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Suppose you were traveling through a downtown urban sprawl of a large 

city, aiming to see as much of the city as possible. If you listed out the top 

sixty storefronts you wanted to see, what straight line would take you to the 

largest number of attractions? Could you always find such a straight line?

The Problem



Example

With this arrangement, we can see that there are three 

different paths which each pass through five attractions



Similarly, consider the way a graphing calculator creates a line of best fit, 

defining “best” by the “least squares approach” (i.e. the linear regression 

problem). What if instead we fit a line using something called the “exact 

fitting” method? In this method, the “best” line is the one that intersects the 

largest number of points. What is the most efficient method to calculate this 

line?

An Alternative View Point



Finding the most efficient algorithm to compute this line is an open question in 

computational geometry, known as the exact fitting problem. Guibas et al. have previously 

shown an O(min{N^2log(N), N^2}) time solution in two dimensions. 

Here, we examine an alternative approach using properties of determinants to 

create a new algorithm implemented in the C++ coding language. An estimate for the time 

efficiency of the algorithm can be conjectured to be O(N^3). Because this problem has 

widespread implications, finding an efficient algorithm would have positive impacts on 

numerous fields including coding theory.

As it Turns Out



● Determinants: A way of representing area.

● By the triangle inequality: 

we can see that three points are  collinear if the area between them  is zero.

● Big Oh Notation: It is a way of describing computational time. In general, an algorithm with a smaller 

Big Oh is more time efficient. Some common examples of Big Oh and their complexities are:

Here, O(N!) is the slowest algorithm.

● Any line in 2 dimensions can be described uniquely by its slope and intercept, so tracking these two 

characteristics is sufficient to see whether two lines are identical.

● Any two points can be fit by a line, so the minimum answer of the exact fitting problem is always 2. 

This is known as the trivial solution.

● N Choose 3: Also known as combinations or C(N,3), it is the total number of ways to pick three 

objects from a set of N, assuming order does not matter. The formula for N Choose 3 can be given by:

Background Information



Input: A set of N points, named S

Output: The maximum number of points on a line

1) Go through all N Choose 3 combinations of points in S:

   1a) If the three points have a determinant of zero (all fit on one line), add them to the list of possibilities

   1b) If the three points do not fit on the same line, disregard this combination

2) For all items in the list, evaluate the slope and intercept of the line

3) For all items in the list, combine those with the same slope and intercept

4) Evaluate the number of points intersected by each line

5) The largest number from step 4 is our answer

The Algorithm



Let’s View Some Examples
All code available online at: 

https://github.com/Meme-Bo22/Exact-Fi

tting-Problem-in-2D

More videos published on:

https://youtube.com/playlist?list=PL4hH

-edGpb6vfHxwYjYMhCeUPQr-xkE5N&s

i=cYhTqOj7Dlkz4cws 

https://github.com/Meme-Bo22/Exact-Fitting-Problem-in-2D
https://github.com/Meme-Bo22/Exact-Fitting-Problem-in-2D
https://youtube.com/playlist?list=PL4hH-edGpb6vfHxwYjYMhCeUPQr-xkE5N&si=cYhTqOj7Dlkz4cws
https://youtube.com/playlist?list=PL4hH-edGpb6vfHxwYjYMhCeUPQr-xkE5N&si=cYhTqOj7Dlkz4cws
https://youtube.com/playlist?list=PL4hH-edGpb6vfHxwYjYMhCeUPQr-xkE5N&si=cYhTqOj7Dlkz4cws
http://www.youtube.com/watch?v=TuoUYxyyWZY


Time Complexity
By running the algorithm 10 times each across N = {20, 

30, 40, 50, 60, 70,  80, 90,  100, 110, 120} and averaging, we can 

create a plot of N vs. time (left). A regression analysis of various 

sizes of N shows that a cubic polynomial fits the data with a 

0.998 R Squared value. This highly indicates that this algorithm 

runs at O(N^3) time.



When the Curiosity Rover landed on Mars, it immediately began transmitting its revolutionary 

findings back to Earth. Along the way, some of the data may have been corrupted from cosmic radiation, 

fluctuations in power, or even human error. Given the 2.5 billion USD price of the information this rover 

collected, being able to detect and correct these errors was vital. In other forms of more widely-used 

data communication, from sending emails to storing family photos on hard drives, corruption detection 

and correction continues to be of the utmost importance. 

Connections to Other Fields



The minimum distance of an error correction code C is defined to be the minimum Hamming 

distance between two distinct codewords of C. Finding the minimum distance of a code is key to error 

correction efforts in coding theory, as a code with minimum distance M can detect M-1 errors and even 

correct (M-1)/2 of those errors using a process called nearest neighbor decoding.

Although seemingly unrelated, finding the maximum number of points that are intersected by a 

hyperplane is equivalent to finding the minimum distance of a linear code with a generator matrix which 

has the coordinate of the points as columns.

Connections to Other Fields
Continued



The first obvious extension to this problem is to expand the problem into higher dimensions. Dr. 

Stefan Tohaneanu and I are currently working on using properties of higher dimensional simplexes to 

generalize this algorithm into fitting planes in three dimensions. A unique challenge of higher 

dimensional versions of this problem is that in three dimensions, points may be collinear as well as 

coplanar, making characterizing a plane by a normal vector and a point especially challenging.

The exact fitting problem also has a surprising amount of connections to other fields besides 

just geometry and coding theory. Another approach to this problem in two dimensions involves points 

into a simplicial complex (graph) where vertices are points and edges connect collinear points. Then, 

instead of finding the largest number of collinear points, the problem shifts to finding the largest 

simplex in the graph. This is also known as the clique problem or the complete subgraph problem.

There’s also interesting potential study into the expected value of collinear points, or even the 

largest number of points in a grid where there is only the trivial solution. This line of inquiry has 

connections to the aptly named no-three-in-line problem from chess, which is an open problem with 

fascinating ties to probability theory and algebra.

Future Work
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