63rd Annual Idaho Asphalt Conference University of Idaho, Moscow, Idaho October 25-26, 2023

Conference Program

Wednesda	y, October 25, 2023												
Noon - 5:00 pm 4:00 pm	Workshop "Crack Seal and Hot Applie registration is required IAC registration opens	d Mastic " o	ffered with partner CRAFCO. Separate										
5:00 – 7:00 pm	Icebreaker in Exhibit Hall – Sponsorea	by Western	n States Equipment / Caterpillar										
Thursday,	October 26, 2023												
7:00 am 8:00 am	Registration opens – Continental Breakfast in Exhibit Room Opening Comments Dr. Emad Kassem, PE, Associate Professor, University of Idaho Welsome Remarks												
8:15 am	Welcome Remarks Dr. Gabriel Potirniche, P.E., Associate Dean of College of Engineering, University of Idaho												
Mornin	g Session	Afterno	oon Session										
Presiding	Dave Johnson, PE The Asphalt Institute	Presiding	John Arambarri, PE Idaho Transportation Department										
8:30 am	Balanced Mix Design Scott Quire, PE Materials Science Director E&B Paving	1:45 pm	<u>Longitudinal Joint Density, State of</u> <u>Practice</u> Dave Johnson, PE The Asphalt Institute										
9:30 am	<u>Stone Matrix Asphalt (SMA)</u> <u>Mix Design</u> Tim Murphy, PE Murphy Pavement Technology	2:20 pm	Asphalt Plant Production Jarrett Welch Quality Paving Consultants										
10:15 am	Break	3:00 pm	Break										
10:40 am	Asphalt Mixtures with RAP and Rejuvenators Hussain Al Hatailah and Dr. Emad Kassem, PE University of Idaho	3:15 pm	<u>Scrub Seal: Past, Present and Future</u> Doug Olsen Idaho Asphalt Supply										
11:20 am	Advanced Asphalt Binder Characterization Mike Anderson, PE The Asphalt Institute	4:00 pm	Segregation: The Cardiac Arrest of Hot Mix Asphalt Pavements Tim Murphy, PE Murphy Pavement Technology										
Noon – 1:45 pm	Lunch and Expo	4:45 pm	Adjourn										

Speakers of the 63rd Idaho Asphalt Conference, Oct. 26, 2023

From left to right: Hussain Al Hatailah, James Clark, Emad Kassem, Dave Johnson, Brett Rankin, Mike Anderson, John Arambarri, Tim Murphy, Jarrett Welch, Doug Olsen, Scott Quire, and Muhammad Zubery.

Shihab Al Beiruti Idaho Transportation Department shihab.albeiruti@itd.idaho.gov

Hussain Al Hatailah University of Idaho alha1092@vandals.uidaho.edu

Wade Allen Idaho Transportation Department wade.allen@itd.idaho.gov

Shelby Alvarado Idaho Transportation Department shelby.alvarado@itd.idaho.gov

Mike Anderson Asphalt Institute manderson@asphaltinstitute.org

Luke Antonich City of Lewiston, Idaho Iantonich@cityoflewiston.org

John Arambarri Idaho Transportation Department *john.arambarri@itd.idaho.gov*

Brian Arnold Idaho Materials and Construction brian.arnold@idahomaterials.com

Curtis Arnzen Idaho Transportation Department curtis.arnzen@itd.idaho.gov

Alannah Bailey City of Lewiston, Idaho abailey@cityoflewiston.org

Steven Bakker Idaho Transportation Department steven.bakker@itd.idaho.gov

Tyron Bardwell HDR Engineering Inc - Boise, ID tyron.bardwell@hdrinc.com Josh Barton Budinger & Associates jbarton@budingerinc.com

Shane Behlendorf Topcon Solutions sbehlendorf@topconsolutions.com

Riley Bender WSDOT Benderr@wsdot.wa.gov

Ed Benson Interstate Concrete & Asphalt ed.benson@interstate-ica.com

Lee Bernardi Idaho Transportation Department Iee.bernardi@itd.idaho.gov

Sikha Bhusal Idaho Transportation Department sikha.bhusal@itd.idaho.gov

Scott Bontrager City of Moscow sbontrager@ci.moscow.id.us

Kevin Bussert Specialty Construction Supply kbussert@specialtysupply.com

Bob Buvel City of Moscow bbuvel@ci.moscow.id.us

James Clark Crafco james.clark@crafco.com

Pat Conro HMH Engineering pconro@hmh-llc.com

Lori Copeland Idaho Transportation Department Iori.copeland@itd.idaho.gov

Sarah Cordier University of Idaho cord8804@vandals.uidaho.edu

Mattias Cornwall University of Idaho corn8712@vandals.uidaho.edu

Kiel Couch Budinger & Associates kcouch@budingerinc.com

Tyler Coy Idaho Transportation Department *tyler.coy@itd.idaho.gov*

Scott Cron STRATA scron@stratageotech.com

Ryan DeBaun City of Moscow rdebaun@ci.moscow.id.us

Sarah Eldred Idaho Transportation Department sarah.eldred@itd.idaho.gov

Jesse Emery WSDOT NCR EmeryJB@wsdot.wa.gov

Chris Faus WSDOT FausCl@wsdot.wa.gov

Paul Franz CRH Northwest Region paul.franz@na.crh.com

Scott Fraser ALLWEST sfraser@allwesttesting.com

Kevin Funke ALLWEST kfunke@allwesttesting.com Kristopher Gayda Idaho Transportation Department Kris.gayda@itd.idaho.gov

JoLyn Gillie HWA GeoSciences jgillie@hwageo.com

Josh Giudice Ergon Asphalt & Emulsions josh.giudice@ergon.com

Tim Gott Idaho Transportation Department tim.gott@itd.idaho.gov

Nikolai Greer Idaho Transportation Department nikolai.greer@itd.idaho.gov

Eric Gunnarson Forsgren Associates egunnarson@forsgren.com

Terri Hansen Idaho Transportation Department terri.hansen@itd.idaho.gov

Irlene Hanson HMH Engineering ihanson@hmh-Ilc.com

Mark Hayes Idaho Transportation Department mark.hayes@itd.idaho.gov

Jason Henscheid Idaho Transportation Department Jason.Henscheid@itd.idaho.gov

Carrie Ann Hewitt Idaho Transportation Department carrieann.hewitt@itd.idaho.gov

Tom Hoff WSDOT HoffT@wsdot.wa.gov

Chris Hopper Canyon Highway District No. 4 chopper@canyonhd4.org

Fred Howe WSDOT NCR HoweF@wsdot.wa.gov

Brett Howell Interstate Concrete & Asphalt brett.howell@interstate-ica.com

Brandon Hundley HaulHub Technologies brandon.hundley@haulhub.com

David Johnson Asphalt Institute djohnson@asphaltinstitute.org

Dustin Johnson City of Lewiston, Idaho djohnson@cityoflewiston.org

Emad Kassem University of Idaho ekassem@uidaho.edu

Jon Kishiyama STRATA jkishiyama@stratageotech.com

Megan Koski Idaho Transportation Department megan.koski@itd.idaho.gov

Corey Krantz Idaho Transportation Department corey.krantz@itd.idaho.gov

Amanda Laib Idaho Transportation Department amanda.laib@itd.idaho.gov

Ryan Lewis STRATA RLewis@stratageotech.com Greg Lotridge Specialty Construction Supply greg@specialtysupply.com

Eric Lumley Idaho Transportation Department eric.lumley@itd.idaho.gov

Chud Lundgreen WSDOT LUNDGRC@wsdot.wa.gov

Rocky Lynn WSDOT LYNNRKY@wsdot.wa.gov

Kevin Maddox Idaho Asphalt Supply kmaddox@idahoasphalt.com

Todd Mansell Caterpillar mansell_todd@cat.com

Michael Martin Idaho Transportation Department michael.martin@itd.idaho.gov

Ty Mashburn Idaho Transportation Department ty.mashburn@itd.idaho.gov

Scott McArthur McArthur Engineering scott@mcarthur-eng.com

Scott McGowan Idaho Asphalt Supply smcgowan@idahoasphalt.com

Sean McLaughlin WSDOT MCLAUGS@wsdot.wa.gov

Anne Miller HMH Engineering amiller@hmh-llc.com

Jake Miller City of Lewiston, Idaho jmiller@cityoflewiston.org

Timothy Murphy Murphy Pavement Technology, Inc. tmurphy@murphypavetech.com

Christian Nead McArthur Engineering christian@mcarthur-eng.com

Steve Nettleton Idaho Transportation Department steve.nettleton@itd.idaho.gov

David Olsen WSDOT olsenDM@wsdot.wa.gov

Doug Olsen Idaho Asphalt Supply doug.olsen@westernemulsions.com

Kristi Olsen WSDOT OLSENKR@wsdot.wa.gov

Osama Omar University of Idaho omar7584@vandals.uidaho.edu

Isabelle Panos Idaho Transportation Department *isabelle.panos@itd.idaho.gov*

Ned Parrish Idaho Transportation Department ned.parrish@itd.idaho.gov

Zach Phenix Idaho Transportation Department Zach.phenix@itd.idaho.gov Gabriel Potirniche University of Idaho gabrielp@uidaho.edu

Scott Quire E&B Paving scottquire@gmail.com

Brett Rankin Crafco brett.rankin@crafco.com

Jacob Richmond STRATA jrichmond@stratageotech.com

Chad Riddle WSDOT RiddlCT@wsdot.wa.gov

Luke Rutherford McArthur Engineering Iuke@mcarthur-eng.com

Steve Schulte City of Moscow sschulte@ci.moscow.id.us

Pat Severance City of Lewiston, Idaho pseverance@cityoflewiston.org

Sunil Sharma University of Idaho ssharna@uidaho.edu

Chris Shaw Idaho Transportation Department wendy.robinson@itd.idaho.gov

Brett Siweck Mead & Hunt, Inc. Brett.Siweck@meadhunt.com

Samuel Sommers ALLWEST Testing & Engineering ssommers@allwesttesting.com

Jeff Storey WSDOT StoreyJ@wsdot.wa.gov

Shayna Sutton Idaho Transportation Department Shayna.Sutton@itd.idaho.gov

Nathan Swanson ALLWEST Testing & Engineering nswanson@allwesttesting.com

Chad Swenson WSDOT SwensoC@wsdot.wa.gov

James Szatkowski ITD james.szatkowski@itd.idaho.gov

Steve Taylor Idaho Transportation Department steve.taylor@itd.idaho.gov

Jason Thompson City of Lewiston, Idaho jtthompson@cityoflewiston.org

Jeremy Thompson HDR Engineering jeremy.thompson@hdrinc.com

Josh Thompson WSDOT NCR ThompJos@wsdot.wa.gov

Andy Torres WSDOT TorresH@wsdot.wa.gov

Luis Torres Figueroa Idaho Asphalt Supply Itorres@westernemulsions.com Al Turner Mead & Hunt Al.turner@meadhunt.com

Gabrial Turner Knife River gabe.turner@kniferiver.com

Shawn Turpin Allwest Testing & Engineering sturpin@allwesttesting.com

Jake Turrittin Idaho Transportation Department JAKE.TURRITTIN@ITD.IDAHO.GOV

Stephen Van De Bogert Ergon Asphalt and Emulsions stephen.vandebogert@ergon.com

Cody Vezina Idaho Transportation Department cody.vezina@itd.idaho.gov

Ryan Vincent WSDOT VincenR@wsdot.wa.gov

Sarah Vouk STRATA svouk@stratageotech.com

Scott Wardon HMH Engineering swardon@hmh-llc.com

Jesse Weaver Idaho Transportation Department *jesse.weaver@itd.idaho.gov*

Jesse Webb Idaho Transportation Department *jesse.webb@itd.idaho.gov*

Jarrett Welch Quality Paving Consultants LLC qualitypavingconsultants@gmail.com

Haifang Wen

WSU haifang_wen@wsu.edu

Ciara Willmer

WSDOT WilmeCJ@wsdot.wa.gov

Dakota Wilson

J-U-B Engineers, Inc. dwilson@jub.com

Jerry Wilson

Idaho Transportation Department jerry.wilson@itd.idaho.gov

Adrienne Woods

Idaho Transportation Department ADRIENNE.WOODS@ITD.IDAHO.GOV

Brody Young Idaho Asphalt Supply Byoung@idahoasphalt.com

Janet Zarate

Idaho Transportation Department janet.zarate@itd.idaho.gov

Huachun Zhai

Idaho Asphalt Supply hzhai@idahoasphalt.com

Jason Zimmer

WSDOT ZIMMERJ@wsdot.wa.gov

Muhammad Zubery LHTAC mzubery@lhtac.org

E&B PAVING

Balanced Mix Design

Scott Quire, P.E. Material Science Director E & B Paving

Allowable Tolerance of AC

Asphalt Content, %

Low

1

High

Scott is the Material Science Director for E & B Paving. He is a registered engineer in Kentucky.

Scott has 38 years experience in the design, control, and placement of asphalt mixtures for racing courses, highways, commercial projects, and airport pavements across the United States and around the globe.

His experience also includes testing and oversite of construction materials (aggregate, asphalt mixtures, Portland cement concrete, asphalt binders) testing, writing specifications, and training courses for construction materials testing. Scott is an active Technical Committee Member for the Plantmix Asphalt Industry of Kentucky (PAIKY), Flexible Pavements of Ohio, Asphalt Pavement Association of Indiana (APAI), and the Missouri Asphalt Pavement Association (MAPA).

E&B PAVING

E&B PAVING

Balanced Mix Design

Where we are coming from... What Balanced Mix Design(BMD) is...

- Definition
- Approaches

What Balanced Mix Design can be!

- Using the tools of BMD to explore opportunities
- Using the tools of BMD to answer questions

Where We are Coming From (Prescriptive Specifications)

405.02 Materials. Provide Superpave HMA composed of a combination of aggregate, approved additives, mineral filler (if required), RAP (if used), WMA additives or process (if used), and performance graded (PG) asphalt binder material. Provide a job mix formula (JMF) and a Superpave HMA pavement as specified in this section, 703, and 720.

Mixture Type	SP 2 (50 gyrations)	SP 3 (75 gyrations)	SP 5 (100 gyrations)
Design ESALs (a) (millions)	< 1	1 < 10	≥ 10
Gyratory Compaction Gyrations for N _{ini} Gyrations for N _{des} Gyrations for N _{max}	6 50 75	7 75 115	8 100 160
Relative Density, % Gmm @ Nini	≤ 90.5	≤ 89.0	≤ 89.0
Relative Density, % Gmm @ Ndes	96.0	96.0	96.0
Relative Density, % Gmm @ Nmax	≤ 98.0	≤ 98.0	≤ 98.0
Air Voids, % Pa	4.0	4.0	4.0
Dust to Binder Ratio Range (b)	0.6 - 1.2	0.6 - 1.2	0.6 - 1.2
Voids Filled with Asphalt (VFA) Range (c), %	65 - 78	65 -75 ^(d)	65 - 75 ^(d)

evel	RAP binder by weight of the total binder in the mixture, %	Binder C to account for the stiffnes	Grade Adjustment ss of the asphalt binder i	n the RAP
1	0 to 17 No	binder grade adjustment is r	made.	
2	> 17 to 30 des	e selected binder grade adju plans is one grade lower for ignated. Or determine the a rding chart. Note: See AAS rt procedure.	r the high and the low temp asphalt binder grade adjust	beratures tment using a
	Table 405.02-3 identifies the			
	Table 405.02-3 identifies the adjustments for each binder grade adjustment is not in Ta adjustment needed.	grade at the RAP level descr	ribed in Table 405.02-2. If 5.02-2 to determine the bin	the binder
	Table 405.02-3 identifies the adjustments for each binder grade adjustment is not in Ta adjustment needed.	grade at the RĂP level desci ble 405.02-3, use Table 405	ribed in Table 405.02-2. If 5.02-2 to determine the bin	the binder
	Table 405.02-3 identifies the adjustments for each binder grade adjustment is not in Ta adjustment needed.	yrade at the RĂP level desci ble 405.02-3, use Table 405 5.02-3 – Typical Adjusted E Level 2	ribed in Table 405.02-2. If 5.02-2 to determine the bin Binder Grades	f the binder der grade
	Table 405.02-3 identifies the adjustments for each binder grade adjustment is not in Ta adjustment needed. Table 40: Binder Grade	yrade at the RĂP level desci ble 405.02-3, use Table 405 5.02-3 – Typical Adjusted E Level 2	ribed in Table 405.02-2. If 5.02-2 to determine the bin Binder Grades Level 1	f the binder der grade
	Table 405.02-3 identifies the adjustments for each binder ; grade adjustment is not in Te adjustment needed. Table 40: Binder Grade Specified in Contract	gråde at the RĂP level descr ble 405.02-3, use Table 405 5.02-3 – Typical Adjusted E Level 2 Adjusted Binder Grade	ribed in Table 405.02-2. If 5.02-2 to determine the bin Binder Grades Level 1	f the binder der grade
	Table 405.02-3 identifies the adjustments for each binder, grade adjustment is not in Te adjustment needed. Table 40: Binder Grade Specified in Contract 58-28 58-34 64-28	grade at the RÅP level desci ble 405.02-3, use Table 405 5.02-3 – Typical Adjusted E Level 2 Adjusted Binder Grade 58-34 No Adjustment Needed 58-34	ribed in Table 405.02-2. If .02-2 to determine the bin Binder Grades Level 1 Adjusted Binder Grade	f the binder der grade
	Table 405.02-3 identifies the adjustments for each binder grade adjustment is not in Ta adjustment needed. Table 40: Binder Grade Specified in Contract 58-28 58-34 64-28 64-34	grade at the RÅP level desci ble 405.02-3, use Table 405 5.02-3 – Typical Adjusted E Level 2 Adjusted Binder Grade 58-34 No Adjustment Needed 58-34	ribed in Table 405.02-2, If 5.02-2 to determine the bin Binder Grades Level 1 Adjusted Binder Grade No adjustment	f the binder der grade
	Table 405.02-3 identifies the adjustments for each binder, grade adjustment is not in Te adjustment needed. Table 40: Binder Grade Specified in Contract 58-28 58-34 64-28	grade at the RÅP level desci ble 405.02-3, use Table 405 5.02-3 – Typical Adjusted E Level 2 Adjusted Binder Grade 58-34 No Adjustment Needed 58-34	ribed in Table 405.02-2. If .02-2 to determine the bin Binder Grades Level 1 Adjusted Binder Grade	f the binder der grade

5

Where We are Coming From (Prescriptive Specifications)

Sieve Size	11/2		11			in		
	Restricted Zone	Control Points	Restricted Zone	Control Points	Restricted Zone	Control Points		
2 in	-	-	-	-	-	-		
1½ in	-	90 to 100	—	100	-	-		
1 in	-	90 max	-	90 to 100 ^(a)	-	100		
¾₄in	-	-	-	90 max	-	90 to 100×		
¹/₂ in	-	40 to 70(4)	-	-	-	90 max		
∛a in	-	-	-	42 to 70 ^(a)	-	52 to 80 ^(a)		
No. 4	34.7	-	39.5	-	-	-		
No. 8	23.3	15 to 41(4)	26.8	19 to 45(a)	34.6	23 to 49(4)		
No. 16	15.5	-	18.1	-	23.1	-		
No. 30	11.7	-	13.6	-	16.7	-		
No. 50	10	-	11.4	-	13.7	-		
No. 100	-	-	-	-	-	-		
No. 200	-	0.0 to 6.0(a)	-	1.0 to 7.0(4)	-	2.0 to 8.0		
VMA	11		12		13.0			
Primary	3/8	in	No.	.4	No	. 4		
Control								
Sieve								
PCS Control	4	7	41	0	4	7		
PCS Control Point	4	7	41	0	4	7		
PCS Control Point (% passing)								
PCS Control Point (% passing) Table 703.	.05-2b – Nomina juirements PCS 1/2	al Maximum A Control Poin	ggregate Size-C ts for Mixture N %	Control Points ominal Maxim	(Percent Passi um Aggregate	ng) and VMA Size (b) 4		
PCS Control Point (% passing) Table 703. Rec Sieve Size	.05-2b – Nomina juirements PCS	al Maximum A Control Poin	ggregate Size-C ts for Mixture N	Control Points	(Percent Passi um Aggregate	ng) and VMA Size (b) 4		
PCS Control Point (% passing) Table 703. Rec Sieve Size 2 in	.05-2b – Nomina juirements PCS 1/2	al Maximum A Control Poin	ggregate Size-C ts for Mixture N %	Control Points ominal Maxim	(Percent Passi um Aggregate	ng) and VMA Size (b) 4		
PCS Control Point (% passing) Table 703. Rec Sieve Size 2 in 11/2 in	05-2b – Nomina uirements PCS //2 Restricted Zone	al Maximum A Control Poin in Control Points	ggregate Size-C ts for Mixture N Na Restricted Zone	Control Points ominal Maxim in Control Points	(Percent Passi um Aggregate Restricted Zone	ng) and VMA Size (b) 4 Control Point		
PCS Control Point (% passing) Table 703. Rec Sieve Size 2 in 11/2 in 1 in	05-2b – Nomina uirements PCS 1/2 Restricted Zone	al Maximum A Control Poin in Control Points — — — —	ggregate Size-C ts for Mixture N Na Restricted Zone	Control Points ominal Maxim in Control Points	(Percent Passi um Aggregate Restricted Zone	ng) and VMA Size (b) 4 Control Point		
PCS Control Point (% passing) Table 703. Rec Sieve Size 2 in 11/2 in 1 in 3/4 in	05-2b – Nomina uirements PCS ^{1/2} Restricted Zone –	al Maximum A Control Point in Control Points — — — — 100	ggregate Size-C ts for Mixture N Restricted Zone — —	Control Points ominal Maxim in Control Points — — — —	(Percent Passi um Aggregate Restricted Zone — —	ng) and VMA Size (b) 4 Control Point — — — —		
PCS Control Point (% passing) Table 703. Rec Sieve Size 2 in 11/2 in 1 in V ₄ in V ₂ in	05-2b – Nomina uirements PCS ^{1/2} Restricted Zone –	al Maximum A Control Point Control Points 	ggregate Size-C ts for Mixture N Restricted Zone — — — — — — —	Control Points ominal Maxim In Control Points — — — — 100	(Percent Passi um Aggregate Restricted Zone — —	ng) and VMA Size (b) 4 Control Point — — — 100		
PCS Control Point (% passing) Table 703. Rec Sieve Size 2 in 1 ¹ / ₂ in 1 in ³ / ₄ in ³ / ₂ in	05-2b – Nomina uirements PCS Ila Restricted Zone — — — —	al Maximum A Control Point in Control Points — — — — 100	ggregate Size-C ts for Mixture N Restricted Zone — — — —	Control Points ominal Maxim in Control Points — — — — — — — — — — — — — — — — — — —	(Percent Passi um Aggregate Restricted Zone — — — —	ng) and VMA Size (b) 44 ——————————————————————————————————		
PCS Control Point (% passing) Table 703. Rec Sieve Size 2 in 11/ ₂ in 11/ ₂ in 11/ ₂ in 11/ ₂ in 11/ ₂ in 11/ ₂ in 10/ ₂ in 10/ ₂ in 10/ ₂ in	05-2b – Nomina uirements PCS <u>7h</u> Restricted Zone — — — — — — — — — — — — —	al Maximum A Control Points 	ggregate Size-C ts for Mixture N Restricted Zone — — — — — — — — — — — —	Control Points ominal Maxim Control Points — — — 100 90 to 100 ^[4]	(Percent Passi um Aggregate Restricted Zone — — — — — — — — — —	ng) and VMA Size (b) 4 Control Point — — — 100		
PCS Control Point (% passing) Table 703. Rec Sieve Size 2 in 11/ ₂ in 1 in ½ in ½ in ½ in № .4 No. 4 No. 8	05-2b - Nomini uirements PCS 	al Maximum A Control Points — — — — — — — — — — — — — — — — — — —	ggregate Size-C ts for Mixture N Restricted Zone 	Control Points ominal Maxim in Control Points — — — — — — — — — — — — — — — — — — —	(Percent Passi um Aggregate Restricted Zone — — — — — — — — — — — — — —	ng) and VMA Size (b) 4 Control Point — — — — 100 95 to 100 ^(H) 95 to 100 ^(H)		
PCS Control Point (% passing) Table 703. Rec Sieve Size 2 in 11/2 in 1 in 14/2 in 1 //2 in 1	05-2b - Nomina uirements PCS Restricted Zone 	al Maximum A Control Points 	ggregate Size-C ts for Mixture N Restricted Zone — — — — — — — — — — — — — — — — — — —	Control Points ominal Maxim Control Points — — — 100 90 to 100 ^[4]	(Percent Passi um Aggregate Restricted Zone 	ng) and VMA Size (b) 4 Control Points 		
PCS Control Point (% passing) Table 703. Rec Sieve Size 2 in 11/ ₂ in 1 in ½ in ½ in ½ in № .4 No. 4 No. 8	05-2b - Nomini uirements PCS 	al Maximum A Control Points — — — — — — — — — — — — — — — — — — —	ggregate Size-C ts for Mixture N Restricted Zone 	Control Points ominal Maxim in Control Points — — — 100 90 to 100 ^(a) 90 max 32 to 67 ^(a)	(Percent Passi um Aggregate Restricted Zone — — — — — — — — — — — — — —	ng) and VMA Size (b) 4 Control Point — — — — 100 95 to 100 ^(H) 95 to 100 ^(H)		

NO. 10	23.0	_	31.0	-		30 10 33 4
No. 30	19.1		23.5	-	-	
No. 50	15.5	-	18.7	-	-	-
No. 100	-	-	-	-	-	-
No. 200	-	2.0 to 10.0(#)	-	2.0 to 10.0(4)	-	6.0 to 13.0(4)
VMA		4.0		5.0		16.0
Primary	N	0.8	N	0.8	N	lo. 16
Control						
Sieve						
PCS Control		39		47		42
Point						
(% passing)						
(a	a) Denotes the si	eves that will be use	d for mix design o	ontrol points and qui	ality analysis siew	es for a Class SP 2
	mix.					
0) The combined	i soorenste oradatio	o will be classifie	habero asseco se h	when it neeses he	low the primary

 The combined aggregate gradation will be classified as coarse graded when it passes below the primary control sieve (PCS) control point as defined in Table 703.05-2a and Table 703.05-2b. Other gradations will be classified as fine graded. This classification is based on the Contractor's job mix formula and not individual gradation tests. Coarse graded mixtures will not pass through the restricted zone.

