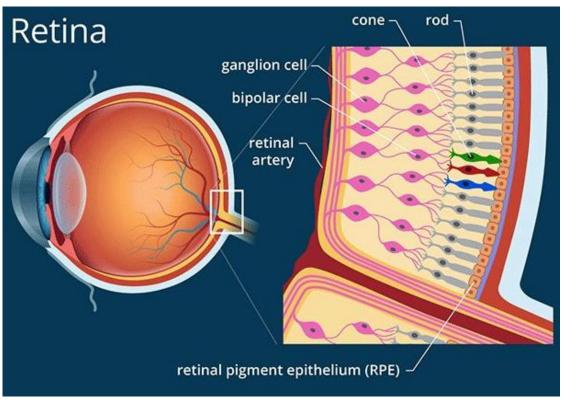
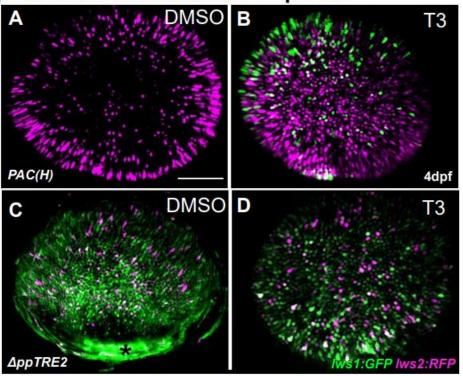
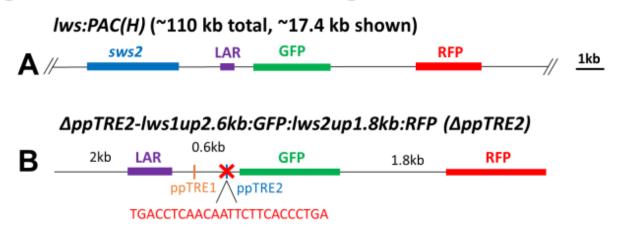




Image Credit: All About Vision

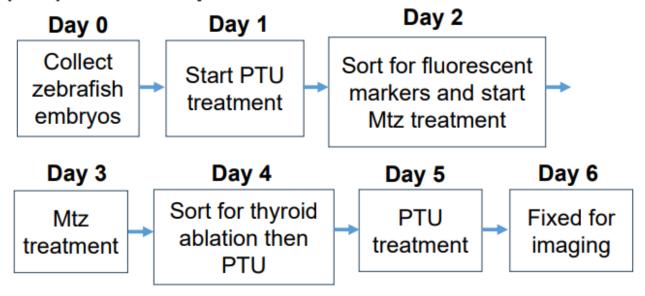
# **Background**


Figure 2. *Iws:PAC(H)* larvae treated with increased T3 show an upregulation in *Iws1* (GFP) and ΔppTRE2 larvae show no significant difference in expression of *Iws1* and *Iws2* reporters.



**Fig. 2:** (**A&B**) 4 days post-fertilization (<u>4dpf</u>) *PAC(H)* zebrafish larval eyes under DMSO (**A**) or T3 (**B**) treatment. \*, region of autofluorescence from undissected sclera. Scale bars = 50μm. *lws1* is reported by GFP, and *lws2* is reported by RFP (pseudocolored magenta). (**C&D**) ΔppTRE2 zebrafish larvae eyes under DMSO (**C**) or T3 (**D**) treatment. *lws1* is reported by GFP, and *lws2* is reported by RFP (pseudocolored magenta).

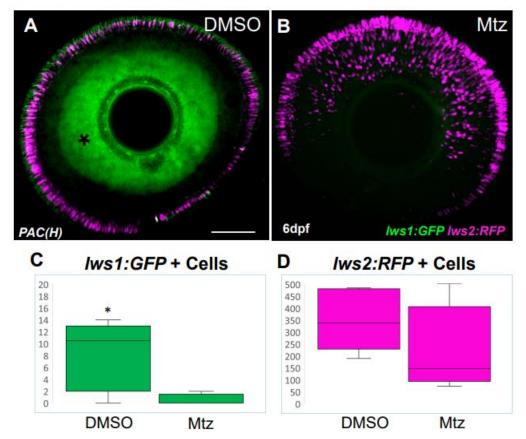
### **Methods**


### Figure 3. Schematics of transgenic constructs.



**Fig. 3: (A)** *Iws:PAC(H)* which includes 110kb of zebrafish chromosome 11 with GFP-polyA inserted into exon 1 of *Iws1* and RFP-polyA inserted into exon 1 of *Iws2.*<sup>6</sup> **(B)** Δ*ppTRE2-lws1up2.6kb:GFP:lws2up1.8kb:RFP* (ΔppTRE2) which includes the 2.6kb region upstream of *Iws1* and the 1.8kb intergenic region, but with a 25bp region deleted which includes the ppTRE2. We crossed these lines with *Tg(tg:nVenus-2a-nfsB)wp.rt8*<sup>8</sup> to allow for thyroid ablation.

