

Clearcutting Advantages

- Maximum immediate dollar return.
- Cost effective logging one entry, easy to get around.
- Easy to plan, implement, and supervise:
 - No damage to leave trees (there aren't any).
- Simpler slash disposal.

Clearcutting Advantages

- Potentially less soil disturbance:
 - Fewer roads and skid trails.
 - Fewer stand entries.
 - Easier to use cable logging.
- Can plant genetically superior stock:
 - ex: Blister rust resistant white pine

Clearcutting Advantages

- Good for shade intolerant species:
 - white pine, larch, Douglas-fir, ponderosa pine.
 - Clearcuts mimic conditions created by wildfire (but, clearcuts do not "equal" wildfires)
- Understory plants do well.
 - Good for livestock and big game grazing:
 - Watch for competition with trees.

Clearcutting Disadvantages

- Aesthetics especially first few years after harvest.
- Long wait till next harvest At least 20-30 years, when you can get a commercial thinning (depending on markets).
- Need markets for small material:
 - Otherwise small materials are left. However, this may provide nutrients, soil cover.

Clearcutting Disadvantages

- Increases wind, frost, temperature extremes:
 - Can get windthrow at edges of stand.
 - Can create a tougher seedling environment - especially on a dry, thinsoiled, south-facing slope.
 - May need to use shade cards, etc. help seedlings survive.

Clearcutting Disadvantages

- Generates lots of slash:
 - Slash can be a fire hazard, hassle to clean up, impedes grazing.
 - Difficult for the average forest owner to get contractor for a prescribed broadcast burn.
- Natural seeding may not be dependable (only if you rely on natural seeding).

Clearcutting Disadvantages

- Weed Invasion:
 - Exotic, noxious weeds and brush have evolved to take advantage of disturbed site like this.
 - If trees don't get a good head start, brush and other competing vegetation can be a problem.

Clearcutting Disadvantages

- Potential to increase erosion, nutrient loss
 - Primarily if skidding or site preparation is sloppy
 - If large numbers of clearcuts are made simultaneously in one watershed, there may be more stream erosion.

Seed Tree Advantages

- Same advantages of clearcutting except:
- More reliable seed source (but not as sure as planting).
- Genetic gain by selecting superior seed
 - You don't get this if you are clearcutting and relying on natural seeding from the margins.
 - This (and other non-clear-cut methods) may be the only genetic improvement avenue open to private forest owners without access to seedlings from genetically superior seed sources.

Seed Tree Advantages

- Income when seed trees are removed:
 - Often small, considering harvest cost/unit volume.
- Slightly more aesthetic appeal
- Wildlife benefits:
 - Seed trees can serve as raptor perches, at least until they are removed.

Seed Tree Disadvantages

- Same disadvantages of Clearcutting except:
- Risk losing trees to wind:
 - Especially weak trees or on shallow soils.
- Risk losing seed trees to site preparation, if by fire.
- Risk losing some seedlings when seed trees removed.
- May not be economically feasible to remove seed trees.

Shelterwood

Series of cuts for a shelterwood may take up to 3.0 years to complete. Number of entries, trees cut may vary. A Shelterwood cut is defined by intent: to shelter

Shelterwood Advantages

- Reliable seed source leave more trees.
- Protects site (more than seed tree).
- 1st harvest acts like a thinning more volume on trees harvested during 2nd
- Genetic gain by selecting superior seed
- Distributes income somewhat.
- More aesthetic appeal (changes aren't so

Shelterwood Disadvantages

- Risk to residual trees:
 - logging.
 - slash disposal.
 - site preparation.
 - Damage may make residual trees more vulnerable to insects and disease.
- Higher logging costs:
 - More entries.
 - Time working around residual trees.

Shelterwood Disadvantages

- Markets for first harvest are limited.
- More complex (takes more time and energy)
- Tendency to favor shade tolerant regeneration:
 - May not be problem, if site is relatively wet, otherwise these species may be more vulnerable to insects and disease when they get older.

- Selection
 - Individual or small groups of trees cut at 5-20 year intervals, as they reach economic or biological maturity
 - maturity
 Individual tree selection:
 Harvesting individual
 trees of all sizes, more
 or less uniformly
 throughout the stand. throughour the state.

 Group selection:
 Harvesting all sizes of trees in a small area (twice the height of the mature trees -- usually .25 to 1.5 acre)

Selection Advantages

- · Aesthetics it looks like a forest.
- Spread income over more years.
- Provides seedling protection from sun and wind.
- Doesn't require market for small logs (individual tree selection only).

Selection Advantages

- Keep late successional species in the stand.
- Less slash (less fire hazard) makes it more feasible to let slash decompose naturally, providing nutrition benefits.