Where We are Coming From

Agency Perspective:

History

0

- Prescriptive specifications
 - To best insure performance
 - Best practices of the day
 - To protect against materials that don't perform
- To control quality of materials
 - Aggregate
 - RAP
 - Asphalt Binder
- To control how the materials are put together
 - To control how the pavement is constructed
 - "Technology of the Day" warranted prescriptive specifications
 - Little opportunity for innovation

E&B PAVING

INDIANA DEPARTMENT OF TRANSPORTATION

STANDARD

SPECIFICATIONS

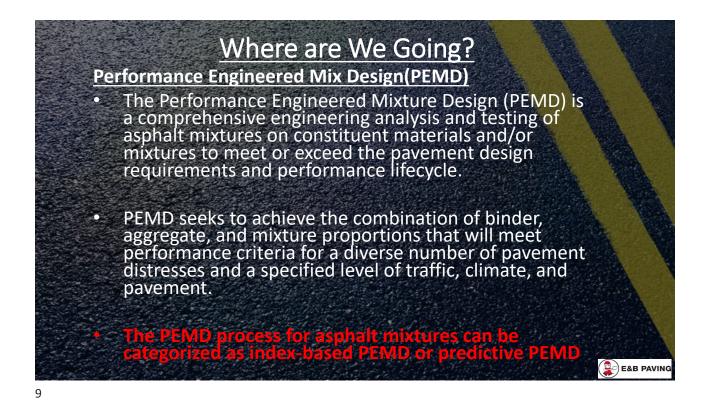
2024

Where are We Going?

Balanced Mix Design

In September 2015, the FHWA Expert Task Group on Mixtures and Construction formed a Balanced Mix Design Task Force.

WHAT IS A BALANCED MIX DESIGN?

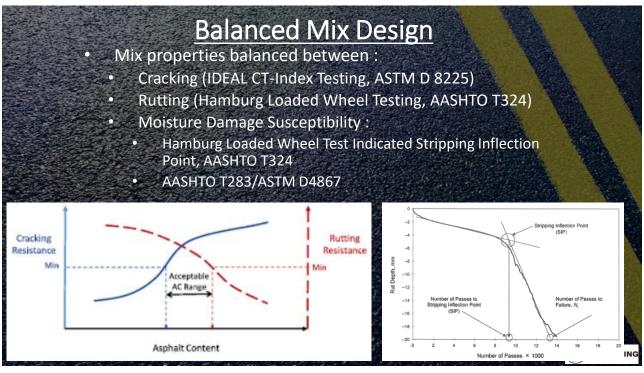


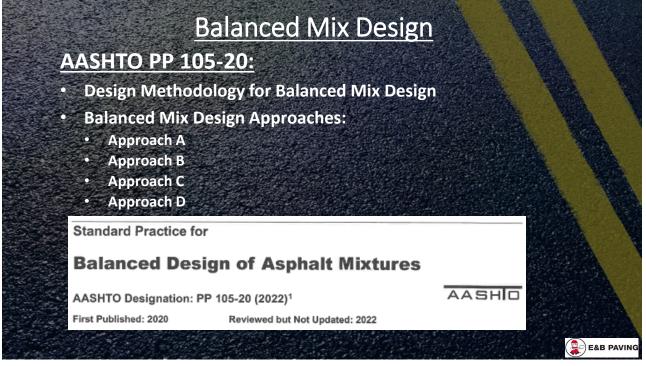
This group defined balanced mix design (BMD) as "asphalt mix design using performance tests on appropriately conditioned specimens that address multiple modes of distress taking into consideration mix aging, traffic, climate and location within the pavement structure."

In short, BMD incorporates two or more mechanical tests such a rutting test and a cracking test to assess how well the mixture resists common forms of distress. (Source: "Moving Towards Balanced Mix Design for Asphalt Mixtures."-NCAT)

7

E&B PAVING

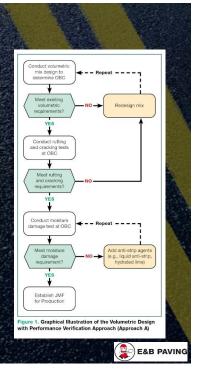



Where are We Going? Balanced Mix Design (using index-based tests)

The index-based PEMD process, which is similar to what many call the Balanced Mix Design (BMD) process, is an asphalt mixture design process that uses performance tests on appropriately conditioned specimens to address primary modes of distress while taking into consideration asphalt mixture aging, traffic, climate, and location of the mixture within the pavement structure.

E&B PAVIN

<section-header><section-header><text><image><image><image>



Balanced Mix Design

AASHTO PP 105-20:

- Balanced Mix Design Approach A
 - Volumetric Design with <u>Performance Verification</u>
 - Start with volumetrically optimized mix design
 - Conduct rutting and cracking tests
 - Perform moisture damage susceptibility test
 - Most restrictive of the four approaches

1	E.
т	С

<u>ID</u> /	AHO	Tran	sport	ation	De	<u>pt 2</u>	023	8 Sp	<u>ecs</u>		
Table 405.02-1 – Superpar						Maximum Aggr ontrol Points fo					
Mixture Type	SP 2 (50 gyrations)	SP 3 (75 gyrations)	SP 5 (100 gyrations)	Requir		in		in ai waximum		#4	
Design ESALs (a) (millions)	<1	1 < 10	≥ 10		Restricted	Control	Restricted	Control	Restricted	Control	100
Gyratory Compaction Gyrations for Nini				Sieve Size	Zone	Points	Zone	Points	Zone	Points	
Gyrations for Ndes Gyrations for Nmax	6	7	8 100	2 in	-	-	-	-	-	-	Contraction of the
	75	75 115	160	1½ in	-	-	-	-	-	-	The second
Relative Density, % Gmm @ Nini	≤ 90.5	≤ 89.0	≤ 89.0	1 in	-	-	-	-	-	-	See.
Relative Density, % Gmm @ Ndes	96.0	96.0	96.0	3/4 in	-	100	-	-	-	-	S. Star
Relative Density, % Gmm @ Nmax	≤ 98.0	≤ 98.0	≤ 98.0	1/2 in	_	90 to 100 (a)	-	100	-	100	
Air Voids, % Pa	4.0	4.0	4.0	3/8 in	_	90 max	_	90 to 100 (a)	_	95 to 100 (a)	
Dust Proportion Range (b)	0.6 – 1.4	0.6 – 1.4	0.6 – 1.4	No. 4	_	_	_	90 max	_	90 to 100	
Voids Filled with Asphalt (VFA) Range, % 1½"				No. 8	39.1	28 to 58 (a)	47.2	32 to 67 (a)	_	_	
1"	64 - 80	64 – 75	64 - 75	No. 16	25.6	201000	31.6	02.0007		30 to 55 (a)	
³ ⁄4"	65 – 78	65 – 75	65 – 75	No. 30	19.1	_	23.5	_		00100011	
½" 3/8"	65 – 78 65 – 78	65 – 75 65 – 75	65 – 75 65 – 75	No. 50	15.5	_	18.7	_			
5/0 #4	65 - 78	73 – 76	73 - 76	No. 100	10.0	_	10.7	-	_	_	
	67 – 79	67 – 77	67 – 77	52 ····	-	-	-	-	-	-	
Rut Depth, mm (c)	≤ 10.0 mm	≤ 10.0 mm	≤ 10.0 mm	No. 200	-	2.0 to 10.0 (a)	-	2.0 to 10.0 (a)	-	6.0 to 13.0 (a)	Same A
Stripping, passes (d)	12,500	15,000	15,000	VMA	14	4.0	15	5.0	16	6.0	
Cracking Test, IDEAL-CTIndex (e)	· · · · ·		80 (index value)	Primary Control Sieve	No	5. 8	No	0. 8	No	. 16	
(a) The anticipated project traffic level expected on the ordesign life of the roadway, determine the design ESA (b) For No. 4 nominal maximum size mixtures, the dust and SP 5 mixes. For coarse graded 3/8, ½, and ¼ in 1.5, (Fine and coarse graded mixtures are defined in 1.5, (Fine and coarse graded mixtures are defined in 1.5).	Ls for 20 years. proportion is 1.0 to 2.0 ch nominal maximum s	for SP 2 mixes and 1.	5 to 2.0 for SP 3	PCS Control Point (% passing)	3	19	4	7	4	12	
 (rine and Guarse graded mixules are demined in (c) Maximum depth after specified number of stripping in design. (d) Minimum number of passes with no stripping inflecti- mix design. (e) The Ideal-CT value and the associated data generat only be used for information. 	asses. The Hamburg i on point. The Hamburg	must have passing te	st results in the	(b) The co sieve (fine gra	mbined aggregate PCS) control point aded. This classific	vill be used for mix gradation will be c as defined in Table ation is based on th will not pass through	assified as coarse 703.05-2a and Ta e Contractor's job	-graded when it pa able 703.05-2b. Oth mix formula and n	sses below the property of the	rimary control be classified as	E&I

IDAHO Transportation Dept 2023 Specs

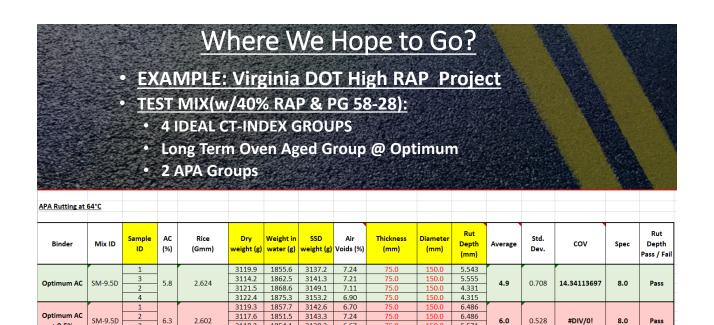
BMD Approach A

A REAL PROPERTY AND A REAL	
and the second	and the same way to be to and the second of the
	and the second
	PTYD HEALTHRAND A REPORTED IN
	and the second
the second s	
STATE CONTRACTOR STORE IS A CONTRACT OF THE AND	
and the second	
the second se	A DE LA MARTINA A ANTAL A ANTAL A ANTAL
and the second	
	Starter Start Starter Starter Starter
· · · · · · · · · · · · · · · · · · ·	The second states and
The second se	
	and the second second second second second second
	The star is the second
	e de la compañía de l
	e
	e
	d B
	€ C
	a B
	e E

	1. 好容益	Contraction of the second
	Table 405.02-2 -	Grade Adjustment for RAP Usage
evel	RAP binder by weight of the total binder in the mixture, %	Binder Grade Adjustment to account for the stiffness of the asphalt binder in the RAP
	0 to 17.0	No binder grade adjustment is made.
	> 17.0 to 30.0	The selected binder grade adjustment for the binder grade specified on the plans is one grade lower for the high and the low temperatures designated. Or determine the asphalt binder grade adjustment using a blending chart. Note: See AASHTO M 323 for recommended blending chart procedure.

able 405.02-3 identifies the typical binder grades used and the recommended binder grade djustments for each binder grade at the RAP level described in Table 405.02-2. If the binder grade djustment is not in Table 405.02-3, use Table 405.02-2 to determine the binder grade adjustment eeded.

	Level 2	Level 1
Binder Grade Specified in Contract	Adjusted Binder Grade	Adjusted Binder Grade
58-28	58-34	
58-34	No Adjustment Needed	
64-28	58-34	No adjustment needed
64-34	58-34	1
70-28	64-34	
76-28	70-34	


17

	100	10.00		- State	25 32.4			State A		Re-ASS	유민하는		영 이 있는 것은 것을 했다.									
			100	XAN		644652	100	34071			THE STREET	11 - 14 - 1	AP .	<u>Proj</u>	ect			No.			and the second	
				EST I	VIIX	W/	40%	o KA	P&	POT	08-2	<u>.8):</u>										
				4	DEA	. СТ	-INC	DEX	GROU	JPS									The second			
			52	A DECK	10.00	100	1	and the		1000				Sec.								
		1		<u>Lor</u>	ng Te	erm	Ove	en A	ged C	irou	р@	Ор	timu	<u>um</u>						9.4		
1000		55564	2,29			the state	1.11	220032		100	244		Second Sec					A STATE		1.14	1.00	
AL-CT at 25	°C																					
Binder	Mix ID	Sample ID	AC (%)	Rice (Gmm)	Dry weight (g)	Weight in water (g)	SSD weight (g)	Air Voids (%)	Thickness (mm)	Diameter (mm)	P100 (kN)	L75 (mm)	m75 (kN/mm)	Work of Failure (kN.mm)	Fracture Energy (kN/mm)	IDT Strength (kPa)	FST (mm x 10^6)	CTindex	Average	Std. Dev.	cov	,
Binder	Mix ID	1D			weight (g) 2585.4	water (g) 1551.8	weight (g) 2607.4	Voids (%) 7.41	(mm) 62.0	(mm) 150.0	(kN) 13.723	(mm) 3.906	(kN/mm) 3.028	Failure (kN.mm) 73.3	Energy (kN/mm) 0.008	Strength (kPa) 939.4	(mm x 10^6) 8.386	67.7	Average		cov	,
		1D 2	(%)	(Gmm)	weight (g) 2585.4 2586.6	water (g) 1551.8 1548.0	weight (g) 2607.4 2605.1	Voids (%) 7.41 7.50	(mm) 62.0 62.0	(mm) 150.0 150.0	(kN) 13.723 13.250	(mm) 3.906 4.254	(kN/mm) 3.028 2.611	Failure (kN.mm) 73.3 68.1	Energy (kN/mm) 0.008 0.007	Strength (kPa) 939.4 907.0	(mm x 10^6) 8.386 8.071	67.7 79.5		Dev.		
Binder timum AC - 0.5%	Mix ID 0	1D			weight (g) 2585.4	water (g) 1551.8	weight (g) 2607.4	Voids (%) 7.41 7.50 7.46	(mm) 62.0	(mm) 150.0	(kN) 13.723 13.250 12.587	(mm) 3.906 4.254 4.148	(kN/mm) 3.028 2.611 3.244	Failure (kN.mm) 73.3 68.1 61.6	Energy (kN/mm) 0.008 0.007 0.007	Strength (kPa) 939.4 907.0 861.6	(mm x 10^6) 8.386 8.071 7.681	67.7 79.5 56.4	Average 68	Dev.	cov #DIV/0	+
timum AC		1D 2	(%)	(Gmm)	weight (g) 2585.4 2586.6	water (g) 1551.8 1548.0	weight (g) 2607.4 2605.1	Voids (%) 7.41 7.50	(mm) 62.0 62.0	(mm) 150.0 150.0	(kN) 13.723 13.250	(mm) 3.906 4.254	(kN/mm) 3.028 2.611	Failure (kN.mm) 73.3 68.1	Energy (kN/mm) 0.008 0.007	Strength (kPa) 939.4 907.0	(mm x 10^6) 8.386 8.071	67.7 79.5		Dev.		
timum AC		ID 1 2 3 	(%)	(Gmm)	weight (g) 2585.4 2586.6 2585.2 2569.1	water (g) 1551.8 1548.0 1554.5 1532.7	weight (g) 2607.4 2605.1 2610.6 2590.0	Voids (%) 7.41 7.50 7.46 #DIV/0! #DIV/0! 7.41	(mm) 62.0 62.0 62.0 62.0	(mm) 150.0 150.0 150.0 150.0	(kN) 13.723 13.250 12.587 0.000 0.000 9.844	(mm) 3.906 4.254 4.148 0.000 0.000 6.754	(kN/mm) 3.028 2.611 3.244 #DIV/0! #DIV/0! 1.587	Failure (kN.mm) 73.3 68.1 61.6 0.0 0.0 0.0 67.7	Energy (kN/mm) 0.008 0.007 0.007 #DIV/0! #DIV/0! 0.007	Strength (kPa) 939.4 907.0 861.6 #DIV/0! #DIV/0! #DIV/0! 673.9	(mm x 10^6) 8.386 8.071 7.681 #DIV/0! #DIV/0! 10.809	67.7 79.5 56.4 #DIV/0! #DIV/0! 206.7		Dev.		
timum AC - 0.5%	0	ID 1 2 3 	(%) 5.3	(Gmm) 2.645	weight (g) 2585.4 2586.6 2585.2 2569.1 2569.1	water (g) 1551.8 1548.0 1554.5 	weight (g) 2607.4 2605.1 2610.6 2590.0 2584.8	Voids (%) 7.41 7.50 7.46 #DIV/0! #DIV/0! 7.41 6.67	(mm) 62.0 62.0 62.0 62.0 62.0	(mm) 150.0 150.0 150.0 150.0 150.0	(kN) 13.723 13.250 12.587 0.000 0.000 9.844 12.738	(mm) 3.906 4.254 4.148 0.000 0.000 6.754 4.900	(kN/mm) 3.028 2.611 3.244 #DIV/0! #DIV/0! 1.587 2.466	Failure (kN.mm) 73.3 68.1 61.6 0.0 0.0 67.7 74.9	Energy (kN/mm) 0.008 0.007 0.007 #DIV/0! #DIV/0! 0.007 0.008	Strength (kPa) 939.4 907.0 861.6 #DIV/0! #DIV/0! 673.9 872.0	(mm x 10^6) 8.386 8.071 7.681 #DIV/0! #DIV/0! 10.809 9.240	67.7 79.5 56.4 #DIV/0! 206.7 106.7	68	Dev.	#DIV/0	0!
timum AC - 0.5%		1 2 3 1 2 3	(%)	(Gmm)	weight (g) 2585.4 2586.6 2585.2 2569.1 2568.8 2569.6	water (g) 1551.8 1548.0 1554.5 1532.7 1536.0 1533.9	weight (g) 2607.4 2605.1 2610.6 2590.0 2584.8 2590.5	Voids (%) 7.41 7.50 7.46 #DIV/0! #DIV/0! 7.41 6.67 7.33	(mm) 62.0 62.0 62.0 62.0 62.0 62.0 62.0	(mm) 150.0 150.0 150.0 150.0 150.0 150.0 150.0	(kN) 13.723 13.250 12.587 0.000 0.000 9.844 12.738 9.961	(mm) 3.906 4.254 4.148 0.000 0.000 6.754 4.900 6.860	(kN/mm) 3.028 2.611 3.244 #DIV/0! #DIV/0! 1.587 2.466 1.248	Failure (kN.mm) 73.3 68.1 61.6 0.0 0.0 67.7 74.9 75.5	Energy (kN/mm) 0.008 0.007 0.007 #DIV/0! #DIV/0! 0.007 0.008 0.008	Strength (kPa) 939.4 907.0 861.6 #DIV/0! #DIV/0! 673.9 872.0 681.9	(mm x 10^6) 8.386 8.071 7.681 #DIV/0! #DIV/0! 10.809 9.240 11.908	67.7 79.5 56.4 #DIV/01 #DIV/01 206.7 106.7 297.6		Dev.		0!
timum AC - 0.5%	0	ID 1 2 3 1 2 3 4	(%) 5.3	(Gmm) 2.645	weight (g) 2585.4 2586.6 2585.2 2569.1 2568.8 2569.6 2568.9	water (g) 1551.8 1548.0 1554.5 1532.7 1536.0 1533.9 1535.9	weight (g) 2607.4 2605.1 2610.6 2590.0 2584.8 2590.5 2587.6	Voids (%) 7.41 7.50 7.46 #DIV/0! #DIV/0! 7.41 6.67 7.33 6.93	(mm) 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0	(mm) 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	(kN) 13.723 13.250 12.587 0.000 0.000 9.844 12.738 9.961 11.849	(mm) 3.906 4.254 4.148 0.000 0.000 6.754 4.900	(kN/mm) 3.028 2.611 3.244 #DIV/0! #DIV/0! 1.587 2.466	Failure (kN.mm) 73.3 68.1 61.6 0.0 0.0 67.7 74.9	Energy (kN/mm) 0.008 0.007 0.007 #DIV/0! #DIV/0! 0.007 0.008 0.008 0.008	Strength (kPa) 939.4 907.0 861.6 #DIV/0! #DIV/0! 673.9 872.0 681.9 811.1	(mm x 10^6) 8.386 8.071 7.681 #DIV/0! #DIV/0! 10.809 9.240 11.908 8.850	67.7 79.5 56.4 #DIV/01 #DIV/01 206.7 106.7 297.6 96.4	68	Dev.	#DIV/0	0!
timum AC - 0.5%	0	1 2 3 1 2 3	(%) 5.3	(Gmm) 2.645	weight (g) 2585.4 2586.6 2585.2 2569.1 2568.8 2569.6	water (g) 1551.8 1548.0 1554.5 1532.7 1536.0 1533.9	weight (g) 2607.4 2605.1 2610.6 2590.0 2584.8 2590.5	Voids (%) 7.41 7.50 7.46 #DIV/0! #DIV/0! 7.41 6.67 7.33	(mm) 62.0 62.0 62.0 62.0 62.0 62.0 62.0	(mm) 150.0 150.0 150.0 150.0 150.0 150.0 150.0	(kN) 13.723 13.250 12.587 0.000 0.000 9.844 12.738 9.961	(mm) 3.906 4.254 4.148 0.000 0.000 6.754 4.900 6.860 4.996	(kN/mm) 3.028 2.611 3.244 #DIV/0! #DIV/0! 1.587 2.466 1.248 2.480	Failure (kN.mm) 73.3 68.1 61.6 0.0 0.0 67.7 74.9 75.5 66.8	Energy (kN/mm) 0.008 0.007 0.007 #DIV/0! #DIV/0! 0.007 0.008 0.008	Strength (kPa) 939.4 907.0 861.6 #DIV/0! #DIV/0! 673.9 872.0 681.9	(mm x 10^6) 8.386 8.071 7.681 #DIV/0! #DIV/0! 10.809 9.240 11.908	67.7 79.5 56.4 #DIV/01 #DIV/01 206.7 106.7 297.6	68	Dev.	#DIV/0	0!
timum AC - 0.5% timum AC	0	ID 1 2 3 	(%) 5.3 5.8	(Gmm) 2.645 2.624	weight (g) 2585.4 2586.6 2585.2 2569.1 2568.8 2569.6 2568.9 2579.2	water (g) 1551.8 1548.0 1554.5 1532.7 1536.0 1533.9 1535.9 1545.8	weight (g) 2607.4 2605.1 2610.6 2590.0 2584.8 2590.5 2587.6 2598.8	Voids (%) 7.41 7.50 7.46 #DIV/0! #DIV/0! 7.41 6.67 7.33 6.93 6.67	(mm) 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0	(mm) 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	(kN) 13.723 13.250 12.587 0.000 0.000 9.844 12.738 9.961 11.849 12.459	(mm) 3.906 4.254 4.148 0.000 0.000 6.754 4.900 6.860 4.996 6.364 6.033 6.015	(kN/mm) 3.028 2.611 3.244 #DIV/0! #DIV/0! 1.587 2.466 1.248 2.480 2.747 1.915 1.787	Failure (kN.mm) 73.3 68.1 61.6 0.0 0.0 67.7 74.9 75.5 66.8 79.3 73.4 85.3	Energy (kN/mm) 0.008 0.007 0.007 #DIV/0! #DIV/0! 0.007 0.008 0.008 0.008 0.009 0.009	Strength (kPa) 939.4 907.0 861.6 #DIV/01 #DIV/01 673.9 872.0 681.9 811.1 852.9 741.1 784.3	(mm x 10^6) 8.386 8.071 7.681 #DIV/0! #DIV/0! 10.809 9.240 11.908 8.850 10.000 10.648 11.693	67.7 79.5 56.4 #DIV/0! 206.7 106.7 297.6 96.4 131.7 165.7 205.8	68	Dev.	#DIV/0	0!
timum AC - 0.5%	0	ID 1 2 3 - - - - - - - - - - - - -	(%) 5.3	(Gmm) 2.645	weight (g) 2585.4 2586.6 2585.2 2569.1 2569.1 2568.8 2569.6 2568.9 2579.2 2585.2	water (g) 1551.8 1548.0 1554.5 1532.7 1536.0 1533.9 1535.9 1545.8 1535.0	weight (g) 2607.4 2605.1 2610.6 2590.0 2584.8 2590.5 2587.6 2598.8 2598.9	Voids (%) 7.41 7.50 #DIV/0! #DIV/0! 7.41 6.67 7.33 6.93 6.67 6.61 6.72 6.61	(mm) 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0	(mm) 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	(kN) 13.723 13.250 12.587 0.000 0.000 9.844 12.738 9.961 11.849 12.459 10.827 11.457 10.824	(mm) 3.906 4.254 4.148 0.000 0.000 6.754 4.900 6.860 4.996 6.364 6.033 6.015 5.791	(kN/mm) 3.028 2.611 3.244 #DIV/0! #DIV/0! 1.587 2.466 1.248 2.480 2.747 1.915 1.787 1.837	Failure (kN.mm) 73.3 68.1 61.6 0.0 0.0 67.7 74.9 75.5 66.8 79.3 73.4 85.3 72.6	Energy (klv/mm) 0.008 0.007 0.007 #DIV/0! #DIV/0! 0.007 0.008 0.008 0.007 0.008 0.009 0.008	Strength (k/a) 939.4 907.0 861.6 #DIV/01 #DIV/01 #DIV/01 673.9 872.0 681.9 872.0 681.9 811.1 852.9 741.1 784.3 740.9	(mm x 10^6) 8.386 8.071 7.681 #DIV/0! #DIV/0! 10.809 9.240 11.908 8.850 10.000 10.648 11.693 10.539	67.7 79.5 56.4 #DIV/0! 206.7 106.7 297.6 96.4 96.4 131.7 165.7 205.8 164.1	68	Dev. #DIV/0	#DIV/0	9
ptimum AC	0	ID 1 2 3 	(%) 5.3 5.8	(Gmm) 2.645 2.624	weight (g) 2585.4 2586.6 2585.2 2569.1 2568.8 2569.6 2568.9 2569.2 2585.2 2585.2 2585.2	water (g) 1551.8 1548.0 1554.5 	weight (g) 2607.4 2605.1 2610.6 2590.0 2584.8 2590.5 2587.6 2598.8 2598.9 2599.7	Voids (%) 7.41 7.50 7.46 #DIV/0! #DIV/0! 7.41 6.67 7.33 6.93 6.67 6.61 6.72	(mm) 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0	(mm) 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	(kN) 13.723 13.250 12.587 0.000 0.000 9.844 12.738 9.961 11.849 12.459 10.827 11.457	(mm) 3.906 4.254 4.148 0.000 0.000 6.754 4.900 6.860 4.996 6.364 6.033 6.015	(kN/mm) 3.028 2.611 3.244 #DIV/0! #DIV/0! 1.587 2.466 1.248 2.480 2.747 1.915 1.787	Failure (kN.mm) 73.3 68.1 61.6 0.0 0.0 67.7 74.9 75.5 66.8 79.3 73.4 85.3	Energy (kN/mm) 0.008 0.007 0.007 #DIV/0! #DIV/0! 0.007 0.008 0.008 0.008 0.009 0.009	Strength (kPa) 939.4 907.0 861.6 #DIV/01 #DIV/01 673.9 872.0 681.9 811.1 852.9 741.1 784.3	(mm x 10^6) 8.386 8.071 7.681 #DIV/0! #DIV/0! 10.809 9.240 11.908 8.850 10.000 10.648 11.693	67.7 79.5 56.4 #DIV/0! 206.7 106.7 297.6 96.4 131.7 165.7 205.8	68	Dev. #DIV/0	#DIV,	
timum AC - 0.5% timum AC	0	ID 1 2 3 	(%) 5.3 5.8	(Gmm) 2.645 2.624	weight (g) 2585.4 2586.6 2585.2 2569.1 2568.8 2569.6 2569.6 2569.6 2579.2 2579.2 2579.2	water (g) 1551.8 1548.0 1554.5 1532.7 1536.0 1533.9 1535.9 1535.9 1545.8 1535.0 1535.1	weight (g) 2607.4 2605.1 2610.6 2590.0 2584.8 2590.5 2587.6 2598.7 2598.9 2598.9 2598.9	Voids (%) 7.41 7.50 7.46 #DIV/0! #DIV/0! 7.41 6.67 7.33 6.67 6.61 6.72 6.61 6.72 6.61 #DIV/0! #DIV/0!	(mm) 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0	(mm) 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	(kN) 13.723 13.250 12.587 0.000 0.000 0.000 9.844 12.738 9.961 11.849 12.459 10.827 10.827 10.827 10.824 0.000 0.000	(mm) 3.906 4.254 4.148 0.000 0.000 6.754 4.900 6.860 4.996 6.364 6.033 6.015 5.791 0.000 0.000	(kN/mm) 3.028 2.611 3.244 #DIV/01 #DIV/01 1.587 2.466 1.248 2.486 1.248 2.446 1.248 2.477 1.915 1.787 1.837 1.877 1.877 1.915 1.787 1.877 1.915 1.787 1.877 1.915 1.787 1.877 1.915 1.787 1.877 1.915 1.787 1.877 1.915 1.787 1.877 1.915 1.787 1.877 1.915 1.787 1.877 1.915 1.787 1.787 1.915 1.915 1.9	Failure (kN.mm) 73.3 68.1 61.6 0.0 0.0 67.7 74.9 75.5 66.8 79.3 73.4 85.3 73.4 85.3 72.6 0.0 0.0	Energy (kN/mm) 0.008 0.007 #DIV/01 #DIV/01 #DIV/01 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.009 0.008	Strength (kPa) 939.4 907.0 861.6 #DIV/01 #DIV/01 #DIV/01 872.0 681.9 811.1 852.9 741.1 784.3 740.9 #DIV/01 #DIV/01	(mm x 10^6) 8.386 8.071 7.681 #DIV/0! #DIV/0! 10.809 9.240 11.908 8.850 10.000 10.648 11.693 10.539 #DIV/0! #DIV/0!	67.7 79.5 56.4 #DIV/OI 206.7 297.6 96.4 131.7 165.7 205.8 164.1 #DIV/OI #DIV/OI	68	Dev. #DIV/0	.5029	9
timum AC - 0.5% timum AC	0	ID 1 2 3 	(%) 5.3 5.8	(Gmm) 2.645 2.624	weight (g) 2585.4 2586.6 2585.2 2569.1 2568.8 2569.6 2568.9 2569.2 2585.2 2585.2 2585.2	water (g) 1551.8 1548.0 1554.5 	weight (g) 2607.4 2605.1 2610.6 2590.0 2584.8 2590.5 2587.6 2598.8 2598.9 2599.7	Voids (%) 7.41 7.50 #DIV/0! #DIV/0! 7.41 6.67 7.33 6.93 6.67 6.61 6.72 6.61 #DIV/0!	(mm) 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0	(mm) 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	(kN) 13.723 13.250 12.587 0.000 0.000 9.844 12.738 9.961 11.849 12.459 10.827 11.457 10.824 0.000	(mm) 3.906 4.254 4.148 0.000 0.000 6.754 4.900 6.860 4.996 6.364 6.033 6.015 5.791 0.000	(kN/mm) 3.028 2.611 3.244 #DIV/01 #DIV/01 1.587 2.466 1.248 2.480 2.747 1.915 1.787 1.837 #DIV/01	Failure (kN.mm) 73.3 68.1 61.6 0.0 0.0 67.7 74.9 75.5 66.8 79.3 73.4 85.3 72.6 0.0	Energy (kN/mm) 0.008 0.007 #DIV/01 #DIV/01 #DIV/01 0.008 0.008 0.009 0.008 0.009 0.008 0.009 0.008	Strength (kPa) 939.4 907.0 861.6 #DIV/01 #DIV/01 673.9 872.0 681.9 811.1 852.9 741.1 784.3 740.9 #DIV/01	(mm x 10^6) 8.386 8.071 7.581 #DIV/0! #DIV/0! 10.809 9.240 11.908 8.850 10.000 10.648 11.693 10.539 #DIV/0!	67.7 79.5 56.4 #DIV/0! 206.7 297.6 96.4 131.7 165.7 205.8 164.1 #DIV/0!	68	Dev. #DIV/0	.5029	29