### **Methods**


Figure 4. Flowchart of larval zebrafish metronidazole (Mtz) treatment protocol.



**Fig. 4:** 7-day procedure for full ablation of the thyroid. Samples were either treated with Mtz or DMSO to observe under athyroid and euthyroid conditions. Phenylthiourea (PTU) is a tyrosine inhibitor that blocks the formation of pigmentation. This enables a clearer observation of zebrafish embryos under the microscope.

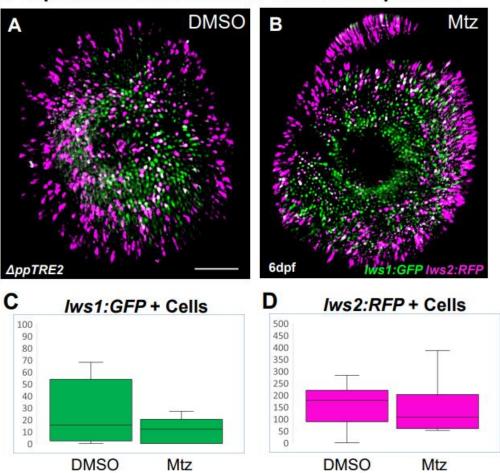

### **Results**

Figure 5. *Iws:PAC(H)* larvae under Mtz (athyroid) and DMSO treatment show a downregulation in *Iws1* (GFP) when endogenous TH was removed.



**Fig. 5: (A&B)** <u>6dpf</u> zebrafish larval eyes under DMSO **(A)** or Mtz **(B)** treatment. \*, region of background fluorescence. Scale bars = 50μm. *lws1* is reported by GFP, and *lws2* is reported by RFP (pseudocolored magenta). Cell counts of *lws1* **(C)** and *lws2* **(D)** under control (n=5) and Mtz (n=4) treatments. Kruskal-Wallis p-value for *lws1* expression was 0.024257. \*p<0.05.

Figure 6. ΔppTRE2 larvae under DMSO and Mtz (athyroid) conditions reveal no significant difference in expression between *lws1* and *lws2* reporters.



**Fig. 6:** (**A&B**) <u>6dpf</u> zebrafish larvae eyes under DMSO (**A**) or Mtz (**B**) treatment. Scale bars = 50μm. *lws1* is reported by GFP, and *lws2* is reported by RFP (pseudocolored magenta). Cell counts of *lws1* (**C**) *lws2* (**D**) under control (n=6) and Mtz (n=5) treatments.

### **Future Direction**

- ChIP-PCR and ChIP-seq methods to determine whether a TH receptor binds within the 0.6Kbp region.

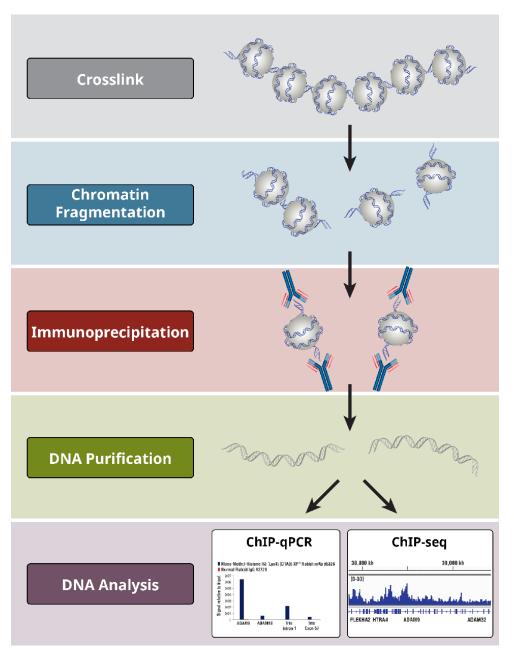



Image Credit: Cell Signaling Technology

## **Acknowledgements**

- Thanks to Dr. Deborah Stenkamp for letting me work in her lab, and I extend my appreciation to both Lindsey Barrett and Dr. Stenkamp for their work with me on this project.
- This project was supported by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under Grant #P20GM103408.
- This work was also supported by NIH R01 EY012146.
- Thanks to Ruth Frey and LARF staff for animal husbandry; IDAC core for use of Nikon Spinning Disk Confocal Microscope

Thanks for listening!