Selection Disadvantages

- More complex difficult to do correctly:
 - Emphasis is on getting a stand that has a "Lshaped" distribution of tree ages/diameters:
 - As much of an art as a science when done well.
- Higher logging costs.
- Strong temptation to highgrade.

Selection Disadvantages

- Relatively low income from any one harvest.
 - On a small property, there may not be enough logs to make an economical harvest unless you combine with an adjacent landowner.
- Favors shade tolerant species (group selection less so).

Selection Disadvantages

- Irregular growing conditions may mean more taper, less self pruning in boles.
- Highest risk of damage to residual trees.
- Can result in more roads more land out of production, and potential sediment production.
- Less grazing.

Diameter limit cutting ≠ Selection!

- Diameter limit cutting is a logging method (not a silvicultural system), where all trees above a certain diameter are cut, regardless of individual tree vigor, species, or distribution.
- Diamter limit cuts are simple to apply but often lead to problems. Tendency to leave slow-growing, poor quality trees the wimplest competitors in the stand! This erodes forest genetics.

Silvicultural Systems: Summary

As we move from:
Clearcut → Seedtree → Shelterwood → Selection

- Favor shade tolerant trees.
- Rely more on natural regeneration.
- Spread out income over time.
- Soften visual impact.
- Create milder, more consistent, site climates.
- Get higher risk to residual trees during logging.
- Incur higher logging expense.

Name that Silvicultural System!"

- There can be a lot of variation to how these systems are applied.
- Observable differences between systems can be slight; "One person's shelterwood is another person's seed tree, is another person's commercial thinning".
- What makes them different is the intent: (e.g.: Is intent to shade new seedlings?, then it is a shelterwood)

Choosing a Silvicultural System

- Knowing these systems, how do we choose?
- Consider: Goals, Site/Stand
 Characteristics, and Finances.
- Choose a system (or collection of silvicultural systems, if you have a larger acreage) that provides the best mix of returns to landowner goals, given circumstances.

Silvicultural Systems: Goals

- · Grazing: Clearcut, Seedtree or Shelterwood
- Large immediate income: Clearcut
- · Periodic income: Shelterwood, Selection
- Financial investment: Which system leaves healthiest forest?
- Place to practice conservation: All systems
- "Natural" (eye of the beholder): Selection? Clearcut?
- Wildlife: Depends on wildlife species, neighboring property habitats

Silvicultural System: Site/Stand

A site inventory will help you appraise this.
Some choices, based on common site/stand characteristics:

- Site is harsh, dry: Shelterwood, Selection
- · Heavily high graded stand: Clearcut
- Favor shade intolerant species: Clearcut, Seed Tree
- Favor shade tolerant species:
 Selection, Shelterwood
- Dwarf Mistletoe: Clearcut, Group Selection

Questions on Silviculture?

Tree-Tree Competition: Problems Reduced availability of light, water, nutrients, space, CO2, O2, etc. Pests may be attracted to stressed, competing trees - subsequent fire risk. Overtopping by unfavored trees robs light, and can lead to physical damage.

Tree-Tree Competition: Benefits Self pruning - shade kills lower branches and whipping action from wind knocks them "Trains" stems to be straight (applies to hardwoods, primarily). May help control weeds (e.g.: knapweed). Cover protects site from heat, crosion.

Why Thin?

Increase individual tree and stand value.

and decay ("capture mortality").

Use or sell trees that would otherwise die

Why Thin? Reduce competition Select the most favorable tree Reduce insect and disease vulnerability:

- Increase individual tree vigor, - Diversify tree species.

Improve forest general

species.

Provide periodic income.

Enhance non-timber values:

When to Thin Note that the work of the country of

Thinning Definitions:

- Pre commercial: Any thinning of nonmerchantable trees ("PCT")
- Commercial: Any thinning of merchantable trees.
- Low thinning: Removes trees from lower crown classes to favor those in upper crown classes ("thinning from below").

Thinning Definitions:

- High thinning: Removes trees from dominant and codominant crown classes to favor best trees of those same crown classes ("thinning from above", "crown thinning").
- Free thinning: Removes trees to control stand spacing and favor desired trees, using a combination of thinning criteria without regard to crown position.

Thinning Definitions:

- Salvage cut: Removes dead trees or trees being damaged or dying due to injurious agents other than competition, to recover value that would otherwise be lost.
- Sanitation cut: Removes trees which are infected by, or highly susceptible to, insects or diseases, to stop or reduce actual or anticipated spread of insects or diseases.

Which trees to leave?

- Species and spacing?
- Little genetically superior tree seedling stock available to NIPF owners (economically).
- NIPF owners can use thinning to improve forest genetics.