ITOA

E&B PAVING

😫) E&B PAVING

3118.2

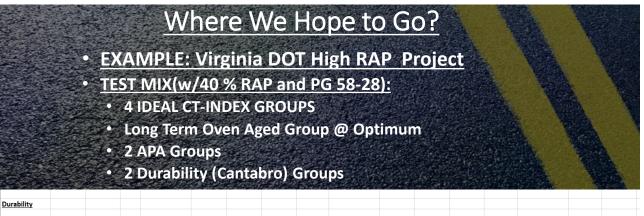
3119.5

1854.1

1857.3

3138.2

3142.2


6.67

6.69

5.571

19

+ 0.5%

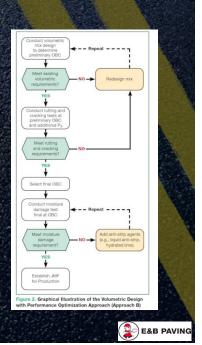
Tester	Mix ID	Sample ID	AC (%)	Rice (Gmm)	Dry weight (g)	Weight in water (g)	SSD weight (g)	Air Voids (%)	Weight after bulk (g)	Weight after test (g)	Mass Loss (%)	Average	Std. Dev.	cov	Spec	Mass Loss Pass / Fail									
	num AC SM-9.5D	1			4976.6	3011.5	4984.7	3.90	4979.8	4742.1	4.8														
Optimum AC		SM-9.5D	2 5.80	5.80	2 5.80	2.624	4976.5	3019.4	4984.3	3.49	4979.5	4785.2	3.9	4.4	0.4	10.146	7.5	Pass							
		3			4981.1	3014.0	4993.4	4.11	4986.8	4762.4	4.5														
Optimum		1												4945.5	2992.0	4968.2	5.39	4965.4	4607.9	7.2					
-0.5% AC	SM-9.5D	2	5.30	2.645	4957.2	3000.1	4971.3	4.93	4966.9	4678.7	5.8	6.5	0.7	10.729	7.5	Pass									
-0.5% AC		3			4954.4	2991.2	4971.2	5.40	4967.1	4639.3	6.6														
. Seattle sent	1.00				1000										1.93										
1.25 8 4.4				a to an a total	all and	-	1	1234 T							🐉 E&E	B PAVING									
and the second	and the second	201 8		19 - 19 - 20	2.42.44.7			pr 2.9-2	1. Play 20 3	203 ****	in pro-				•										

Where We Hope to Go?

EXAMPLE: Virginia DOT High RAP Project
Control MIX(w/25 % RAP and PG 64-22):

• 2 IDEAL CT-INDEX GROUPS

Long Term Oven Aged Group @ Optimum

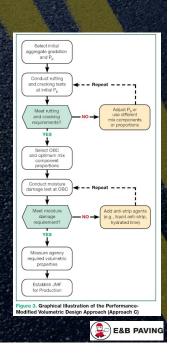

Binder M	Vix ID	Sample ID	AC (%)	Rice (Gmm)	Dry weight (g)	Weight in water (g)	SSD weight (g)	Air Voids (%)	Thickness (mm)	Diameter (mm)	P100 (kN)	L75 (mm)	m75 (kN/mm)	Work of Failure (kN.mm)	Fracture Energy (kN/mm)	IDT Strength (kPa)	FST (mm x 10^6)	CTindex	Average	Std. Dev.	cov	Sp
		1			2584.1	1542.3	2605.0	6.73	62.0	150.0	13.630	4.782	2.436	77.8	0.008	933.0	8.971	109.5				T
ptimum AC		2			2583.7	1542.0	2605.4	6.81	62.0	150.0	14.805	4.525	3.042	77.4	0.008	1013.4	8.213	82.5	99	12	0.1207	
LTOA	0	3	5.8	2.607	2584.3	1540.6	2602.9	6.69	62.0	150.0	14.888	4.664	2.719	86.4	0.009	1019.2	9.111	106.2				70
	ŀ	4			2585.0 2584.8	1538.1 1541.3	2600.2 2602.0	6.64 6.53	62.0 62.0	150.0 150.0	14.220 14.196	4.560	2.825	77.8	0.008	973.4 971.7	8.593 8.838	90.0 106.5				
		3			2584.8	1541.3	2602.0	6.67	62.0	150.0	13.867	6.521	3.656	104.7	0.009	9/1./ 949.2	8.838	106.5				
	-	2			2583.8	1539.6	2599.8	6.52	62.0	150.0	15.160	5.547	3.456	104.1	0.011	1037.8	10.790	119.8				665 70.0
imum AC	0	3	5.8	2.607	2586.8	1540.3	2604.5	6.76	62.0	150.0	17.139	5.547	4.665	107.7	0.012	1173.2	9.873	91.8	122	20	0.1665	
STOA		4			2587.0	1540.5	2603.4	6.64	62.0	150.0	16.435	6.342	3.547	114.2	0.012	1125.0	10.912	146.3				
		5			2582.6	1540.0	5.8	164.57	62.0	150.0	15.746	5.740	3.567	103.3	0.011	1077.9	10.310	119.2				
то						20				5000	2.53	12.00			100				1000			I

- Durability Groups: 2
- **BOTTOMLINE: A LOT OF SPECIMENS!**

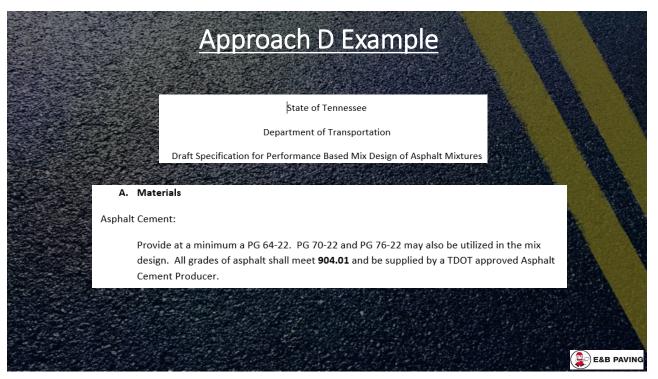
Balanced Mix Design

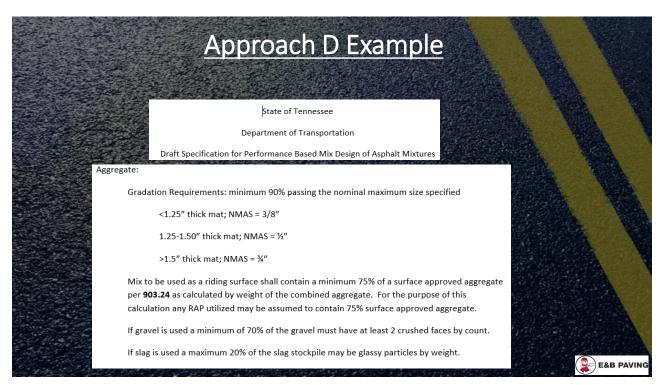
AASHTO PP 105-20:

- Balanced Mix Design Approach B:
 - Volumetric Design with <u>Performance Optimization</u>
 - Start with volumetrically optimized mix design
 - Select Preliminary Optimum Binder Content (OBC)
 - Conduct rutting and cracking tests at:
 - Preliminary Optimum Binder Content
 - Additional Binder Contents
 - If rutting/cracking satisfied, set final OBC
 - Perform moisture damage susceptibility test

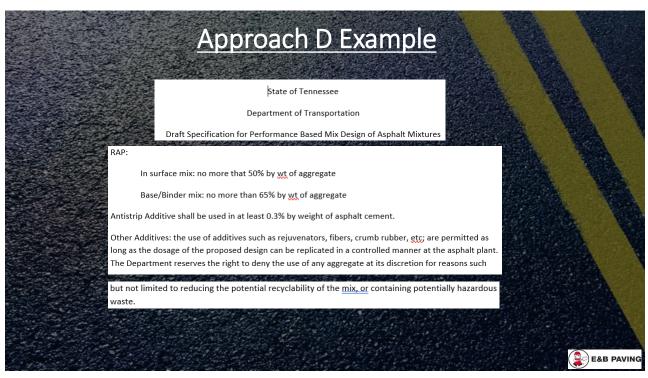


😫) E&B PAVING

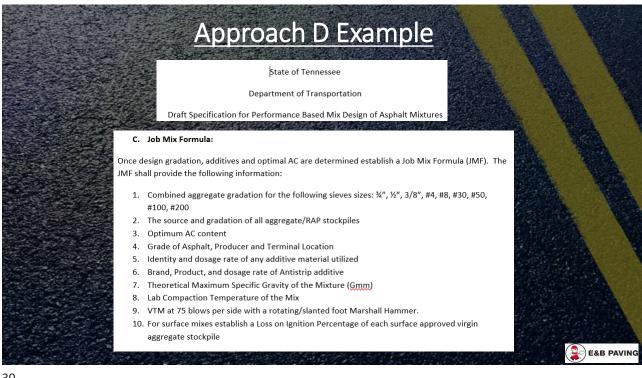

Balanced Mix Design

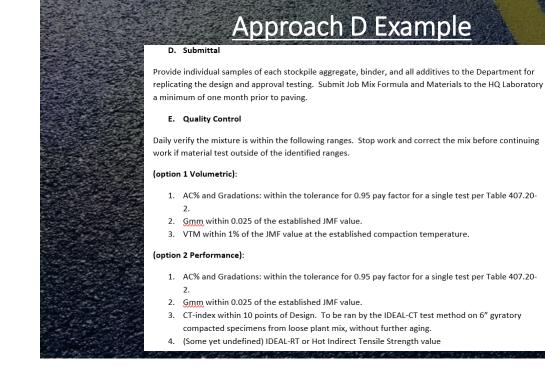

AASHTO PP 105-20:

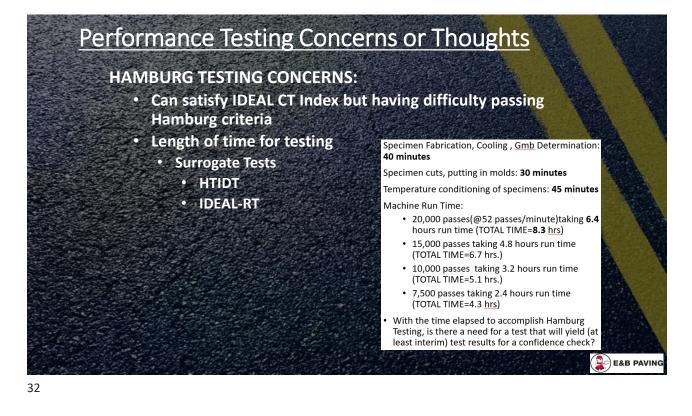
- Balanced Mix Design Approach C:
 - Performance-Modified Volumetric Mix Design
 - Start with volumetric mix design method
 - Establish initial component material properties
 - Proportions
 - Binder content
 - Performance testing results used to adjust initial values
 - Performance test criteria satisfied
 - May not be required to meet all volumetric criteria



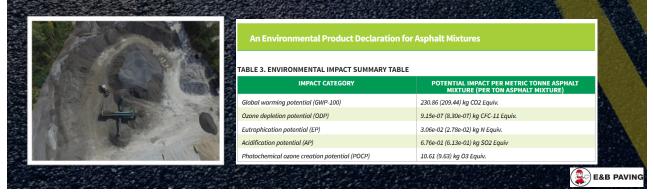
Balanced Mix Design Select initial AASHTO PP 105-20: aggregate gradation and virgin binder grade **Balanced Mix Design Approach D:** Conduct rutting nd cracking tests a three (or more) P_b **Performance Mix Design** Meet ruttin and crackin requirement Use differen 0 Initial mixture component and proportions nix components or proportions **Based on performance tests** Little or no requirements for volumetric properties 0 Select OBC and optimum mix Minimum requirements may be set for: mpo 6 E. Asphalt binder Conduct moisture amage test at OBC **Aggregate properties** Mixture volumetric properties may be checked O Meet moistur Add anti-strip agent Lest restrictive of the approaches Establish JMF for Production 4. Graphical II proach (Approach D) E&B PAVIN







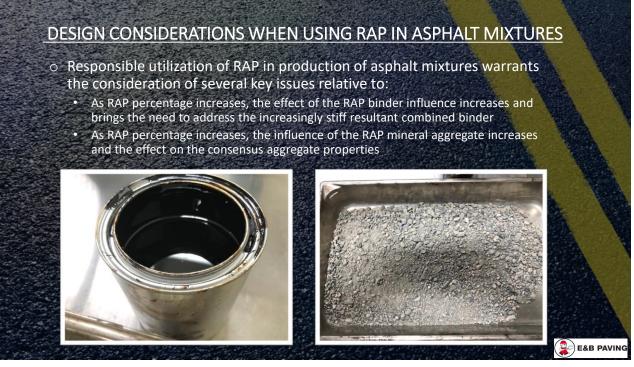
	State of Tenr	nessee	
	Department of Tra	nsportation	
Draft Specific	ation for Performance Base	ed Mix Design of Asphalt N	1ixtures
mix design approval.	vith the table below. The D		
Road Classification	Rutting Depth per Hamburg Wheel Tracking Test (AASHTO T324) at 50C (min passes to 12.5mm rutting)	Stripping Inflection Point at 50C per Hamburg Wheel Tracking Test (AASHTO T324) (min. passes that SIP occurred)	CT Index per IDEAL CT (ASTM D8225) (Mixture to be aged as loose mix for 4 hours in a forced draft oven at 135C)
State Routes (not controlled access) 10,000 ADT max	10,000	No Inflection Point Allowed	50
State Routes (not controlled access) L0,000+ ADT	15,000	10,000	75
nterstates and Controlled Access State	20,000	10,000	100

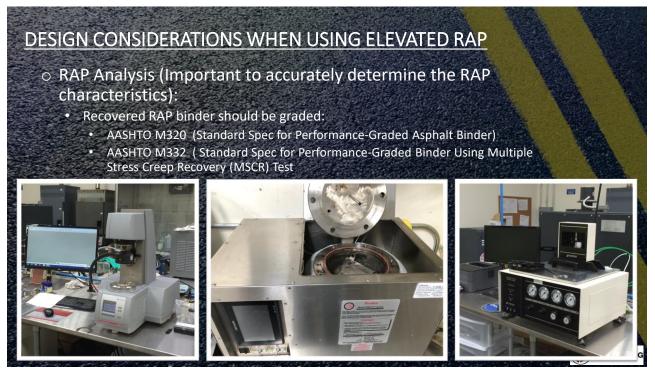

What Balanced Mix Design Can Be Using the tools of BMD to explore opportunities

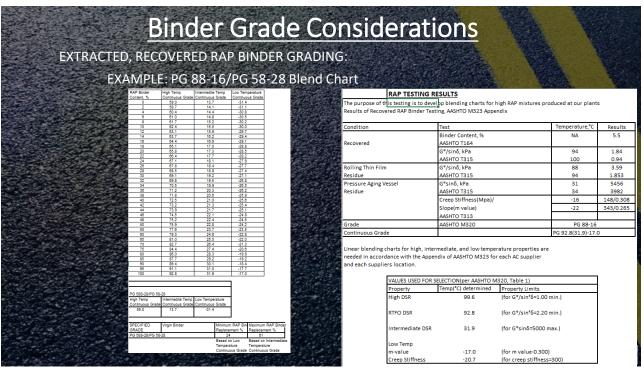
What Balanced Mix Design Can Be

Using the tools of BMD to explore:

- Increase use of RAP
- Rap utilization and impact on EPD's
- Impact of binder source and grade on performance tests
- Concerns




RAP Binder Grade Considerations


BOTTOMLINE:

- RAP Binder/Factors
- RAP Binder Availability (100 %, 75 %, 60 %,??)
- "Black Rock" Concept
- RAP Binder Grading
 - (PG 88-16, PG 94-10, PG 106-4)
 - Do we continue to recycle the recycle?
 - Japanese specification <20 pen=LANDFILL Material
 - MSCR % Recovery + 50 %
 - The elastic response didn't go away?
 - Effect on performance tests
 - RAS Binder Grading
 - (PG 180+??)

E&B PAVING

43

DESIGN CONSIDERATIONS WHEN USING RAP IN ASPHALT MIXTURES DATE: 5/28/2019

	3, 23, 2013					
PROJECT NAME:	60 % RAP w	/REIUVEN	ATOR and PG 58-28 vs 25	% RAP w/PG	64-22	
		7112001211		///////////////////////////////////////		
MIX TYPE:	9.5mm Surf	ace				
		Mix A (50	% Binder Replacement)	Mix B (21	% Binder Replaceent)	
MIXTURE COMBIN		60 % RAP		25 % RAP	w/ PG 64-22	
TEST PROPERTY		(wt. of mi	x) REJUVENATOR			
		and PG 58	-28			
IDEAL CT-INDEX		126.3		108.2		
Disk-Shaped Com	pact Tension	389.7	(@-12 C)	362.3	(@ -12 C)	A state of the second second second
(DCT), Fracture En	ergy (J/m²)					
Hamburg Loaded \	Wheel					
Rut Depth (mm):		21 mm @	10,000 cycles	4.1mm @	10,000 cycles	

	a la part				COLOR DE LA COL	345
Increase	e use of RAP	and conce	rns:		Contraction of the second	
roduct Ingredients	an a		Product Ingredients		·	100
	n the mix design are provided in the table below.		251	I in the mix design are provided in the table below.		
BLE 1. PRODUCT INGREDIEN COMPONENT	TS MATERIAL	WEIGHT %	TABLE 1. PRODUCT INGREDIE	MATERIAL	WEIGHT %	
Aggregate	Natural Stone	18	Agaregate	Natural Stone	22	
Aggregate	Natural Stone	20	Aggregate	Natural Stone	39	
Aggregate	Natural Stone	15	Aggregate	Natural Stone	15	
Aggregate	Natural Stone	16	RAP	Reclaimed Asphalt Pavement	18	
RAP	Reclaimed Asphalt Pavement	27	Binder	Unmodified	5	14 E 2
Binder	Unmodified	5	5.6			
		94 -	6.50			
			2219			
						0.00
		22	19 c			
BLE 3. ENVIRONMENTAL IMP		THE SHE STRAND	TABLE 3. ENVIRONMENTAL IN	PACT SUMMARY TABLE		
ІМРАСТ САТЕС	ORY POTENTIAL IMPACT	PER METRIC TONNE ASPHALT	ІМРАСТ САТ		ACT PER METRIC TONNE ASPHALT PER TON ASPHALT MIXTURE)	
lobal warming potential (GWP-100)	· · · · · · · · · · · · · · · · · · ·	03	Global warming potential (GWP-1			
zone depletion potential (ODP)	8.20e-08 (7.44e-08) kg CFO		Ozone depletion potential (ODP)	7.93e-08 (7.20e-08) kg	CFC-11 Equiv.	
utrophication potential (EP)	1.10e-02 (9.93e-03) kg N E		Eutrophication potential (EP)	1.14e-02 (1.04e-02) kg	y N Equiv.	3
cidification potential (AP)	1.35e-01 (1.23e-01) kg SO.	2 Equiv	Acidification potential (AP)	1.39e-01 (1.26e-01) kg	g SO2 Equiv	
hotochemical ozone creation poten	tial (POCP) 3.23 (2.93) kg O3 Equiv.		Photochemical ozone creation pol	ential (POCP) 3.26 (2.96) kg O3 Equ	iv.	
		Contraction of the second	and the first of the			
and the second	The second s	and the second second second second	and the state of the state of the			

45

Balanced Mix Design

 Why look at 5% or 7% Target Air Voids? Increase target air voids to 5.0% Increase minimum VMA +1.0% Aggregate quality requirements remain the same All INDOT designs since 2020 are Superpave5

	Superpave4	Superpave5
Design target air voids	4.0%	5.0%
Minimum VMA	15.0%	16.0%
Minimum Vbe	11.0%	11.0%
Density (in-place air voids)	<mark>93.0% (7.0%)</mark>	<mark>95.0% (5.0%)</mark>

Balanced Mix Design

- If INDOT looks at Index-Based tests for Balanced Mix Designs(BMD) some things to consider:
 - If BMD Approach A is used to "Baseline" the present mixes
 - Target Design Air Voids is 5.0 % and desired target density is 95.0 % of theoretical maximum specific gravity (Gmm)
 - Index Based Tests being considered for use:
 - Hamburg Wheel Tracking Test for rutting
 - AASHTO T324
 - (typical target air voids is 7.0 % (93.0% of Gmm)
 - IDEAL CT-Index for cracking potential
 - ASTM D 8225
 - (typical target air voids is 7.0 % (93.0% of Gmm)
 - What are the effects of running the Index tests at 5.0 % instead of 7.0 %?

- EXAMPLE:
- INDOT QC/QA,HMA,3,64,Surface, 9.5mm
- Mix Blend:
 - dolomite #11's @ 33.0 %
 - natural sand @ 10.0%
 - Washed dolomite mfg. sand @ 17.0%
 - Washed limestone mfg. sand @ 20. %
 - RAP @ 20.0 %
 - Design Binder Content @ 5.8 % (TOTAL)(rbr=0.17)

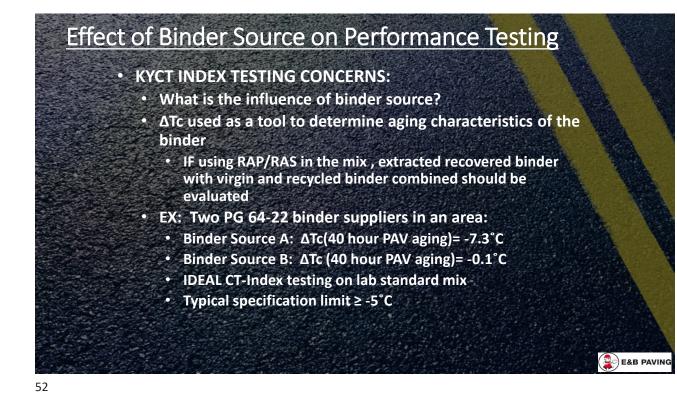
Balanced Mix Design

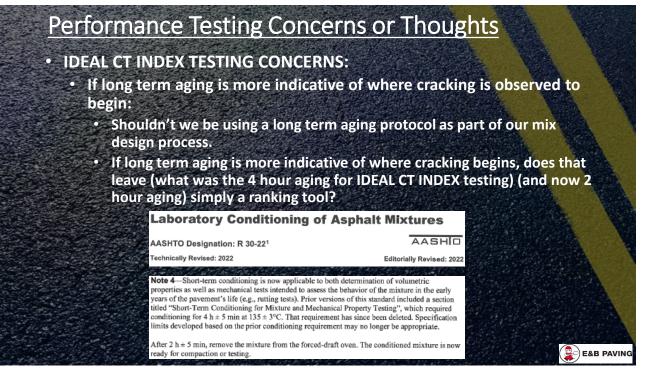
• Example:

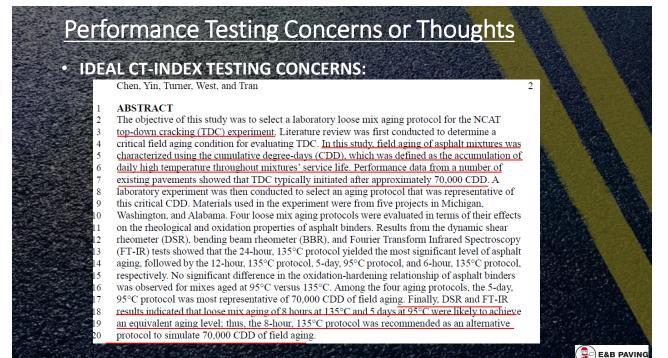
- Design % Air Voids =5.0 %
- % VMA =16.7 %
- Performance Tests:
 - Rutting Test: Hamburg Wheel Track Test(run @ 50°C,158 lbf wheel load, 12.5mm target max. rut depth, PG 64-22)
 - Run with specimen air voids @ 5.0% (3.6mm @ 10,000 and 7.0mm @ 20,000 passes)
 - Run with specimen air voids @ 7.0 %(5.9mm @ 10,000 and FAIL @ 20,000 passes)
 - Rutting Test: Hamburg Wheel Track Test(run @ 50°C,158 lbf wheel load, 12.5mm target max. rut depth, PG 76-22)
 - Run with specimen air voids @ 5.0% (2.1mm @ 10,000 and 4.1mm @ 20,000 passes)
 - Run with specimen air voids @ 7.0 %(2.8mm @ 10,000 and 3.6mm @ 20,000 passes)

Balanced Mix Design

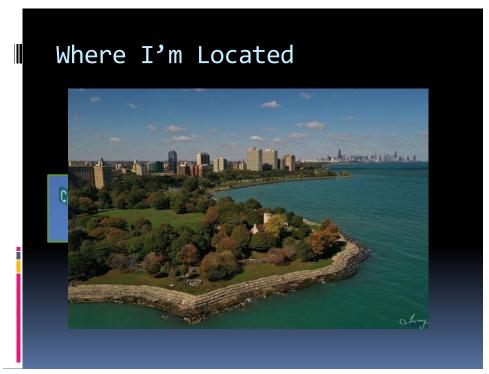
- Example:
- IDEAL CT-Index Test (run at 25 °C, 4.0 hour oven aging @ 135 °C, PG 64-22)
 - Run with specimens @ 5.0 %: IDEAL CT-Index=55
 - Run with specimens @ 7.0 %: IDEAL CT-Index=84
- IDEAL CT-Index Test (run at 25 °C, 4.0 hour oven aging @ 135 °C, PG 76-22)
 - Run with specimens @ 5.0 %: IDEAL CT-Index=33
 - Run with specimens @ 7.0 %: IDEAL CT-Index=38
- IDEAL CT-Index Test (run at 31°C, 4.0 hour oven aging @ 135°C, PG 76-22)
 - Run with specimens @ 5.0 %: IDEAL CT-Index=43
 - Run with specimens @ 7.0 %: IDEAL CT-Index=56

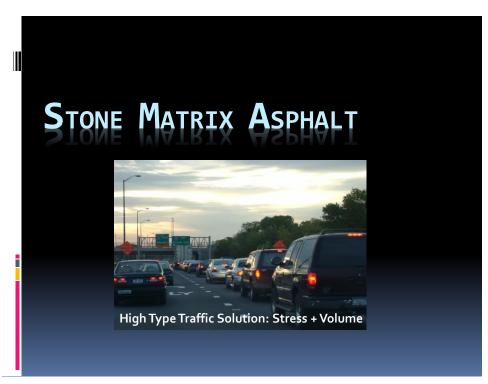


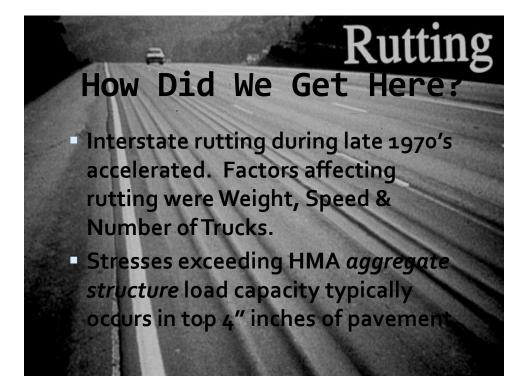

50



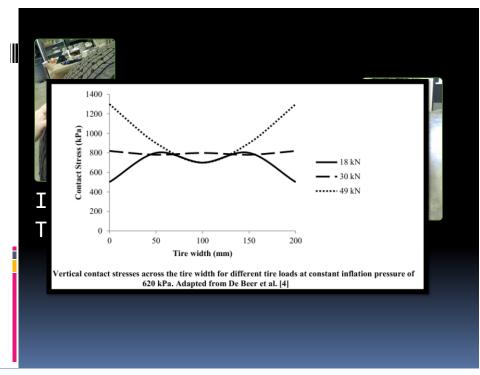
2024 Climate	INDO	lnitiative:					
Nill allow Cor against elevat			ge of R	AP	spec	lim	nit mix and compare
o -Elevated R/	AP mix l	has to equal or	exceed	edg	e of s	pec l	limit mixture
• EPD's to be	publish	ed for both mix	kes				
	Н	MA mixtures utilizing RAP MAXIMUM BIND				AS	
	6	Base and Inte				rface	
	Mixture	Dense Graded	Open Grad	Open Graded		Graded	
	Category	25.0 19.0 12.5 9.5	25.0 19.0	9.5		9.5 4.75	
	2	mm mm mm mm 25.0*	mm mm 25.0*	mm		nm mm 5.0*	<u>n</u>
	3	25.0*	25.0*			5.0*	
	4	25.0*	25.0*		25	5.0*	
		tribution of RAS to any HMA n 5.0% binder replacement.	ixture shall be \leq	3.0% by	total mass	of mixture	2
TABLE 3. ENVIR	ONMENTAL	IMPACT SUMMARY TABL	E				
	ІМРАСТ С	ATEGORY					RIC TONNE ASPHALT PHALT MIXTURE)
Global warming	potential (GWI	P-100)	54.40 (49.	35) kg (02 Equiv.		
Ozone depletion	potential (ODF	2)	8.20e-08 (7.44e-0	8) kg CFC	11 Equiv.	
Eutrophication p	otential (EP)		1.10e-02 (9.93e-0	3) kg N Eq	uiv.	the state of the second
Acidification pote	ential (AP)		1.35e-01 (1.23e-0	1) kg SO2	Equiv	
- 200 -		potential (POCP)	3.23 (2.93				· · · · · · · · · · · · · · · · · · ·

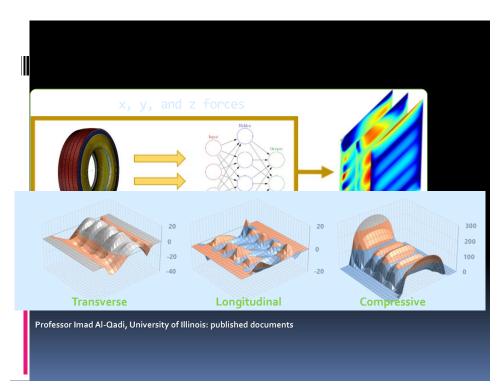


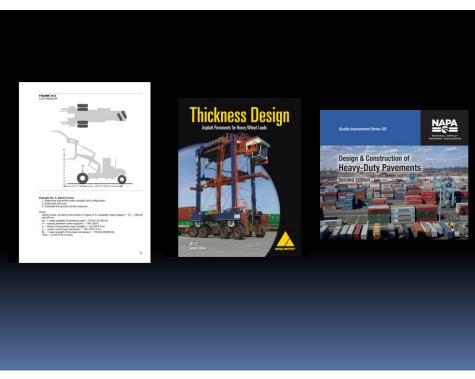

In Illinois we Perpetually Recycle our Politicians

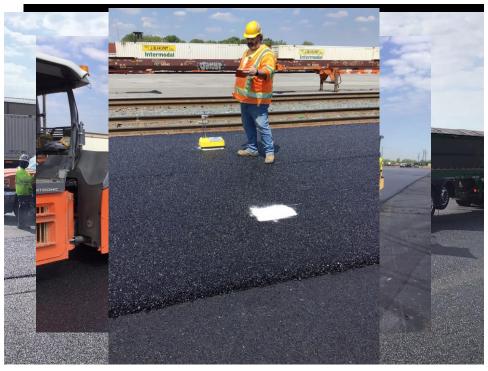


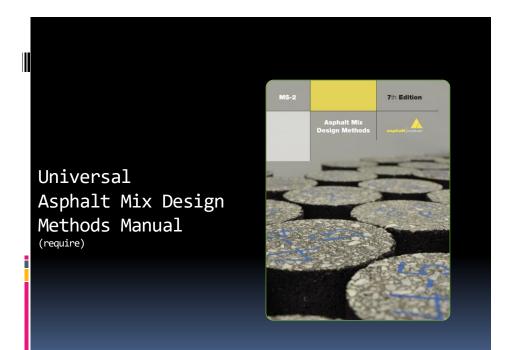
Transportation Research Board's Report 202

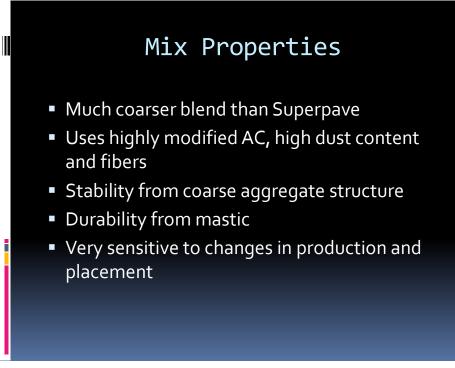

"Asphalt, more than any other single product, sustains the nation's highway system and facilitates the flow of commerce."

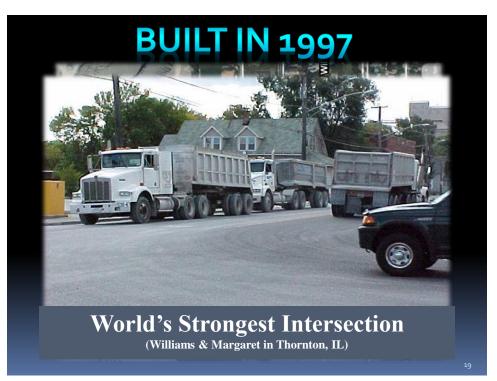






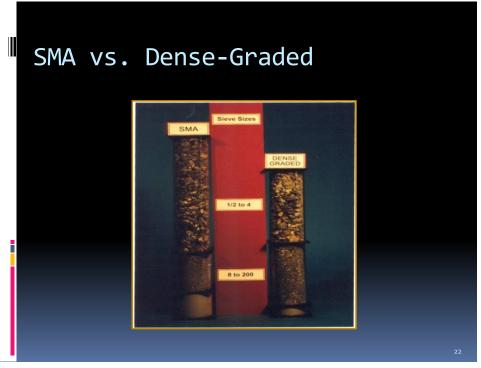


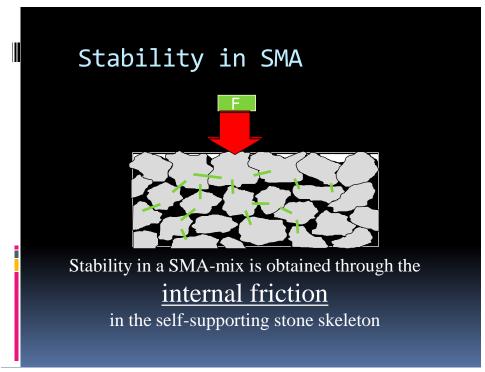




Importance of VMA to Compaction Efforts and Pavement Performance

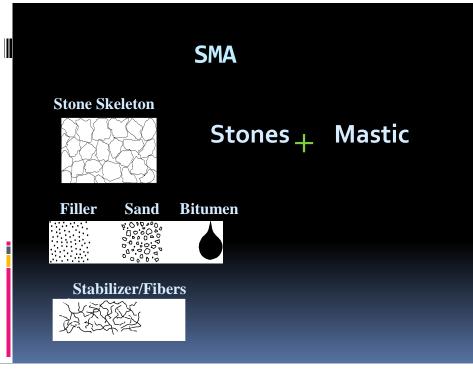
	Improve	Improve Mechanical Stability
	Improve	Improve Resistance to Permanent Deformation
	Reduce	Reduce Moisture / Air Penetration
	Improve	Improve Fatigue Resistance
	Reduce	Reduce Low-Temperature Cracking Potential

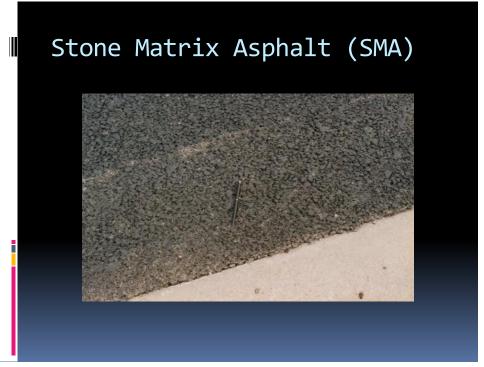


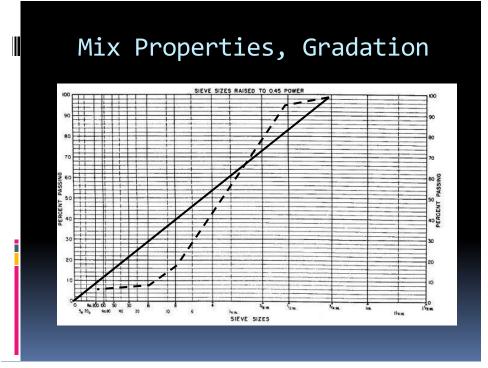


Comparison SMA vs. Dense-Graded

Mix Propert	ies, Jo	b-Mix Formula
Mixture Composit	ion	
Sieve	Lower	Upper
34" (19.0 mm)		100
¹⁄₂″ (12.5 mm)	90	99
³∕₀″ (9.5 mm)	50	85
#4 (4.75 mm)	20	40
#8 (2.36 mm)	16	28
#200 (0.075 mm)	8	12
Typically = +6% Pc	lymerized	AC



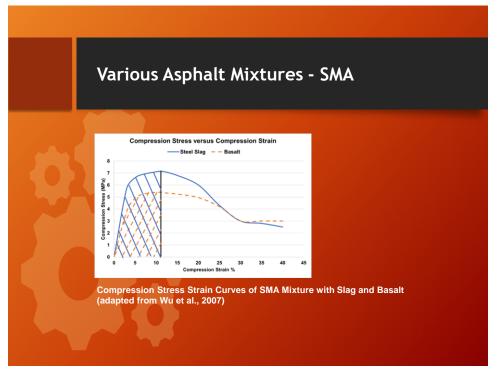


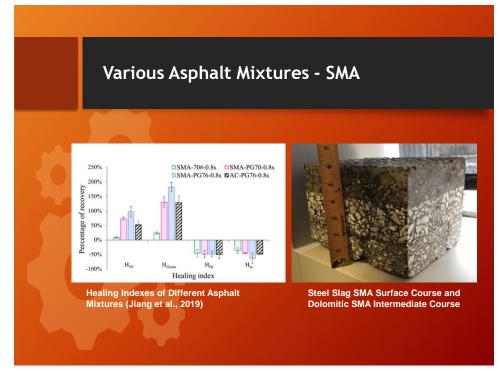

Mix Properties, NCAT Draindown Method

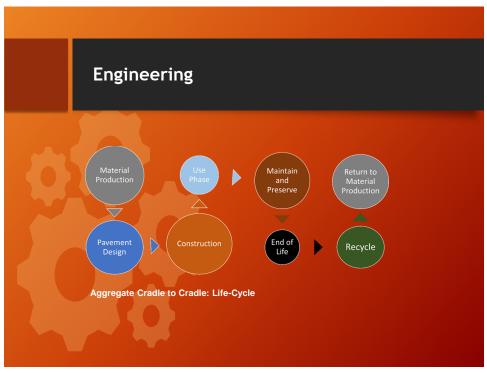
- Measures draindown of liquid asphalt,
- Deduct stone in draindown,
- Monitor during production,
- Review procedure.

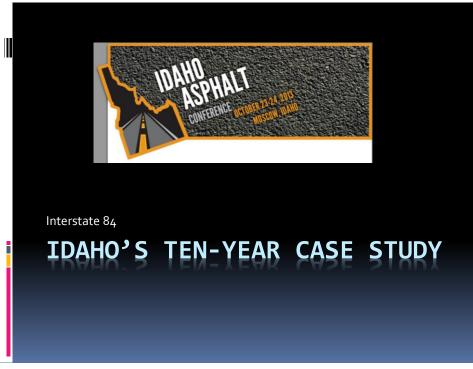
29

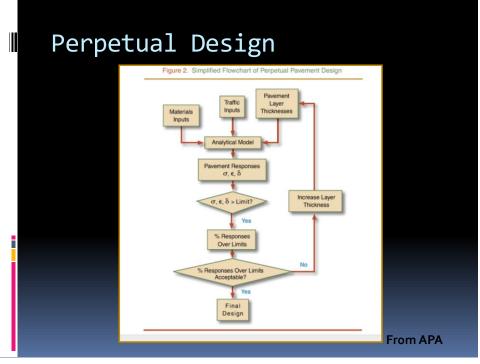
SMA	Aggregate	Gradation				
	3 -	-2-1				
%Passing						
	Sieve Size	Nominal Maximum Aggregate				
		Size Control Points				
	³ ⁄ ₄ inch	100				
	¹ / ₂ inch	90-100				
	3/8 inch	50 - 80				
	No. 4	20-35				
	No. 8	16-24				
		8.0-11.0				

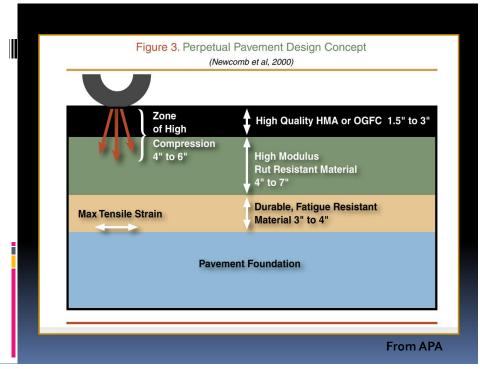











Perpetual Pavement Defined

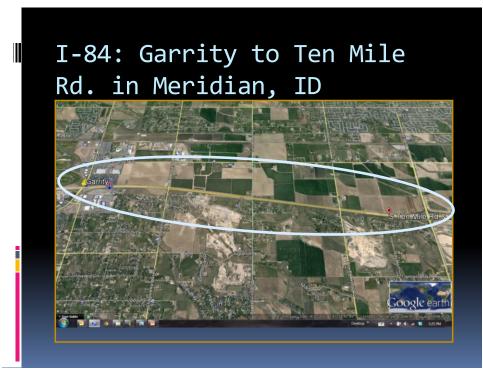
Asphalt pavement designed and built to last longer than 50 years without requiring major structural rehabilitation or reconstruction, and needing only periodic surface renewal in response to distresses confined to the top of the pavement.

41



Strategy consists of four steps:

- Assess the opportunity
- Ensure structural adequacy
- Select high-performance materials and confirm the mixture design
- Use proper construction techniques



TEAM Approach

- Meeting with all parties involved (ITD, J-U-B Engineers, Inc., and Idaho Sand & Gravel).
- Reviewing engineering reports available, including:
 - ESAL determination (M. Dehlin),
 - Thickness design and typical section (M. Dehlin, HDR, and Terracon),
 - Mix selection (Terracon, M. Dehlin, and T. Murphy),

(Cont'd.)

51

Building the Roadway

53

Laboratory Mix Designs vs. Plant - Produced Mixture

Rolling Pattern on I-84

59

Findings SMA surface mixture voids did not trend about the target of 4.0% for the entire project. Voids actually average close to 5.0%, the upper limit for voids. Density was difficult to achieve. Recommended Higher VMA and Lower Voids = More AC

Sound Specifications

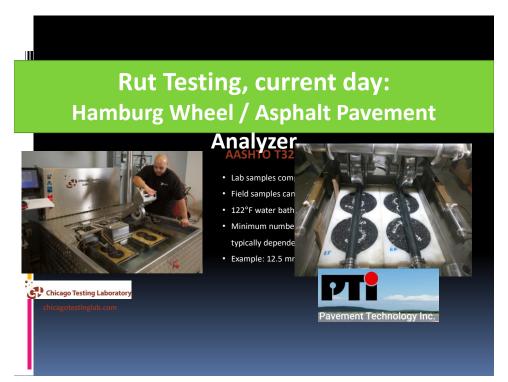
- Scientifically and mathematically sound,
- Related to performance,
- Easy to understand and apply,
- Provide strong incentives to produce good quality,
- Provide strong disincentives for poor quality, and
- Take into account construction phases.

61

West bound near EOJ 2023 Review is Exceptional

63

SMA 2023 - District 6

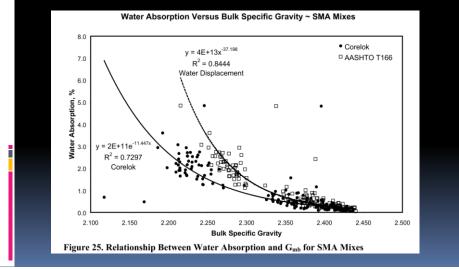

Laboratory Testing

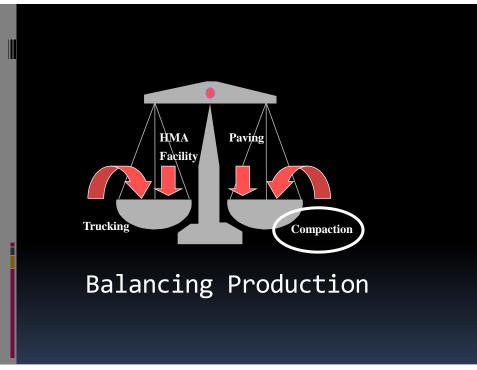
- Increase Voids in the Mineral Aggregate
- Decreased Air Voids
- Increased Effective Volume of Asphalt

Field Testing

- Required 94.0% density of mat and 92.0 density of longitudinal joints
- Gave contractor options on paving, rollers, and production techniques

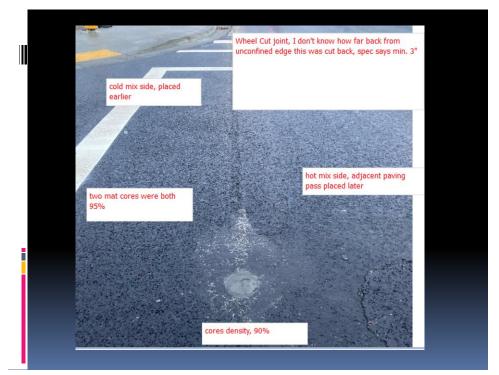
65


Required versus Actual


Rut Depth, mm, and Stripping, passes	< 10.0 mm @ 20,000 passes
@ Optimum AC and plus and minus 0.5% Optimum AC	*Additional samples required to
(Hamburg)	build SMA database
Cracking Test, IDEAL-CT _{Index}	80 (index value)
@ Optimum AC and plus and minus 0.5% Optimum AC	*Additional samples required to
	build SMA database

Rut Depth = 2 IDEAL-CT = 490

67


Corelok for SMA Validated by NCAT on SMA (2002)

2024 AAPT Annual Meeting September 9-12, 2024

75

2024 AAPT Annual Meeting September 9-12, 2024

- Dedicated Task Force
 Chicago, Illinois
 LOEWS Chicago Hotel
- Centennial Event @ Shedd Aquarium
- Yearlong Centennial Celebration
 - AAPT/NAPA Member Reception in DC @ TRB: Old Ebbitt Grill, 1/7/2024, 6-8:30pm

/ears

VERSAR

Webinars & Monthly Events on Social Media

Sponsorships Available

<section-header><section-header><section-header><image>

ASPHALT MIXTURES WITH RAP AND REJUVENATORS

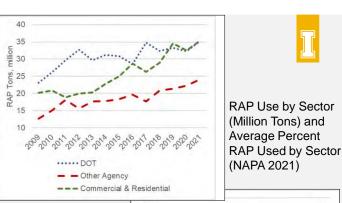
Hussain Al Hatailah Emad Kassem

October 26, 2023 🥖

OUTLINE

- **I** Motivation
- **I**Objectives
- I Methodology and Tasks
- **I** Findings
- **Conclusions**

OUTLINE


I Motivation

- Objectives
- I Methodology and Tasks
- **I** Findings
- **Conclusions**

MOTIVATION

BACKGROUND

- I Reclaimed Asphalt Pavement (RAP)
 - America's most recycled product
 - 95% being put back to use in new pavement
 - 5% used in other engineering practice like unbound aggregate base
 - The total RAP stockpiled nationwide is estimated to be 137 million ton in the year of 2021
 - The average percentage of RAP used by all sector is only 21.9%

MOTIVATION

BACKGROUND

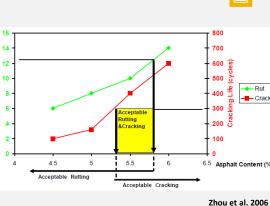
- I The use of RAP
 - Promotes and integrates sustainable solutions
 - Contribute toward the net zero carbon emissions initiatives
 - NAPA 2022; "Nationwide, increasing the amount of RAP in new asphalt mixtures by one percentage would result in 0.14MMT CO₂e in avoided emissions- equivalent to an annual emissions from approximately 30,000 passenger vehicles.
 - Reduces the use of virgin materials (binder and aggregate)
 - Contribute to potential environmental benefits and cost savings.

MOTIVATION

BACKGROUND

- I Many DOTs allow the use of RAP into asphalt mixtures; however, many limit the amount used to about (~ 25-30%)
- I Idaho Transportation Department allows only up to 30% RAP in asphalt mixtures with binder grade adjustment.
- I Higher percent of RAP (> 50%) results in stiffer mix and thus prone to fatigue cracking

MOTIVATION


BACKGROUND

- I The Balanced Mix Design (BMD) approach relies on balancing the cracking and rutting performance makes it possible to increase the RAP percentage in the mix
- I Rejuvenators also known as recycling agents are organic and petroleum products that helps to restore the rheological properties of such mixtures
- 14 700 12 Rut Depth (mm) 10 🔶 Rut 8 100 - Crack 6 utting Cracking 4 200 2 100 0 4.5 5.5 6 6.5 Asphalt Content (%) Acceptable Rutting Acceptable Cracking
- I Were first introduced back in 1960's as a pavement preservation practice
- The maltenes in rejuvenators, helps to improve the cracking by restoring the asphaltene to maltene ratio in RAP

7

OUTLINE

- I Motivation
- **I** Objectives
- I Methodology and Tasks
- **I**Findings
- **Conclusions**

OBJECTIVES

- **I** Evaluate the effect of rejuvenators on improving the performance of asphalt mixtures containing different percentages of RAP and reducing the need for softer binders which are costly to obtain
- Apply the balanced (engineered) mix design concept and performance thresholds, developed in RP 261, to optimize the mix design of HMA papered with RAP and rejuvenators for improved performance
- I Study the economic savings of using rejuvenators and RAP in asphalt mixtures
- **I** Evaluate the rheological properties of selected extracted binders

OUTLINE

- I Motivation
- I Objectives
- I Methodology and Tasks
- **I** Findings
- **Conclusions**

RESEARCH TASKS

TASK 1: CONDUCT LITERATURE REVIEW

- I Effect of using rejuvenators and recycling agents on the performance of asphalt mixtures containing RAP
- I Economic benefits of using rejuvenators and recycling agents in asphalt mixtures
- I Methods used to evaluate the rheological properties of asphalt binders

RESEARCH TASKS

TASK 2: DEVELOP TESTING MATRIX

RAP %	0	25	50	2	≥70	-		
RAP Source	1	2	3		-	-		
Air Void %			7%					
Binder Grade	PG 70-28	PG 64-28	PG 58-34	34 PG 58-28*		-	R	.1 R2
Binder Content %	OBC	OBC+0.5%	-		-	-		
Rejuvenators	R1	R2	R3		R4 R5			R4
*Only used	with the 3 rd so	urce of RAP.	Rejuve No		Exam Dos		Rejuvenator Type.	Doses Description
			R1	R1 3.5		%, and %	Tall Oil	By weight of total binder
		R2	R2		%, and %	Engineered Product	By weight of reclaimed binder	
		R	R3 12.		nd 15%	Forestry Product	By weight of reclaimed binder	
		R4	R4 1%		d 2%	Engineered Product	By weight of RAP	
		R	;	12% an	d 16%	Waste Cooking Oil	By weight of reclaimed binder	

RESEARCH TASKS

TASK 3: PREPARE ASPHALT MIXTURE TEST SPECIMENS

- I The IDEAL-CT_{Index} test specimens are 150 mm in diameter and 62 mm in height and don't need to be cut or notched which is an advantage over the semi-circular test specimens
- The HWTT test specimens are 150 mm in diameter and 60 mm thick
- The IDT thermal specimens are 150 mm in diameter and 43 mm thick
- I The testing matrix includes laboratory-mixed laboratory-compacted samples that will be prepared with the following characteristics.
 - Different RAP content (e.g., 0, 25, 50, and 70%)
 - Different rejuvenators and recycling agents. The content varies to obtain optimum cracking and rutting performance
 - Different binder type (PG 70-22, PG 64-28, PG 58-34, and PG 58-28)
 - Different binder content (Optimum and Optimum + 0.5%)

14

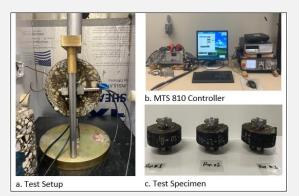
RESEARCH TASKS

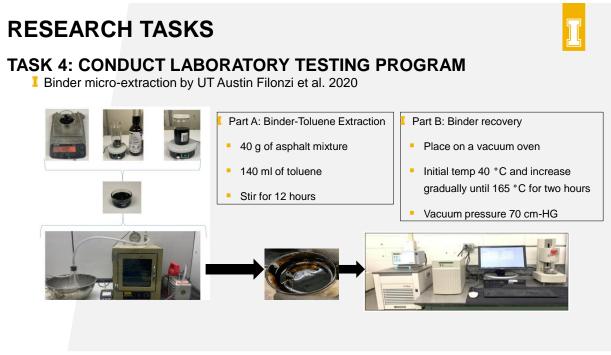
TASK 4: CONDUCT LABORATORY TESTING PROGRAM

- I Fatigue cracking resistance (e.g., IDEAL-CT_{Index})
- I Rutting resistance and moisture susceptibility using HWTT
- I Thermal cracking resistance at low temperature (Indirect Tensile Strength [IDT])
- I Binder rheological properties using Dynamic Shear Rheometer (DSR)

Asphalt Pavement Analyzer Junior (APA Jr.)

Dynamic Shear Rheometer


I A compressive load at a constant rate of 50±5 mm per minute until failure


15

IDT THERMAL TEST

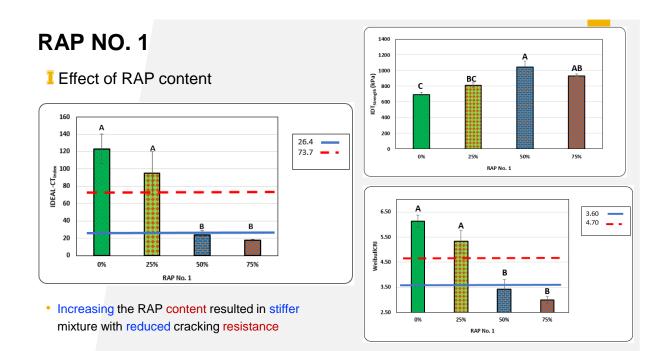
CREEP-COMPLIANCE AND STRENGTH TEST

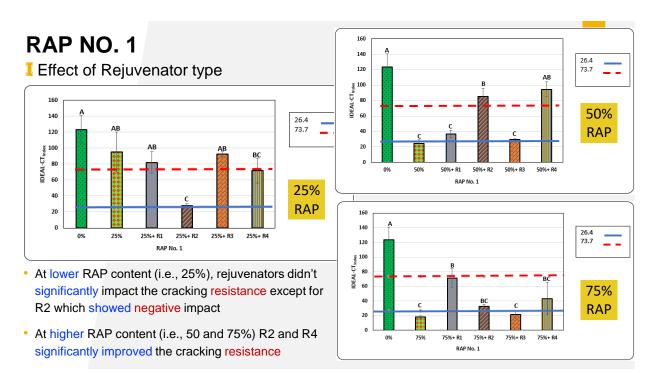
- In accordance with AASHTO T322
 - Conducted at three temperatures (-20, -10, and 0°C)
 - By applying a sufficient constant vertical load (cause a deformation between 0.00125 to 0.0190 mm) for 100 sec

OUTLINE

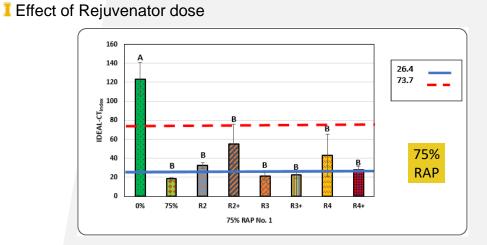
- I Motivation
- **I**Objectives
- Methodology and Tasks
- **I** Findings
- **I**Conclusions

PRODUCED ARTIFICIAL RAP (RAP NO.1)


Loose Mix (Project No. 20975) was aged at 135°C for 3 days (Sirin et al. 2018)

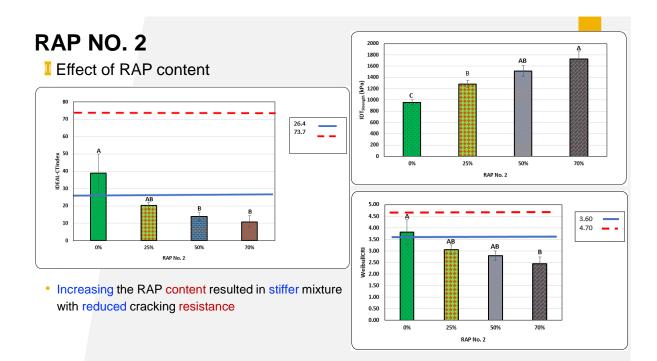

Projec	t # District	Mix Type	Specified Binder PG	Virgin Binder PG	Binder Content Pb (%)	RAP (%)	NMAS	Theoretical Specific Gravity (G _{mm})
2097	5 D1	SP3	PG64-28	PG 58-34	5.3	30	1/2"	2.465

I Advantages:


- Same mixture, same aggregate gradation
- No need to adjust neither the binder content or aggregate gradation at different percentages of RAP

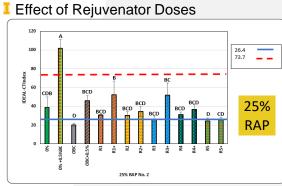
19

RAP NO. 1

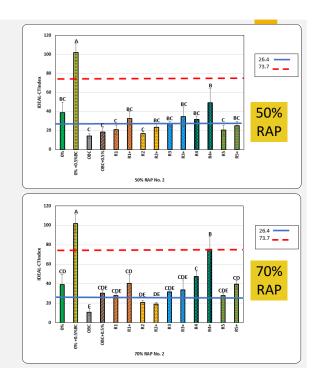


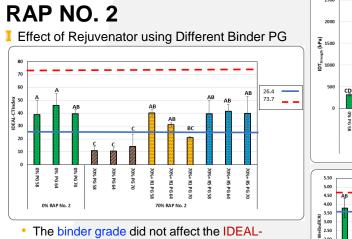

 Some rejuvenators like R2, had a favorable effect on the cracking resistance as the dose increase while other like R4 adversely impacted the cracking resistance

RAP NO. 2

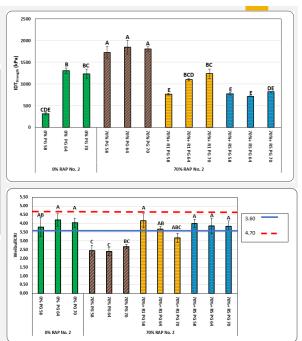

- I Material Properties of Mix with (Virgin Aggregate Coarse, Fine and RAP No. 2)
 - Obtained from Lewiston, ID
 SP3
 12.5 mm
 - > Target binder content 5.8%
 - >RAP Pb 5.37%
 - >PG 58-34

23

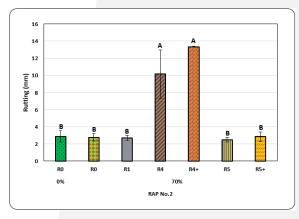




RAP NO. 2



- Increasing the rejuvenator dose improved the cracking resistance for all mixes
- At higher RAP content (i.e., 70% RAP No. 2) the effect of rejuvenator dose is clear. Specially for R4 which provided better performance than the virgin mix. However, this mix didn't pass the rutting criteria



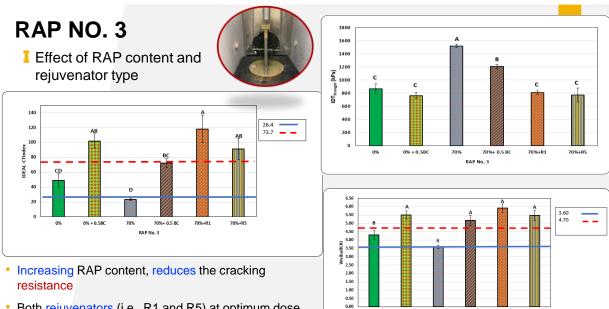
- The binder grade did not affect the IDEAL-CT_{Index} for mixtures without RAP (0 percent RAP) and those prepared with 70 percent RAP
- IDT_{Strength} for mixtures with PG 64-28 and PG 70-28 was higher compared to the ones for PG 58-34 for the mixtures without RAP

RAP NO. 2

Effect of Rejuvenator on Rutting Performance

R4

R4+

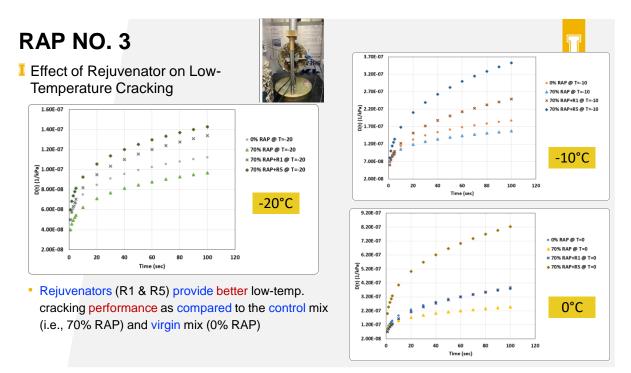

 R1 and R5, didn't significantly impact the rutting depth while R4, which had the highest cracking performance, failed the rutting criteria prematurely

RAP NO. 3

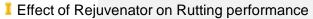
I Material Properties of Mix with (Virgin Aggregate Coarse, Fine and RAP3)

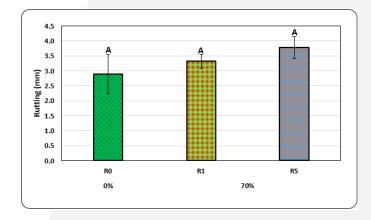
- Obtained from Lewiston, ID
- ≻SP3
- ≻12.5 mm
- Target binder content 5.8%
- >RAP Pb 4.3%
- >PG 70-28

29


0% + 0.5B

70%


70%+ 0.5 BC


RAP No. 3

 Both rejuvenators (i.e., R1 and R5) at optimum dose provided better performance than the virgin mix and comparable to mix with increased binder content

RAP NO. 3

• RAP 2, both rejuvenators didn't impact the rutting performance

COST ANALYSIS

Material Cost

- NCHRP 927; estimated the cost of materials is in the order of 45-55%, field operation is in the order of 15-20% and the production cost is in the order of 30-35%
- NCHRP 927; production and field operations are "little affected", therefore only material cost are considered


Motorial Truco	Meterial Description	\$Pric	\$Price/ton		
Material Type	Material Description	Low	High		
Assessts	Virgin Aggregates	12	15		
Aggregate	RAP Aggregates	5	8		
	PG 58-28	750	-		
	PG 58-34	875	-		
Virgin Binder	PG 64-28	800	-		
	PG 64-34	925	-		
	PG 70-28	825	-		
Rejuvenator (R1)	Tall oil	4000	4900		
Rejuvenator (R5)	Waste Vegetable Oil	3800	-		

33

COST ANALYSIS

Cost Breakdown of RAP No. 2

BINDER EVALUATION

Binder evaluation parameters

Glover-Rowe (G-R):

- At temperature of 15 °C and angular frequency of 0.005 rad/sec.
- $G R = G^* \cos(\delta)^2 / \sin(\delta)$
- Higher G-R values indicates stiffer binder and brittle behavior
- Threshold 180-600 kPa for block cracking

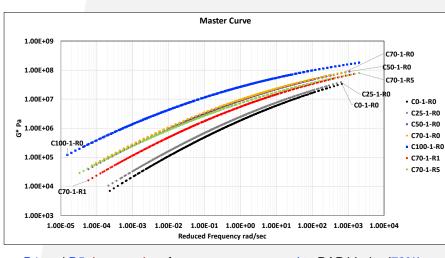
SuperPave Intermediate-Temperature Specifications PGI:

AASHTO M 320

Master Curve

- The SuperPave intermediate temperature is, the temperature at which the fatigue parameter G*.sin δ equals to 5000 kPa
- As the percent of RAP increase, PGI temperature increase as well, which indicates more prone to cracking

I The Crossover Temperature T_δ=45°:


- The temperature at which the phase angle is equals to 45° or at which the storage modulus is equals to the loss modulus (G'=G")
- Higher temperature indicates stiffer binder and brittle behavior

I The Rheological Index (R-value):

- The difference between Log G* at the crossover frequency and the glassy modulus ${\rm G}_{\rm g}$
- Higher R-value indicates stiffer binder and brittle behavior

35

BINDER RESULTS (RAP NO. 2)

• R1 and R5, improved performance as compared to RAP binder (70%)

Ι

OUTLINE

I Motivation

- **I**Objectives
- I Methodology and Tasks
- **I** Findings
- **Conclusions**

CONCLUSIONS

- I The use of rejuvenators in mixtures with low RAP content (e.g., 25 percent), especially for mixtures with good cracking performance, didn't improve the cracking resistance
- I The favorable effect of rejuvenators in asphalt mixtures is observed in mixtures with higher RAP content (e.g., 70 percent) for different RAP sources. it was possible to produce mixtures prepared with 70 percent RAP and rejuvenators that provided comparable cracking performance to the mixture without RAP
- I The rejuvenator R4 (engineered product) at a higher dose improved the cracking performance of mixtures with RAP; however, these mixtures failed the rutting criteria prematurely (i.e., the mixtures were over softened). These results demonstrated the importance of following a balanced mix design (BMD) approach to satisfy both cracking and rutting criteria

CONCLUSIONS

Ι

- At 25 percent RAP, increasing the binder content was more effective than using rejuvenators in terms of cracking performance and associated cost reduction. This leads to cost savings as well as producing mixtures with comparable or improved performance
- At 50 percent RAP, the use of rejuvenator R1 (tall oil) was the most cost-effective alternative to improve performance as compared to the other rejuvenators including R5 (waste vegetable oil) or increasing the binder content
- I At a higher percentage of RAP (e.g., 70 percent), the use of rejuvenators (especially R1) was very effective in improving the cracking resistance with associated cost savings
- Examined Rejuvenators were able to improve the rheological properties of high RAP (i.e., 70% RAP)

Advanced Asphalt Binder Characterization

Mike Anderson, Asphalt Institute

October 26, 2023

- National Cooperative Highway Research Program (NCHRP)
 20-44(19) Project Panel and Program Officers
- Research Teams for NCHRP Projects 09-59, 09-60, and 09-61
- Member Companies of the Asphalt Institute

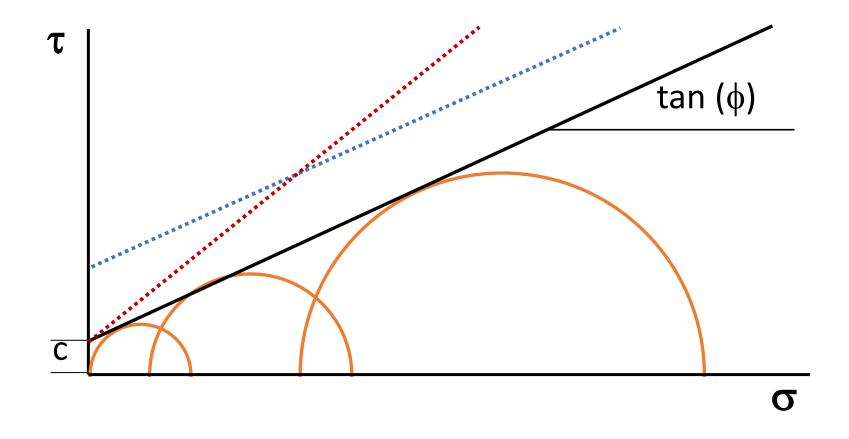
Asphalt Binders: Improved Aging and Characterization of Asphalt Binder Fatigue and Durability

- NCHRP 09-59
 - Relating Asphalt Binder Fatigue Properties to Asphalt Mixture Fatigue Performance
- NCHRP 09-60
 - Addressing Impacts of Changes in Asphalt Binder Formulation and Manufacture on Pavement Performance through Changes in Asphalt Binder Specifications
- NCHRP 09-61
 - Short- and Long-Term Binder Aging Methods to Accurately Reflect Aging in Asphalt Mixtures

- How are asphalt pavements affected by temperature and traffic loading?
- How does aging affect an asphalt pavement's performance?
- What distresses are we trying to minimize?
- What do we want from an asphalt binder specification?

High Temperature Asphalt Pavement Behavior

- Rutting and depressions
- Depends on...
 - Asphalt binder (some)
 - Mineral aggregate (some)
 - Volumetric proportioning (some)



Principles of Rutting in Asphalt Mixtures

- Mohr-Coulomb Failure Theory
 - Described by Nijboer in 1948
 - Simplification of the rutting model considered in SHRP
 - Separated shear strength of asphalt mixture into three components
 - $\circ~$ Internal friction of the aggregate structure (ϕ)
 - Initial resistance or cohesion (c) independent of deformation rate
 - Viscous, or rate-dependent, cohesion
 - Cohesion (c)
 - Largely a function of asphalt binder characteristics
 - \circ Angle of internal friction ($\!\varphi\!$)
 - Largely a function of aggregate structure including gradation, particle shape (angularity), and texture

Principles of Rutting in Asphalt Mixtures

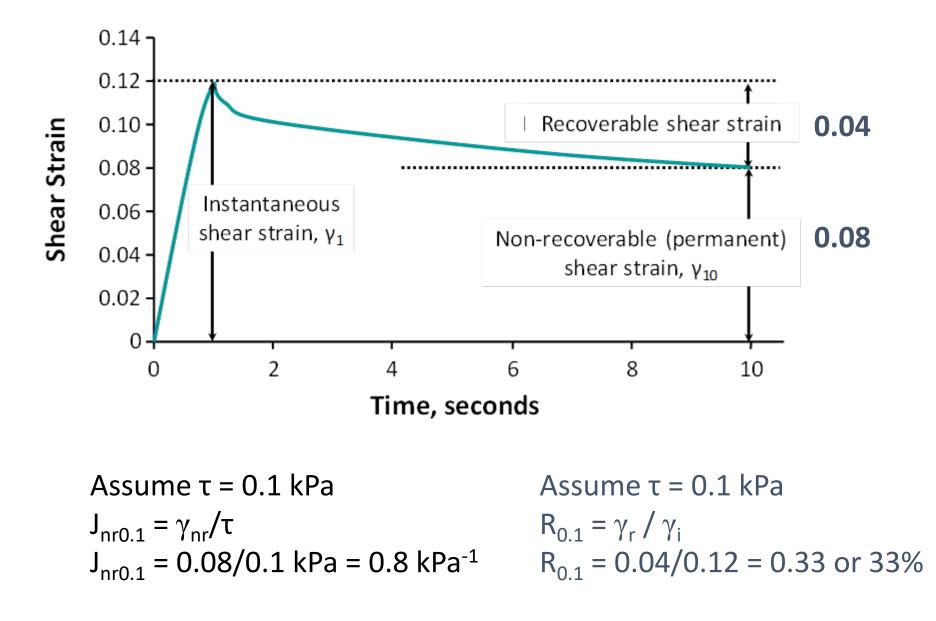
Aggregate Structure (Angular) Asphalt Binder Stiffness (Modification)

Addressing Asphalt Binder Contribution to Rutting: MSCR

Standard Method of Test for

Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Rheometer (DSR)

AASHTO Designation: T 350-19 (2023)¹

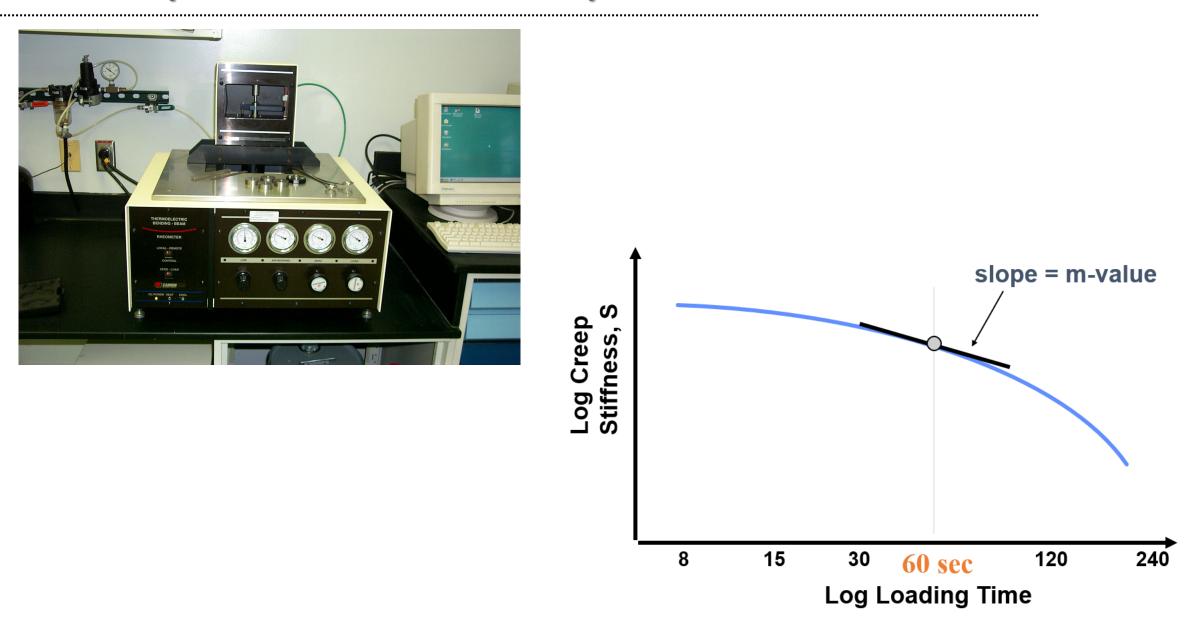


Technically Revised: 2019 Reviewed but Not Updated: 2023 Editorially Revised: 2021

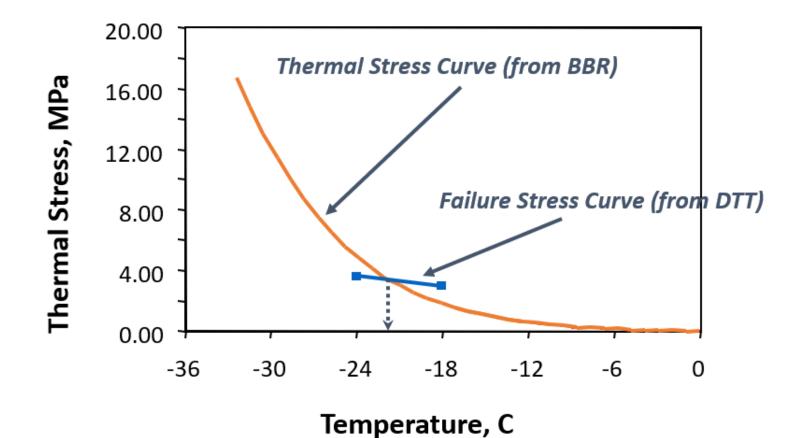
Technical Subcommittee: 2b, Liquid Asphalt

1.	SCOPE
1.1.	This test method covers the determination of percent recovery and nonrecoverable creep compliance of asphalt binders by means of the Multiple Stress Creep Recovery (MSCR) test. The MSCR test is conducted using the Dynamic Shear Rheometer (DSR) at a specified temperature. It is intended for use with residue from T 240 (Rolling Thin-Film Oven Test (RTFOT)).
1.2.	The percent recovery value is intended to provide a means for determining the elastic response and stress dependence of polymer modified and unmodified asphalt binders.

MSCR Specifications for High Temperature Behavior


- Thermal cracks
 - Internal stresses induced by rapid temperature drop
 - If binder is too brittle, ability to relax stresses is lessened
 - When stresses exceed strength, cracking occurs
 - Transverse, equal spacing, full width
 - a.k.a. low-temp. cracking
- Depends on...
 - Asphalt binder (lots)
 - Mineral aggregate (little)
 - Volumetric proportioning (some)

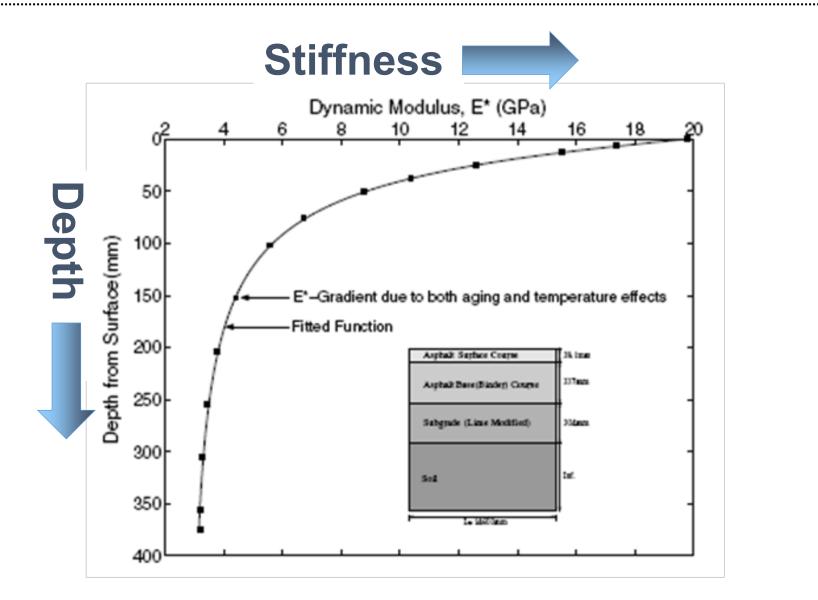
Recommended Tests and Conditions


- NCHRP Report 673
 - Research also has shown that thermal cracking performance of asphalt mixtures is most strongly affected by the asphalt binder properties.
 - As long as the asphalt binder that is used in the mixture has the appropriate low temperature properties for the expected use, the expectation for conventional asphalt mixtures will be that they will have adequate laboratory thermal cracking performance.

Linear coefficient of thermal expansion for asphalt binder is on average about 17 times greater than the coefficient of thermal expansion for aggregate

Low Temperature Behavior of Asphalt Binders

Low Temperature Behavior of Asphalt Binders



How Asphalt Pavements Behave with Aging

- Durability Cracks
 - Mixture is brittle
 - Random, wandering cracking
 - Longitudinal
- Depends on...
 - Asphalt binder (some)
 - Mineral aggregate (little)
 - Volumetric proportioning (some)

Witczak and Mirza: Global Aging Model (1995)

Basics First...

- What do we want from an asphalt binder specification?
 - SHRP-90-007, <u>The SHRP Asphalt Research Program: 1990 Strategic Planning</u> <u>Document</u>
 - The SHRP asphalt program was based on the premise that asphalt pavement performance is significantly influenced by the properties of the asphalt binder.
 - The mix designer must select an asphalt binder having properties that meet required minimum performance levels in order for the asphalt pavement to perform as expected for both its present and future environment and traffic loading conditions.

Basics First...

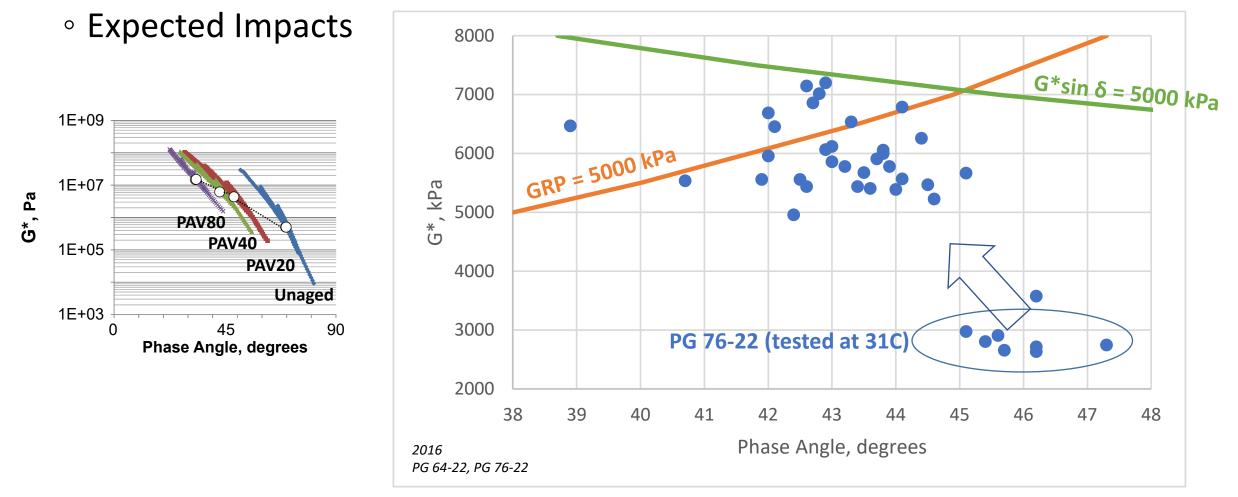
- What do we want from an asphalt binder specification?
 - SHRP-90-007, <u>The SHRP Asphalt Research Program: 1990 Strategic Planning</u> <u>Document</u>
 - The SHRP asphalt program was originally designed to develop specifications that addressed six pavement performance factors: permanent deformation (rutting); fatigue cracking; low-temperature (thermal) cracking; moisture sensitivity; aging; and adhesion.
 - Aging was not considered a distress, per se, but was considered important so that the asphalt binder could be tested in a state approximating that which would be attained after a period of time in service.

Basics First...

- What do we want from an asphalt binder specification?
 - The asphalt binder needs to minimize its contribution to any distress
 - Other factors than asphalt binder properties can lead to distress
 - Aggregate properties
 - Aggregate proportion
 - Volumetric properties
 - Effective asphalt binder content
 - Production in the mixing plant
 - Laydown and compaction
 - Thickness design
 - Drainage

NCHRP 09-59

Relating Asphalt Binder Fatigue Properties to Asphalt Mixture Fatigue Performance


- Relating Asphalt Binder Fatigue Properties to Asphalt Mixture Fatigue Performance
 - Don Christensen (PI, AAT) and Nam Tran (NCAT)
 - Objectives
 - determine asphalt binder properties that are significant indicators of the fatigue performance of asphalt mixtures
 - identify or develop a practical, implementable binder test (or tests) to measure properties that are significant indicators of mixture fatigue performance for use in a performance-related binder purchase specification such as AASHTO M 320 and M 332
 - NCHRP Report 982, Relationships Between the Fatigue Properties of Asphalt Binders and the Fatigue Performance of Asphalt Mixtures

- Relating Asphalt Binder Fatigue Properties to Asphalt Mixture Fatigue Performance
 - Key Findings
 - Fatigue life of an asphalt pavement depends upon many factors, but the factors that can be addressed as part of a binder fatigue specification are applied binder strain, binder failure strain and the fatigue exponent.
 - Satisfies increases with decreasing applied binder strain relative to failure strain
 As the binder becomes stiffer (G* increases) fatigue life, or resistance to fatigue
 damage, decreases
 - As the binder becomes more brittle (δ decreases) fatigue life, or resistance to fatigue damage, decreases

- Relating Asphalt Binder Fatigue Properties to Asphalt Mixture Fatigue Performance
 - Recommendations
 - The current intermediate binder specification parameter, G*sin δ, should be replaced by the Glover-Rowe parameter (GRP) determined at a frequency of 10 rad/s. The maximum allowable value for GRP after 20-hour PAV aging should be 5,000 kPa.
 - GRP = $G^*(\cos \delta)^2 / (\sin \delta)$

NCHRP 09-59

 Relating Asphalt Binder Fatigue Properties to Asphalt Mixture Fatigue Performance

- Relating Asphalt Binder Fatigue Properties to Asphalt Mixture Fatigue Performance
 - Recommendations
 - The binder fatigue specification should include an allowable range for the Christensen-Anderson R-value of from 1.5 to 2.5, after 20-hour PAV aging.
 - The R-value should be calculated using the following equation:

$$R = log(2) \frac{log(S/3,000)}{log(1-m)}$$

Where

R = Christensen-Anderson R (rheologic index) S = BBR creep stiffness at 60 seconds, MPa m = BBR m-value at 60 seconds

Relating Asphalt Binder Fatigue Properties to Asphalt Mixture Fatigue Performance

Project :	sga	Target Temp (°C) :	-18.0	Conf Test (GPa) :	221
Operator :	mrp	Min. Temp (°C) :	-18.0	Conf Date :	05/20/2016
Specimen :	NC-B-1	Max. Temp (°C) :	-17.9	Force Const (mN/bit) :	0.15
Test Time :	04:36:30 PM	Temp Cal Date :	05/20/2016	Defl Const (µm/bit) :	0.139
Test Date :	05/20/2016	Soak Time (min) :	60.0	Cmpl (µm/N) :	6.25
File Name :	16052005	Beam Width (mm)	12.70	Cal Date :	05/19/2016
BBR ID :	3474	Thickness (mm) :	6.35	Software Version :	BBRw 1.24

R-val	m-value	Difference (%)	Estimated Stiffness (MPa)	Measured Stiffness (MPa)	d Deflection (mm)	P Force (mN)	t Time (s)
1.96	0.282	0.000	346	346	0.228	978	8.0
1.93	0.306	-0.346	288	289	0.273	977	15.0
1.91	0.332	0.000	231	231	0.341	976	30.0
1.91	0.357	0.000	182	182	0.433	976	60.0
1.91	0.383	0.714	141	140	0.560	975	120.0
1.91	0,409	0.000	107	107	0.734	974	240.0

A = 2.76 B = -0.205 C = -0.0428 R² = 0.999988

Force (t=0.0s) = 36 mN Deflection (t=0.0s) = 0.000 mm Force (t=0.5s) = 955 mN Deflection (t=0.5s) = 0.113 mm

Max Force Deviation (t=0.5 - 5.0s) = -20, +4 mN Max Force Deviation (t=5.0 - 240.0s) = -3, +4 mN

> Average Force (t=0.5 - 240.0s) = 975 mN Maximum Force (t=0.5 - 240.0s) = 979 mN Minimum Force (t=0.5 - 240.0s) = 955 mN

 Relating Asphalt Binder Fatigue Properties to Asphalt Mixture Fatigue Performance

t Time (s)	P Force (mN)	d Deflection (mm)	Measured Stiffness (MPa)	Estimated Stiffness (MPa)	Difference (%)	m-value	R-value
8.0	978	0.228	346	346	0.000	0.282	1.96
15.0	977	0.273	289	288	-0.346	0.306	1.93
30.0	976	0.341	231	231	0.000	0.332	1 91
60.0	976	0.433	182	182	0.000	0.357	1.91
120.0	975	0.560	140	141	0.714	0.383	1.91
240.0	974	0.734	107	107	0.000	0.409	1.91

$$R = \log(2) * \frac{\log\left(\frac{S}{3000}\right)}{\log(1-m)} = 0.30 * \frac{\log\left(\frac{182}{3000}\right)}{\log(1-0.357)} = 1.91$$

- Relating Asphalt Binder Fatigue Properties to Asphalt Mixture Fatigue Performance
 - Recommendations
 - The current intermediate test temperatures in AASHTO M 320 and M 332 should be replaced by temperatures based on the low PG of the asphalt binder instead of the current temperatures which use the average of the High and Low PG temperatures plus 4°C.

- Relating Asphalt Binder Fatigue Properties to Asphalt Mixture Fatigue Performance
 - Recommendations

Low PG	Intermediate Test Temperature, °C
-10	29
-16	27
-22	25
-28	22
-34	19

• Relating Asphalt Binder Fatigue Properties to Asphalt Mixture Fatigue Performance

• Expected Impacts

High PG	PG 52	PG 58	PG 64	PG 70	PG 76
Low PG	-10-16-22-28-34-40-4	6 -16 -22 -28 -34 -40	-10 -16 -22 -28 -34 -40	-10 -16 -22 -28 -34 -40	-10 -16 -22 -28 -34
< 5000 kPa					
<u><</u> 0000 KFa	25 22 19 16 13 10 7	25 22 19 16 13	31 28 25 22 19 16	34 31 28 25 22 19	37 34 31 28 25
	29 27 25 22 19	27 25 22 19	29 27 25 22 19	29 27 25 22 19	29 27 25 22 19

NCHRP 09-60

Addressing Impacts of Changes in Asphalt Binder Formulation and Manufacture on Pavement Performance through Changes in Asphalt Binder Specifications

- Addressing Impacts of Changes in Asphalt Binder Formulation and Manufacture on Pavement Performance through Changes in Asphalt Binder Specifications
 - Jean-Pascal Planche (PI, WRI), Michael D. Elwardany (WRI), Donald Christensen (AAT), Gayle King (Consultant), Carolina Rodezno (NCAT), and Snehalata Huzurbazar (Consultant/Statistician)
 - Objectives
 - propose changes to the current performance-graded (PG) asphalt binder specifications, tests, and practices to remedy gaps and shortcomings related to the premature loss of asphalt pavement durability in the form of cracking and raveling.
 - Status
 - The draft final report for Phases I and II will be published in conjunction with that for the prospective Phase III.

- Addressing Impacts of Changes in Asphalt Binder Formulation and Manufacture on Pavement Performance through Changes in Asphalt Binder Specifications
 - \circ Key Findings
 - Recommend adding ΔT_c to AASHTO M 320 and M 332 as a specification parameter.
 - Relates to the relaxation properties of unmodified binders and generally relates to the colloidal structure of the asphalt binder.
 - The use of ΔT_c alone can underestimate the performance of some complex binders such as polymer modified asphalt (PMA) binders
 - Due to an inability to capture failure properties outside the linear viscoelastic (LVE) domain such as strength/strain tolerance of PMAs.

- Addressing Impacts of Changes in Asphalt Binder Formulation and Manufacture on Pavement Performance through Changes in Asphalt Binder Specifications
 - Key Findings
 - To capture strength/strain tolerance, it is recommended to use the Asphalt Binder Cracking Device (ABCD) to determine the critical cracking temperature, T_{cr}
 - AASHTO T 387, Determining the Cracking Temperature of Asphalt Binder Using the Asphalt Binder Cracking Device (ABCD)
 - T_{cr} is used with the temperature at which BBR Stiffness at 60 seconds of loading is equal to the specification value of 300 MPa ($T_{c,S}$)

- Addressing Impacts of Changes in Asphalt Binder Formulation and Manufacture on Pavement Performance through Changes in Asphalt Binder Specifications
 - Key Findings
 - A new parameter, ΔT_f is determined as the difference between $T_{c,S}$ and T_{cr}
 - $\,\circ\,$ Higher values of ΔT_f are associated with better asphalt binder strength/strain tolerance relative to its stiffness.

- Addressing Impacts of Changes in Asphalt Binder Formulation and Manufacture on Pavement Performance through Changes in Asphalt Binder Specifications
 - Recommendations

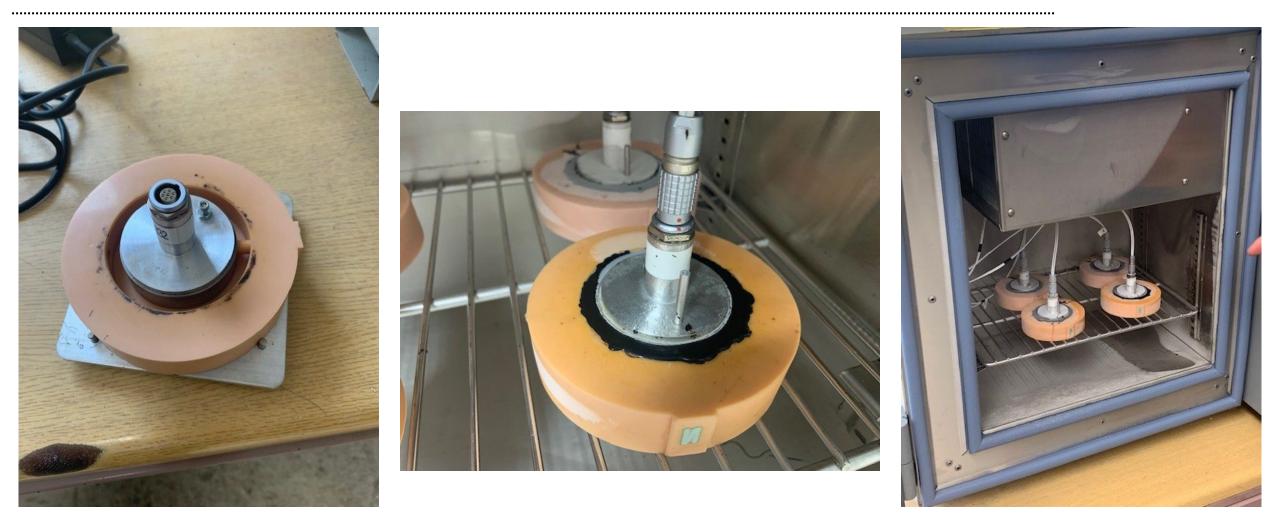
$\Delta T_c < -6^{\circ}C$	FAIL
$\Delta T_c > -2^{\circ}C$	PASS
$-6^{\circ}C < \Delta T_{c} < -2^{\circ}C$	TBD

- Addressing Impacts of Changes in Asphalt Binder Formulation and Manufacture on Pavement Performance through Changes in Asphalt Binder Specifications
 - Recommendations

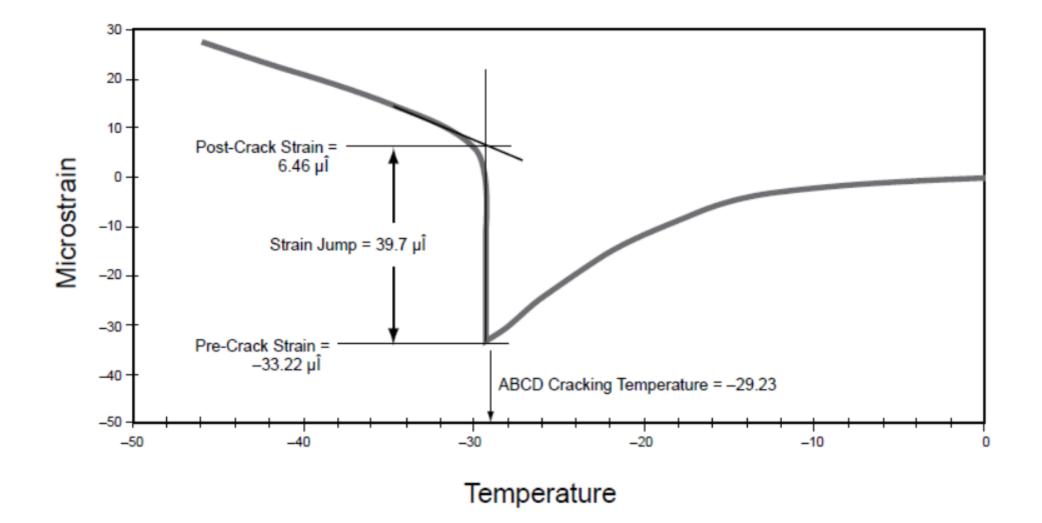
 $-6^{\circ}C < \Delta T_{c} < -2^{\circ}C$

TBD

ABCD test is used to determine T_{cr} and, subsequently, ΔT_{f} .

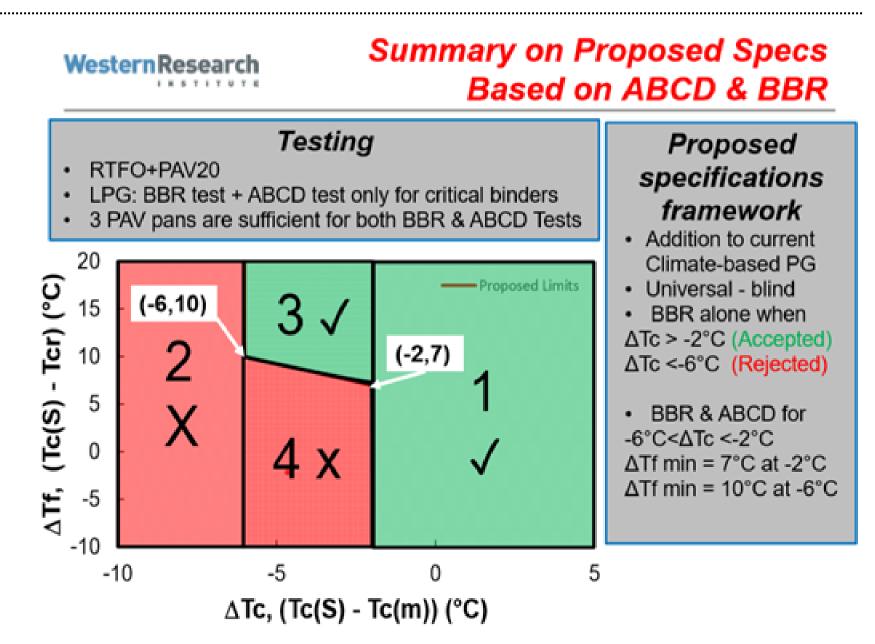

For PAV20 asphalt binders, ΔT_f must be greater than a specified value from 7 to 10°C as a function of the ΔT_c value to meet the specification.

• ABCD


- AASHTO T 387
- Summary of Method
 - Asphalt binder is heated and poured into silicone mold with strain gauge
 - Sample is cooled at a constant rate
 - From 20°C to 0°C in 30 minutes (40°C/hr)
 - From 0°C to cracking temperature at a rate of 20°C/hr
 - Sample cracks when jump in strain appears
 - $\,\circ\,$ T_{cr} is temperature at which that jump occurs

20°C/hr (NCHRP 09-60) 10°C/hr (NCHRP 09-60)

AASHTO T 387



AASHTO T 387

.....

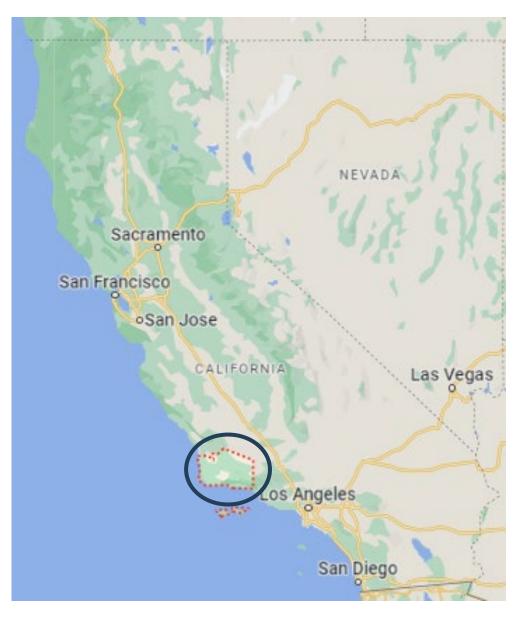
Figure 6—Typical ABCD Test Results: Strain versus Temperature

- Addressing Impacts of Changes in Asphalt Binder Formulation and Manufacture on Pavement Performance through Changes in Asphalt Binder Specifications
 - Expected Impacts
 - The determination of ΔT_c requires testing at two or more BBR temperatures. This may be an operational challenge for user agencies who are most often just verifying the grade of the asphalt binder.

- Addressing Impacts of Changes in Asphalt Binder Formulation and Manufacture on Pavement Performance through Changes in Asphalt Binder Specifications
 - Expected Impacts
 - The determination of ΔT_f requires the use of the ABCD test to first determine T_{cr} .
 - The ABCD equipment is not widely available commercially at this time.
 - Estimated equipment cost is likely to be in the range of \$40,000 to \$50,000.
 - $\circ~$ AI has ordered ABCD to be delivered later in 2022.

- Addressing Impacts of Changes in Asphalt Binder Formulation and Manufacture on Pavement Performance through Changes in Asphalt Binder Specifications
 - Expected Impacts
 - The use of the ABCD test with BBR testing means that 1-2 additional pans of PAV-aged asphalt binder may be needed.

• NCHRP 09-59 Objectives

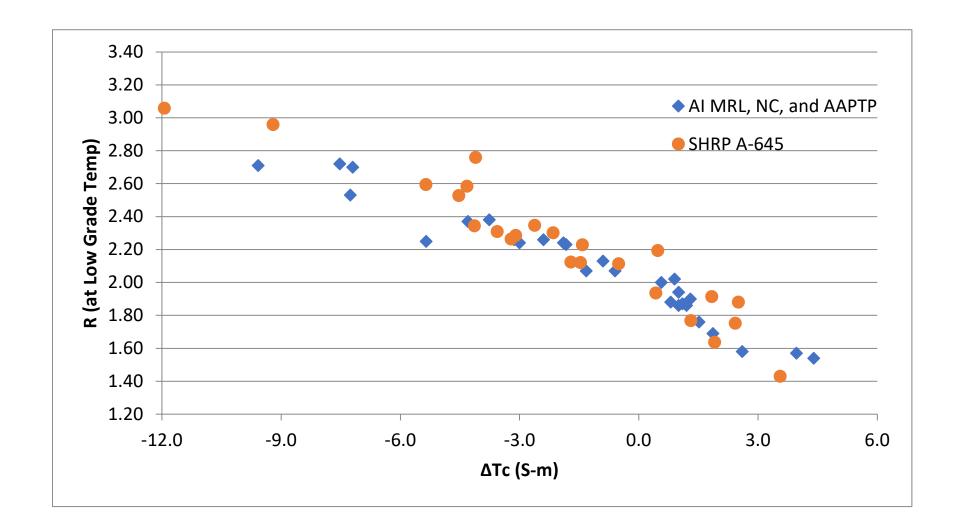

- determine asphalt binder properties that are significant indicators of the fatigue performance of asphalt mixtures
- identify or develop a practical, implementable binder test (or tests) to measure properties that are significant indicators of mixture fatigue performance for use in a performance-related binder purchase specification such as AASHTO M 320 and M 332
- NCHRP 09-60 Objectives
 - propose changes to the current performance-graded (PG) asphalt binder specifications, tests, and practices to remedy gaps and shortcomings related to the premature loss of asphalt pavement durability in the form of cracking and raveling.

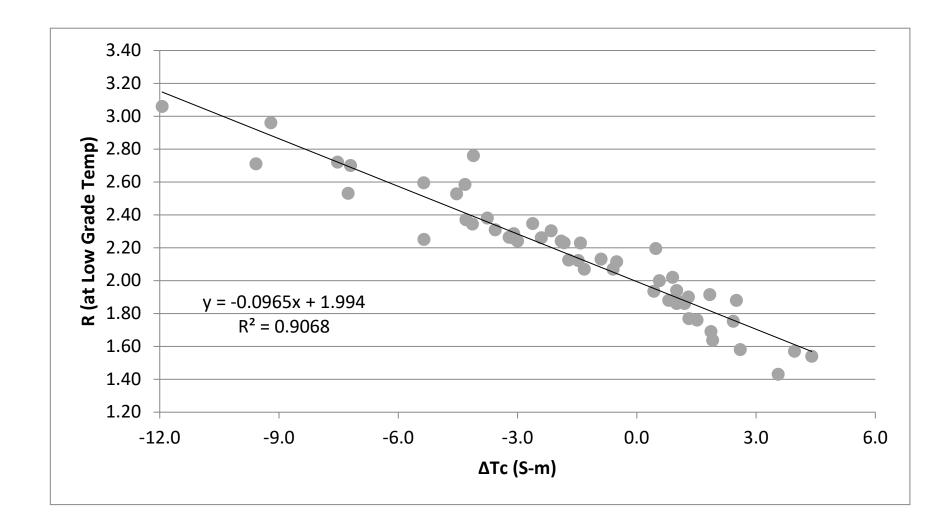
Zube and Skog: "Final Report on the Zaca-Wigmore Asphalt Test Road"

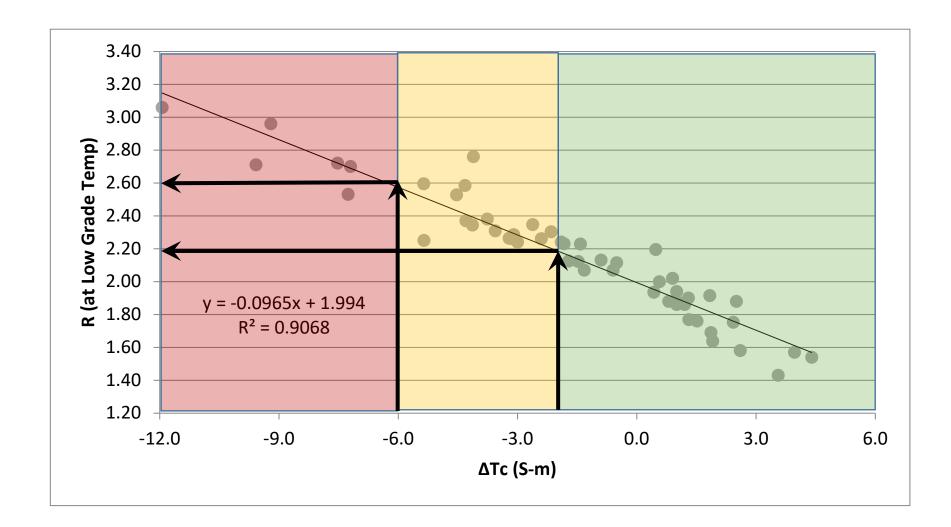
- 1969 AAPT Paper
- Relevance to PG Specification
 - From SHRP Report A-367 (Pages 36-37):
 - "At the suggestion of the A-003A researchers, and in light of an evaluation of the fatigue performance in field trials such as Zaca-Wigmore (figure 2.22), the fatigue criterion was changed to reflect the energy dissipated per load cycle. Dissipated energy in a dynamic shear test is appropriately calculated as G*sin δ (Ferry 1980)."

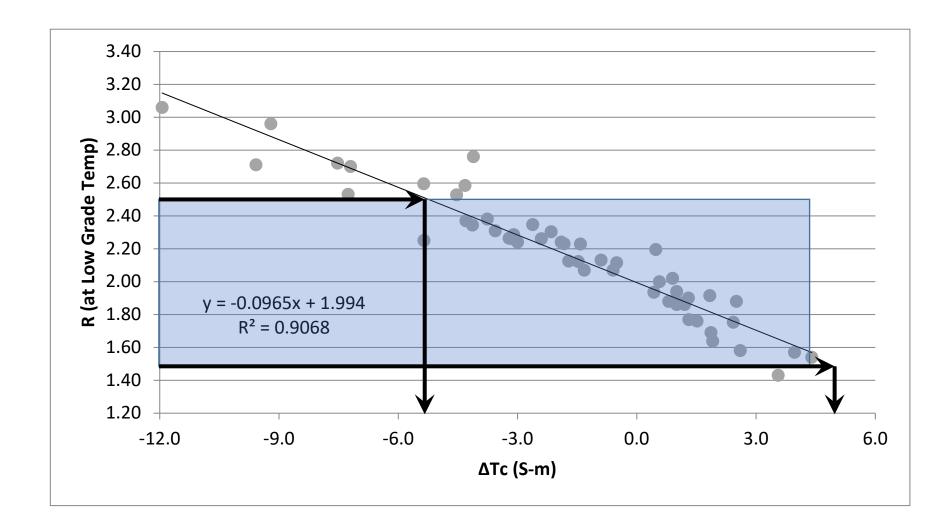
Zube and Skog: "Final Report on the Zaca-Wigmore Asphalt Test Road"

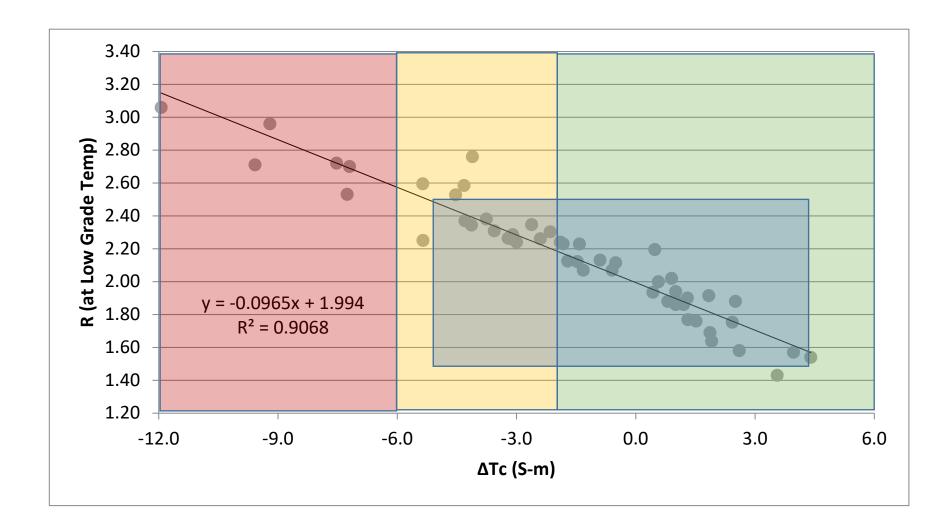
- Two main types of failure during service life were encountered on the project
 - Fatigue Cracking
 - Most prevalent
 - Related to recovered asphalt binder consistency (i.e., stiffness)
 - Block Cracking with Raveling
 - Most prevalent in the passing lane
 - Gain in shear susceptibility during weathering
 - Drop in ductility (i.e., viscoelastic behavior) during service life

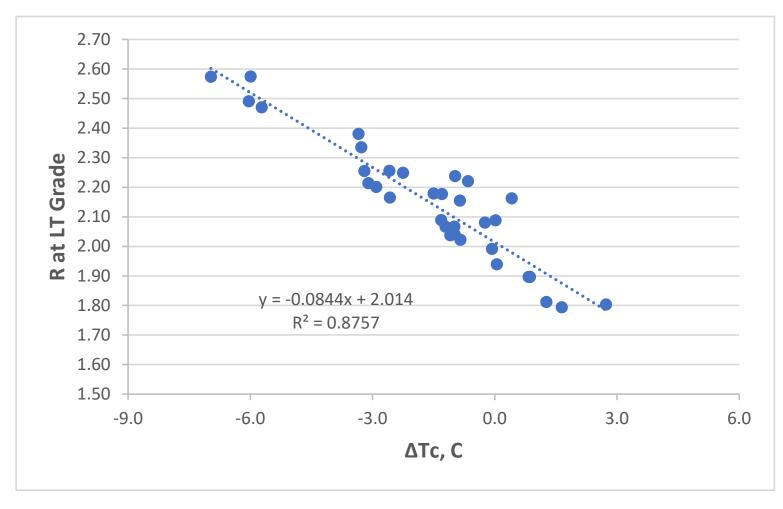



Lessons from the Zaca-Wigmore Asphalt Test Road


Specification	Fatigue Cracking	Block Cracking (Durability)
Current (M 320 and M 332)	G*sin δ	n/a
Research (M 320 and M 332)	GRP (G*cos ² δ /sin δ)	R-value or ΔT_c or δ at $G^*_{critical}$


NCHRP 09-59 and NCHRP 09-60


• Relationship between **R** (09-59) and **ΔTc** (09-60)



• Modified Asphalt Binders (NCHRP 09-10 Research, Report 459)

12 Modification Materials/Processes

- SBS Triblock
- SBS Radial
- SB
- SBR LMW
- SBR HMW
- EVA
- Ethylene Terpolymer
- Polyethylene (Unstabilized)
- Polyethylene (Stabilized)
- Steam Distilled
- Oxidized (Straight Run)
- Oxidized (Back Blended)

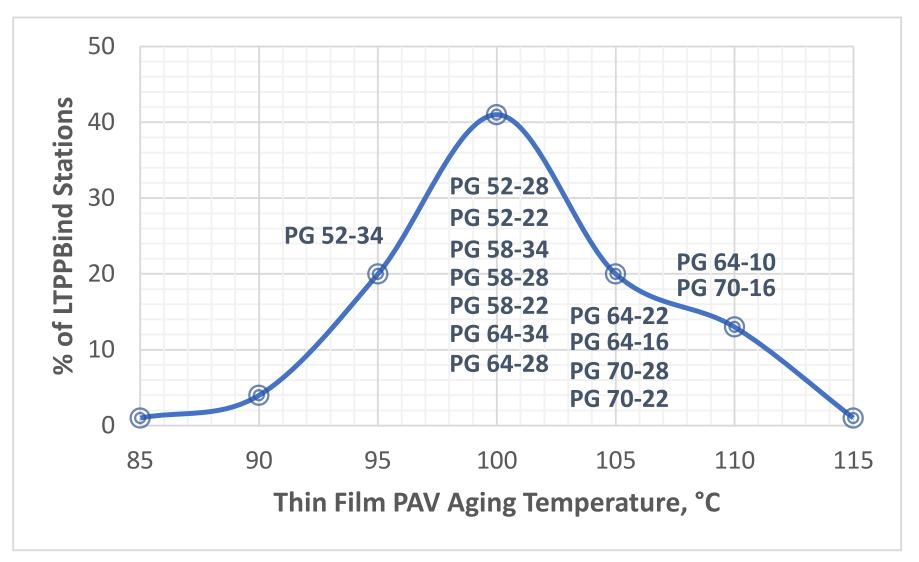
14 Grades

- From 46-88 on High PG
- From -16 to -40 on Low PG

NCHRP 09-61

Short- and Long-Term Binder Aging Methods to Accurately Reflect Aging in Asphalt Mixtures

- Short- and Long-Term Binder Aging Methods to Accurately Reflect Aging in Asphalt Mixtures
 - Ramon Bonaquist (PI, AAT), Jeramie J. Adams (WRI), and David A. Anderson (Consultant)
 - Objectives
 - develop practical laboratory aging methods to accurately simulate the short-term (from production to placement) and long-term (in-service) aging of asphalt binders.
 - determine the relationship between different methods of laboratory aging of asphalt binders and the actual aging that occurs during mixture production, transport, and placement as well as during the service life of the pavement structure.
 - NCHRP Report 967, Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging


- Short- and Long-Term Binder Aging Methods to Accurately Reflect Aging in Asphalt Mixtures
 - Key Findings
 - The recommendation for short-term conditioning of asphalt binders is to continue to use AASHTO T 240
 - Although the film thickness and its renewal during the test depend on the consistency of the asphalt binder, properties of residue from AASHTO T 240 agree reasonably well with the properties of asphalt binder recovered from mixtures which were short-term conditioned in accordance with the recommendations from NCHRP 09-52

- Short- and Long-Term Binder Aging Methods to Accurately Reflect Aging in Asphalt Mixtures
 - Key Findings
 - The recommendation for long-term conditioning of asphalt binders is that changing the operating parameters of the PAV (AASHTO R 28) can produce residue that reasonably simulates near-surface aging after 10 years in-service.
 - Changes will generally require thinner films and high temperatures in the PAV.

- Short- and Long-Term Binder Aging Methods to Accurately Reflect Aging in Asphalt Mixtures
 - Key Findings
 - Use PAV procedure with the standard 20-hr aging at 2.1 MPa pressure but only 12.5 grams of asphalt binder in the pan (instead of 50 grams)
 - Calibrated results to the properties of recovered asphalt binders from 26 LTPP pavement sections where original binder and cores from 8 to 16 years in-service were available.
 - The findings of that calibration indicate that the PAV temperature to use depends on the average of the 98 percent reliability high and low pavement temperature from LTPPBind3.1.

- Short- and Long-Term Binder Aging Methods to Accurately Reflect Aging in Asphalt Mixtures
 - Recommendations
 - Continue to use RTFO for short-term aging of asphalt binders
 - If 20-hour PAV is to be used then no changes recommended
 - If longer aging simulation is required then instead of 40-hour PAV using 50 grams of asphalt binder at 90, 100, or 110°C use 20-hour PAV with 12.5 grams of asphalt binder at varying temperature based on high and low pavement temperature.

NCHRP 09-61

Thin Film PAV Aging Temperature is calculated

Function of average of high and low pavement temperature at 98% reliability

- Short- and Long-Term Binder Aging Methods to Accurately Reflect Aging in Asphalt Mixtures
 - Expected Impacts
 - The challenge with using thinner films is maintaining a consistent film thickness.
 - Requires very level pans that are not warped.
 - Operationally could pose a significant challenge for labs to routinely ensure levelness.
 - An extra levelling step conducted at a higher temperature under inert atmosphere may be needed for some modified asphalt binders.

Future Performance-Graded Asphalt Binder Specifications

Developments in Asphalt Binder Tests and Specifications Resulting from National Research

• NCHRP 09-59

 Relating Asphalt Binder Fatigue Properties to Asphalt Mixture Fatigue Performance

- Recommend Glover-Rowe Parameter (GRP) on PAV-aged Asphalt Binder instead of G*sin δ
 - \circ G^{*}cos²δ/sin δ ≤ 5000 kPa at 10 rad/s and intermediate temperature
- Recommend R-value calculated from BBR data as additional parameter for durability
 - $\circ \ 1.50 \le R \le 2.50$
- Recommend intermediate temperatures to be based only on low temperature grade rather than as a function of high and low temperatures

Developments in Asphalt Binder Tests and Specifications Resulting from National Research

• NCHRP 09-60

- Addressing Impacts of Changes in Asphalt Binder Formulation and Manufacture on Pavement Performance through Changes in Asphalt Binder Specifications
 - Recommend using ΔT_c as added parameter for durability, relaxation
 - $^\circ~\Delta T_c$ minimum of -6°C
 - $\Delta T_c < -2^{\circ}C$ requires passing value of ΔT_f to qualify
 - Similar to Footnote g in AASHTO M 320 Table 1
 - $\,\circ\,$ ΔT_f determined using T_{cr} from ABCD and $T_{c,S}$ from BBR

Developments in Asphalt Binder Tests and Specifications Resulting from National Research

• NCHRP 09-61

 Short- and Long-Term Binder Aging Methods to Accurately Reflect Aging in Asphalt Mixtures

- No change in RTFO procedure
 - $^\circ~$ Note elevation change in new version of AASHTO T 240
- No change in PAV procedure for standard long-term aging
- If considering extended aging (to simulate 40-hour PAV), use...
 - Thinner film in PAV pan (12.5 grams)
 - 20 hours, 2.1 MPa air pressure
 - Revised temperature based on average of 98% high and low PG
 - 5°C increments

Conceptual PG Asphalt Binder Specification (Standard PAV)

Performance Grade:	PG 64						PG 70					
	-10	-16	-22	-28	-34	-40	-10	-16	-22	-28	-34	-40
Average 7-day max pavement design temp, °C ^a	<64						<70					
Design low pavement temperature, °Ca	>-10	>-16	>-22	>-28	>34	>-40	>-10	>-16	>-22	>-28	>34	>-40
•	Tests on Residue from Pressure Aging Vessel (R 28)											
PAV aging temperature, °Cf	100						100 (110)					
Dynamic shear, T 315: G* (cos δ) ² / sin δ, ^d maximum value 5,000 kPa, at 10 rad/s and test temperature, °C ^{g,h}	29	27	25	22	19	17	29	27	25	22	19	17
Creep stiffness, T 313: ⁴ Stiffness, maximum value 300 Mpa m-value, minimum value 0.30, at 60 sec and test temperature, °C	0	-6	-12	-18	-24	-30	0	-6	-12	-18	-24	-30
Creep stiffness, T313: R=log(2) log(S/3,000)/log(1-m) at 60 sec and specified test temperature minimum / maximum	1.50/2.50											
ΔT_c $T_{cS} - T_{cm}$	≥ -2.0 ^m											
ΔT_{f}^{m} $T_{cS} - T_{cr}$	$\Delta T_{f,min} = \frac{22 - 3 * \Delta T_c}{4}$											

^m If ΔT_c is greater than or equal to -2.0 then the determination of ΔT_f is not required. If ΔT_c is between -2.0 and -6.0 then ΔT_f may be determined. In that case, if ΔT_f exceeds the minimum value the sample is considered to meet the ΔT_c requirement.

Mike Anderson <u>manderson@asphaltinstitute.org</u> 859.288.4984 office 502.641.2262 cell

Longitudinal Joint Density State of Practice

Dave Johnson, P.E. Idaho Asphalt Conference Moscow Idaho October 26, 2023

1

Outline

asphalt institute

- Background Information
- Case Studies
- Best Practices
- Questions

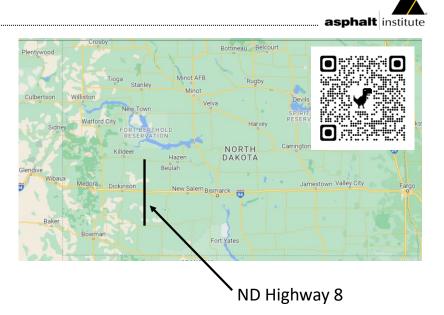
Background

What we "know"

Asphalt Institute study (2012) showed that longitudinal joint construction is an area where consensus is nearly unachievable, but that with attention to detail, we can produce good joints with differing techniques.

Areas of General Agreement

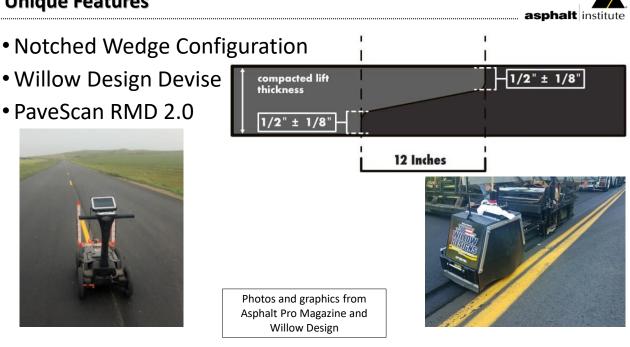
- Longitudinal Joints are most pavement's weakest point
- Typically, joint density is ~2% less than mat density
- Unsupported edge will usually have the lowest density
- Joint density specifications typically 89-92% of TMD
- For each 1% loss in density = about 10% loss of life


Case Studies

North Dakota

- August 2021
- 26-Mile Project
- State Highway #8
- 3" CIR

7


- Two 1.5" 12.5 mm Superpave Lifts
- 58S-28 (MSCR)
- Mix Temperatures 250-280°F at Paver
- 90.5 Joint Density Required

Unique Features

- Willow Design Devise
- PaveScan RMD 2.0

Unique Features

- Breakdown Roller
 - CAT Oscillatory
- Intermediate Roller(s)
 - CAT Vibratory (Primarily used)
 - Sakai Vibratory Pneumatic (Used on hot days when tenderness appeared)
- Finish Roller
 - CAT Vibratory in Static Mode

9

Results

94.8 % Joint Density

(93.9% Matt Density)

Courtesy of Asphalt Pro Magazine

asphalt institute

asphalt institute

Wisconsin

- State Trunk Highway 23
- 7.5-Mile Project
 - ° 22,230 T 19 mm
 - 2.25" 1st lift
 - ° 18,289 T 12.5 mm
 - 1.75" 2nd lift
 - ° 58-28S (MSCR)
- ~290°F at Breakdown Roller
- 90.5 Joint Density Required

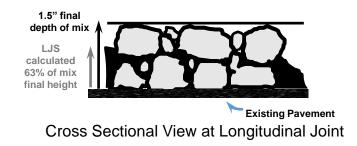
Unique Features

- Paving Speed Set as 22ft/min
- Breakdown Roller
 - Sakai High Frequency Vibratory
- Intermediate Roller(s)
 - BOMAG Pneumatic
- Finish Roller
 - BOMAG Steel

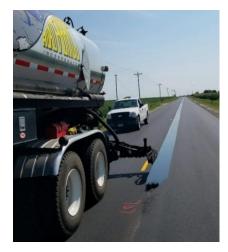
Courtesy of Asphalt Pro Magazine

Results

- Unconfined Joints
 - 206 Nuclear Tests
 - Averaged **93.3%**
- Confined Joints
 - 224 Nuclear Tests
 - Averaged 94.5%


•+95% of joints received maximum bonuses

13


Other Technology

- Void Reducing Asphalt Membrane
 - Heavy application of modified binder
 - 18 inches in total
 - Material wicks up to fill voids

VRAM Application Methods

Placed by pressure distributor with mechanical agitation in tank

Manual strike off box fed from melting kettle

Tow behind melter applicator

BAND

JEAND

States implementing specs or have had demos (2021)

Best Practices

17

Echelon Paving

- Common on Airports
- No cold joint
- Creates the best possible joint
- Not practical for all projects
 - Traffic
 - Production
 - Equipment

Courtesy of Gohkan Alay

Cutting Back the Joint

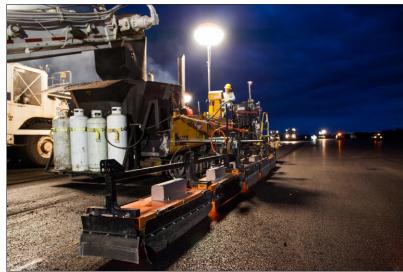
- Required on most airports
- Eliminates low density material
- "Waists" material

Avoid tearing

Must do when mix still warm (temperature sweet spot)

• Critical to cut straight (stringline)

• Easier with long wheelbase vehicle


19

Unacceptable Cutting

Joint Construction Methods

Reference Knik Construction

Infrared Joint Heater Pros:

- Can achieve good density and aggregate interlock
- No additional labor required
- No waste asphalt or edge cleanup
- "pretty" joint no bridging/stacking

Cons:

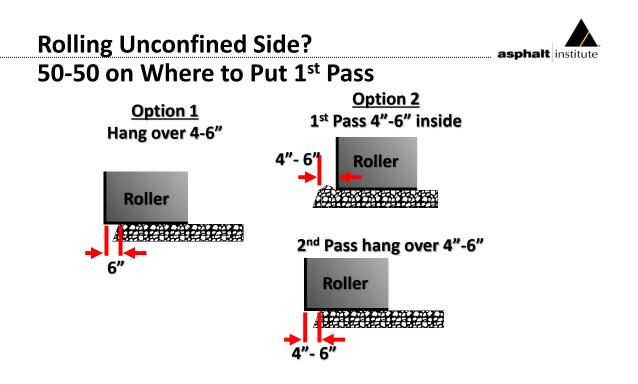
٠

- Limits paving production
- Additional aging of asphalt
- Will not work well with any moisture in the pavement
 - Does not heat full depth

First Pass Must Be Straight!

String-line should be used to assure first pass is straight

Stringline for reference, and/or Skip Paint, Guide for following



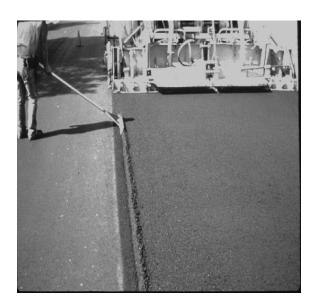
If not straight, impossible to get consistent overlap with next pass

Best Way to Roll an Asphalt Joint

25

When Closing Joint, Set Paver Automation to <u>Never Starve the Joint</u> of Material

- Target final height difference of +0.1" on hot-side versus cold side
 - NH spec requires 1/8" higher
- If hot-side is starved, roller drum will "bridge" onto cold mat and no further densification occurs at joint



Proper Overlap:

- Cutback or milled: .5" <u>+</u> 0.5"
- If not cutback: then 1.0" <u>+</u> 0.5"

Bumping the Joint?

Rolling Confined Side

1st pass entire drum on hot mat with roller edge off joint approx. 6-12"

2nd pass overlaps on cold mat 3-6"

Consider Pneumatic Rubber Tired Rollers

- Kneading action helps provide tighter surface that is more dense and less permeable compared to drum rollers.
- Keep these away from unsupported edge to avoid excessive lateral movement of mat
- Use during intermediate rolling of supported edge
 - •Not finish rolling

Key Steps in Implementing New LJ Spec

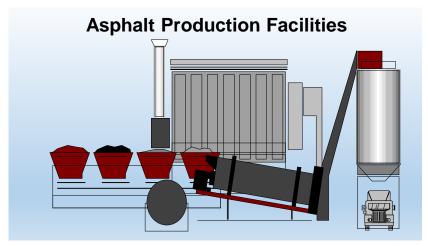
- Agency and Industry Work Together
- Offer training (Best Practices, Alternatives)
- If trying new technologies, products, or methods, measure effectiveness
- Establish baseline of existing joint densities by randomly selecting projects
- Implement minimum density spec, but 1st year only show bonus/penalty without adding/subtracting dollars
- Incrementally increase minimum density requirement to reach at least 90%, or possibly higher as it can be shown to be accomplished on regular basis

AI Longitudinal Joint Webpage

Go CATS!!

Asphalt Plant Production

What is the Purpose of An Asphalt Plant?


• *To Consistently* produce a *quality* Asphalt mixture that contains the desired proportions of binder and aggregate within the job mix tolerances and specified temperatures

The facilities must comply with laws, rules, regulations and statutes of....

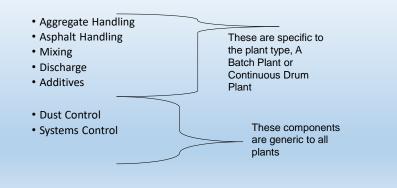
- Federal Government
- State Agencies
- Counties
- Cities

2

Asphalt Plant

PLANT FUNCTIONS

- PROPORTIONING
- DRYING & HEATING
- BINDER ADDITION
- MIXING
- STORING & DISPATCHING


There are 2 Basic types of Asphalt production facilities

- Batch plant
 - Not many of these are in use today in U.S.
- Continuous (Drum-mixer) plant
 - This is the most common type of plant used today
 - Parallel Flow Drum
 - Counter Flow Drum
 - Double Barrel Drum
 - Double DrumTriple Drum

System Components of the Basic Plants

Cold Feed Bins

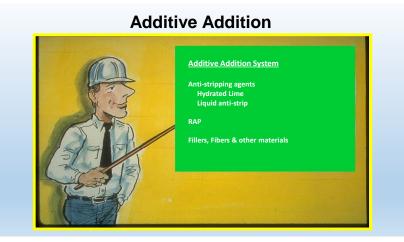
- Composite gradation is controlled by the individual bins containing the various gradations/sizes of aggregate
 - Gradation and quality of aggregate is controlled at the quarry

Cold Feed Conveyor

- Collects the aggregates from the various cold bins feeders and transports the cold aggregates to the dryer/heating drum
- Proportioning flow from each feeder is controlled by a variable speed belt and adjustable feeder gate beneath the cold feed bin

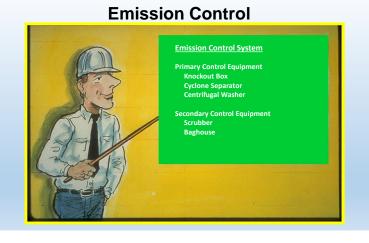
Asphalt Binder and Storage System

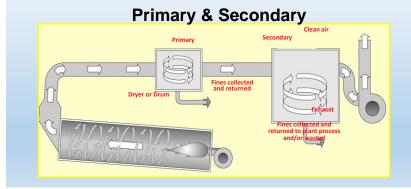
- Heated storage tanks
- Pump delivery system
- Binder weigh system

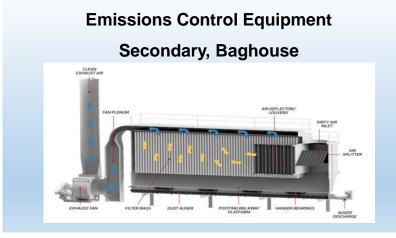


Binder Delivery System ~ Storage Facilities

Surge and Storage Silos – Loading Doors


Additive Addition System – RAP


Other Additive Systems


- Chemicals (Warm Mix or
- Compaction Aid, Antistrips)
 Fibers (cellulose or reinforcing kevlar)
 Ground Tire Rubber
- Plastics
- RAS

Emissions Control Equipment

System Controls

System Controls

System Controls – Computerized Drum Plant

System Controls -Control House

Questions ??

PASS is a Polymer Asphalt Surface Sealer used as a binder for aggregate chips while also sealing cracks in distressed pavements. (original PMRE)

It contains:

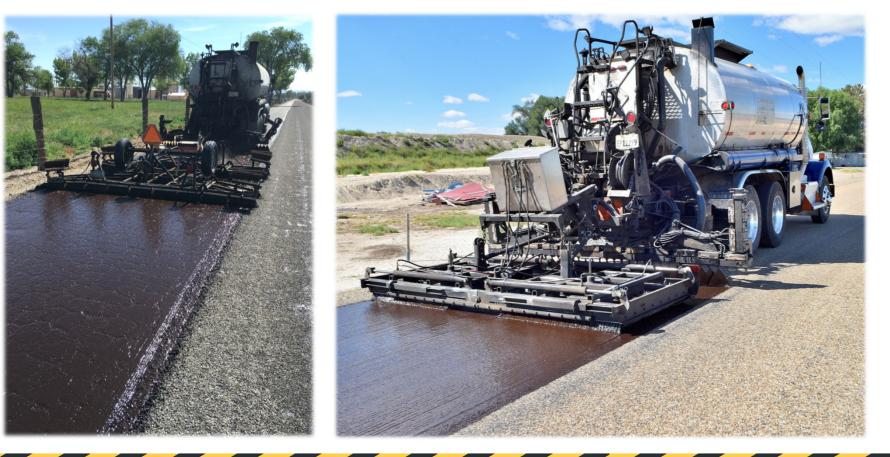
- Asphalt
- Solvent-free rejuvenating agent (15%)
- High-quality emulsifier
 - (The emulsifier is changed to facilitate the end use)
- Tough Polychloroprene Polymer (3.5%) PA-AS-1

- All Common Chip Seal Sizes
- Cinders Colored
- Crushed Fines
- RAP
- Slags

Structural failures need to be identified and repaired prior to application

Why?

Western Emulsions



Consider Scrub Seal / Cape

- Curb & Gutter
- Intersections
- Stops / Starts
- Broom Replacement
- Slopes

Idaho Asphalt

- Up Hill / Down Hill
- Track Out
- On Site Portability

Western Emulsions

Scrub Box: Enhancements

- Storage Stands
- Cordless Control
- Multiple Broom Selections
- Eliminated Axles

aho Asphalt Johnny B

- Hydraulic Width Adjustment
- Emulsion Containment
- Positive Height Adjustment
- On Site Construction Flexibility

Western Emulsions

daho Asphalt

- Self Contained electric over Hydraulic
- 12V chargeable through unit
- Cordless Controls
- Manual back up controls
- Removable between jobs

Box allows for real time speed adjustment: 100 to 350 fee per minute

- Less Drag Out
- Quicker Re-Start
- Better Joints

Idaho Asphalt

Product Containment

Western Emulsions

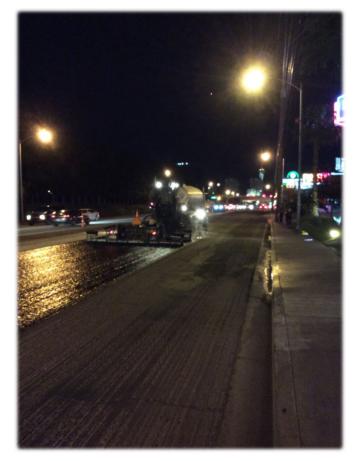
- Jumping Between Roads
- Loading Material
- Broom Cleanup
- On the fly adjustment

Broom heads allow for multiple surface textures

Flexibility to chip when you need to! Don't Scrub to Scrub!

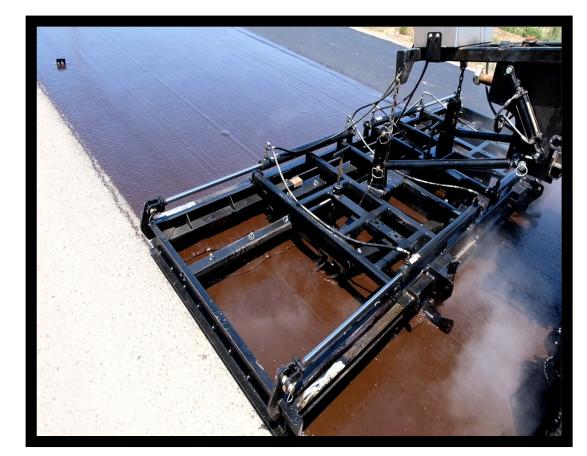
Will bring Scrub Sealing to more environments

Multiple variations to consider for your toolbox!



Scrub Seal Placed as an Interlayer

- Dense Grades
- SMA's
- Open Grades
- HI MOD

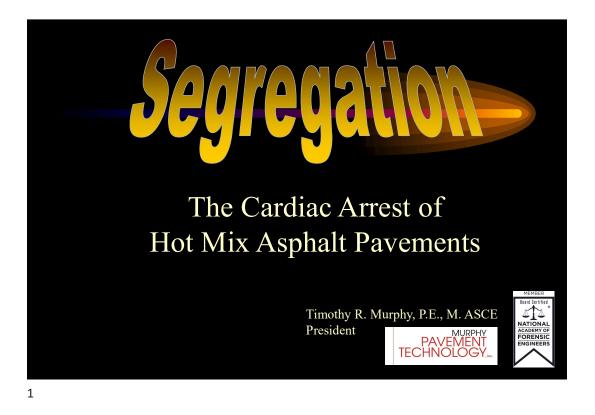

Lessons Learned from 2023

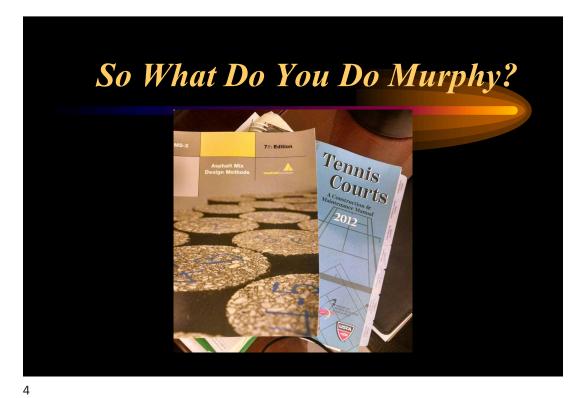
- Operator Learning Curve
- Start/Stops
- Broom Selection
- Aggregate / Road Texture

Emulsions

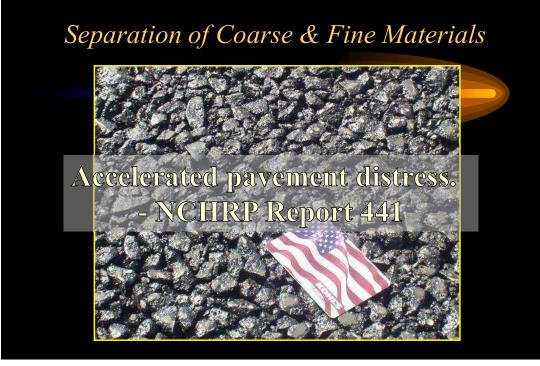
- Box Height
- Broom Maintenance
- Mobilizing
- Box Care

aho Asphalt Dohnny B

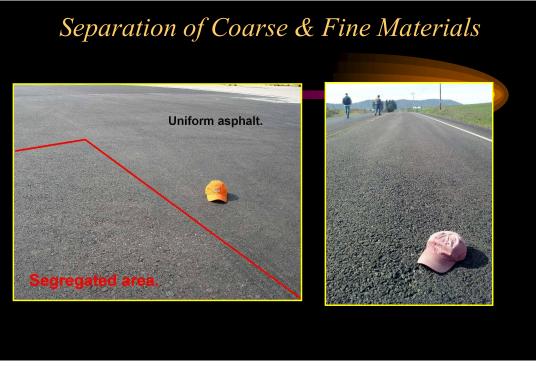




Scrub Seals an Evolving Process

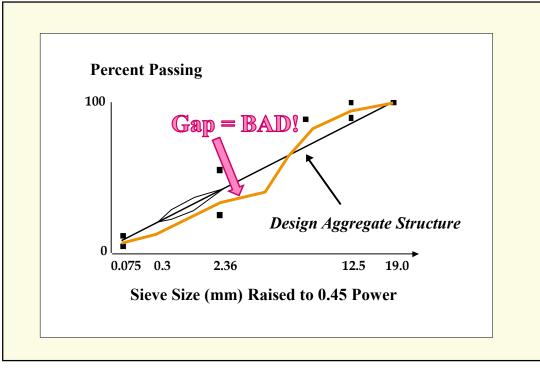

6

7

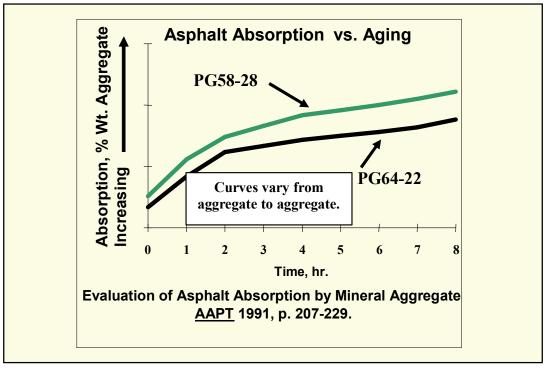

Segregation is the...

"non-uniform distribution of the various aggregate sizes throughout the mass"

8



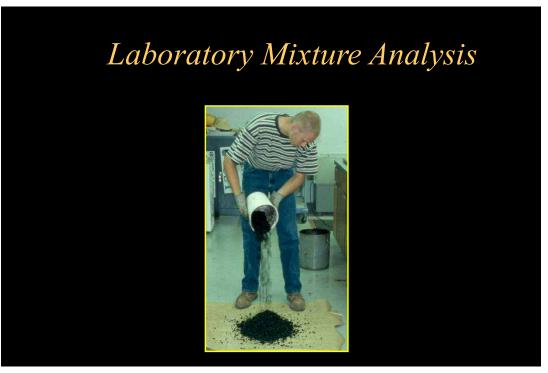
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text>

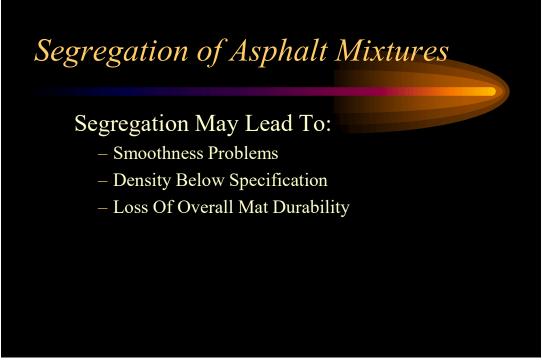

14

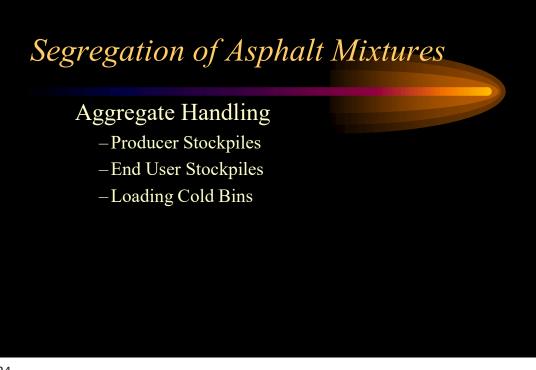
Increase Effective Volume of Asphalt

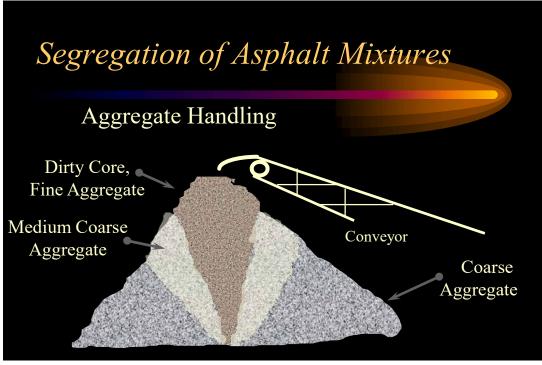
Voids in the Mineral Aggregate (VMA) equals the Effective Volume of Asphalt (Vbe) plus Air Voids (Va)

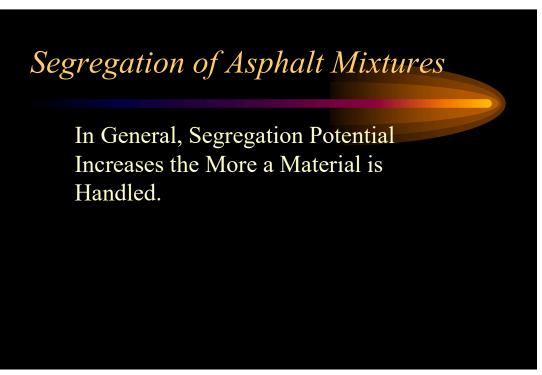
Vbe = VMA - Va

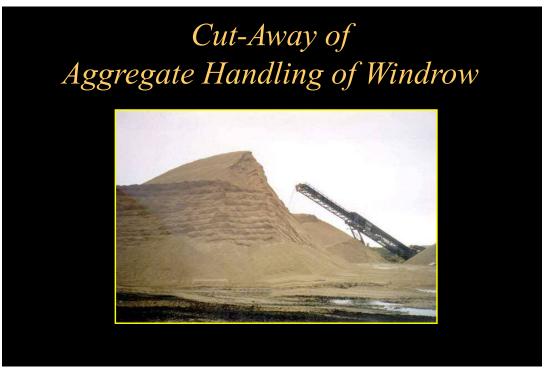

Page 7

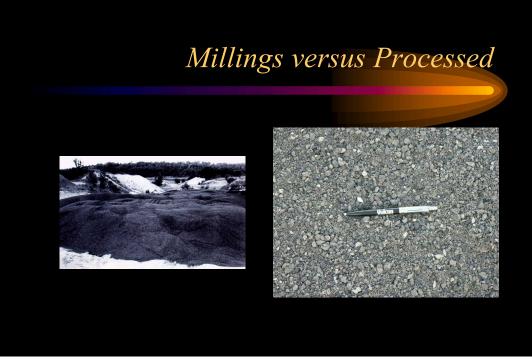


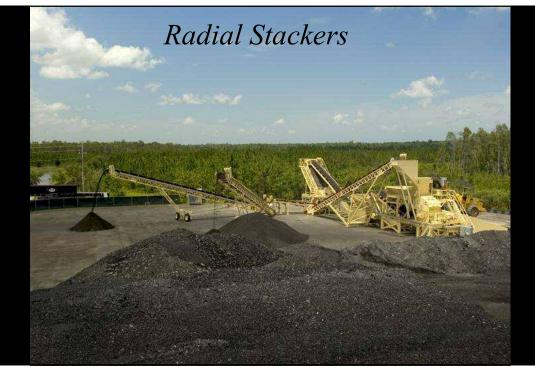


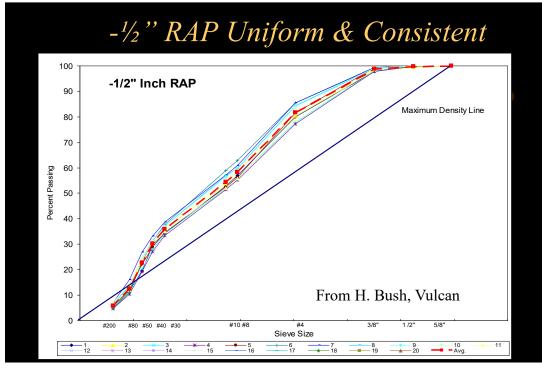

Sieve Size	Outside	Inside	Factor
12.5mm (1/2")	100	100	0
4.75mm (#4)	45	59	14
Marshall Data			
AC	5.5	5.8	0.3
Voids	5.2	3.6	1.6
Stability/Flow			~0

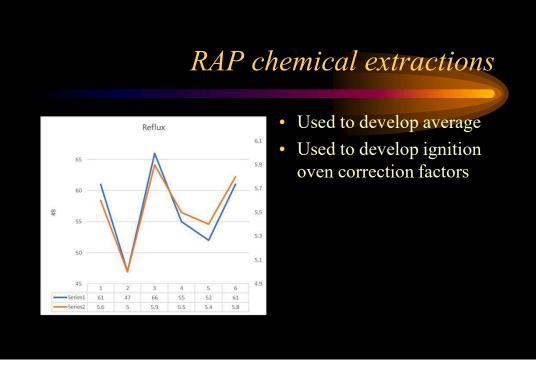


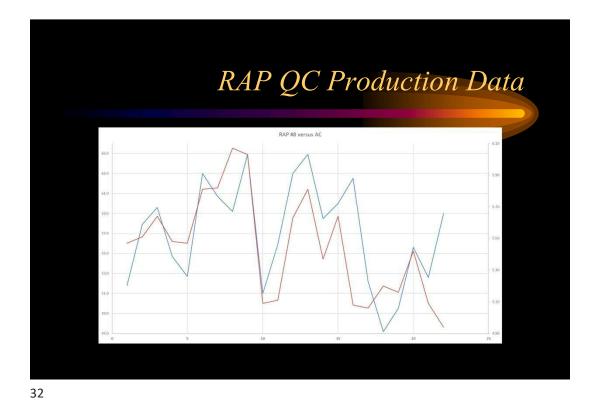


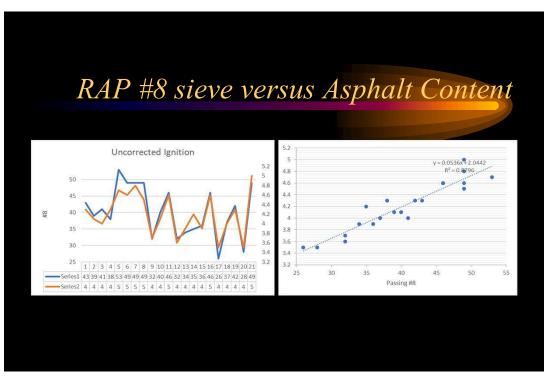


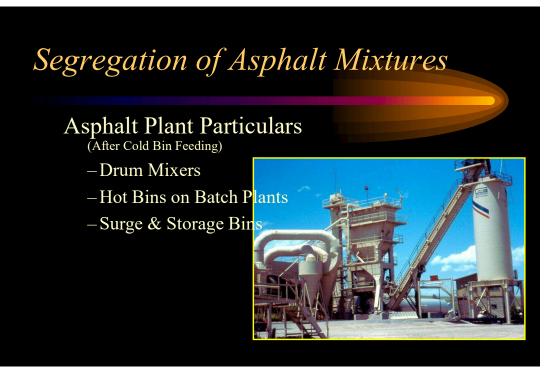


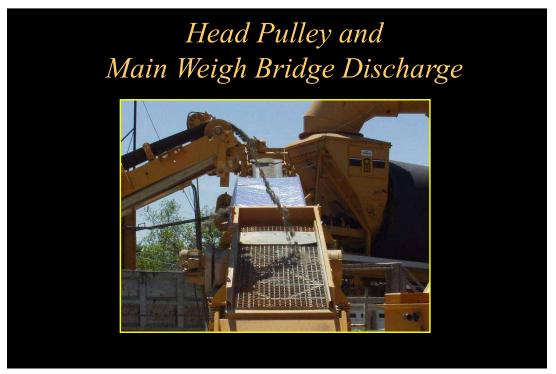


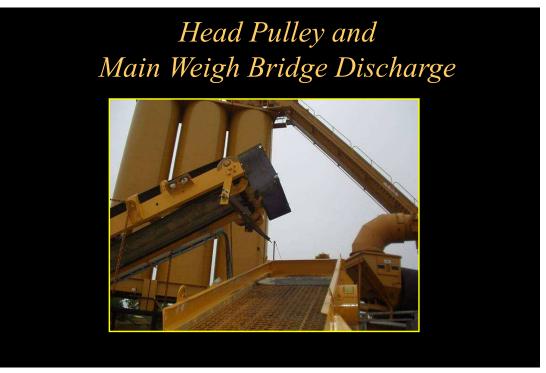


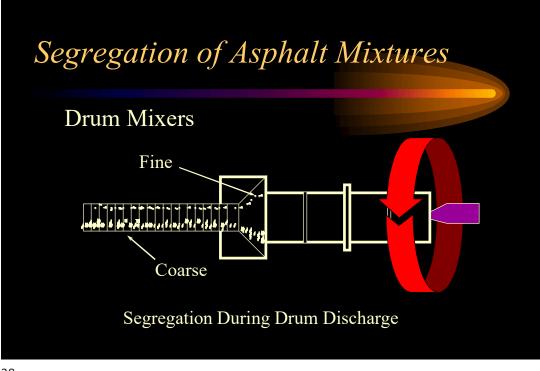


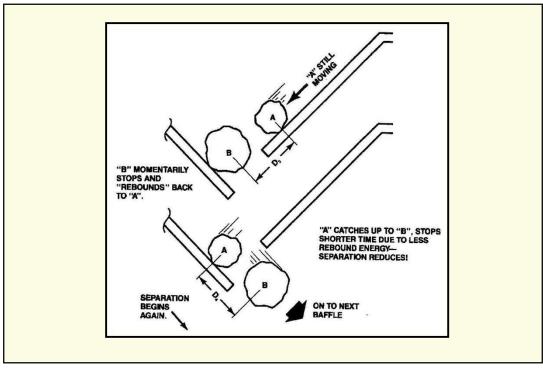




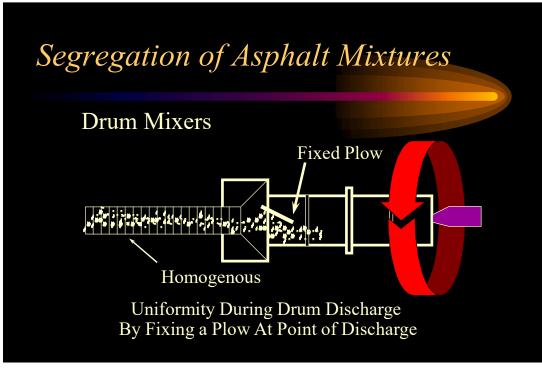


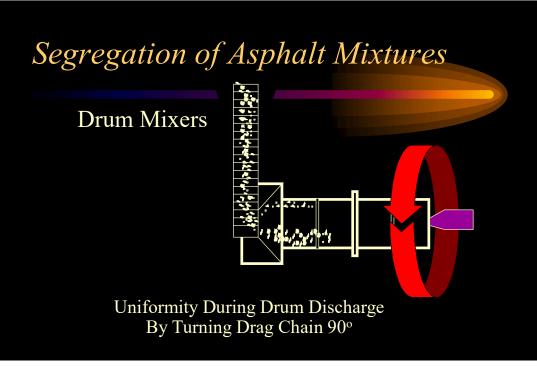


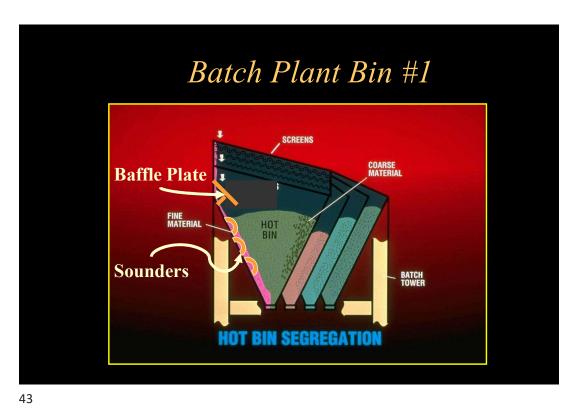


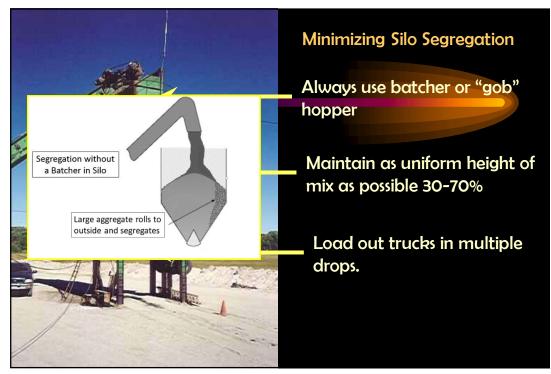


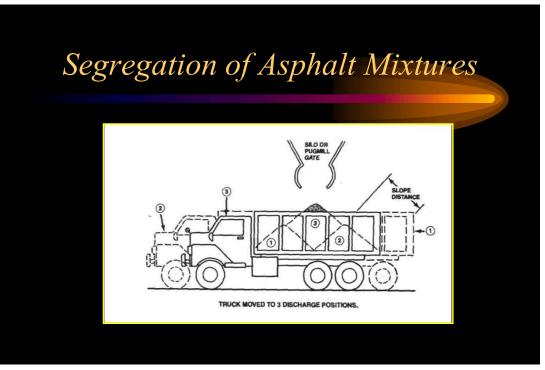
Page 17 Murphy Pavement Technology, Inc.

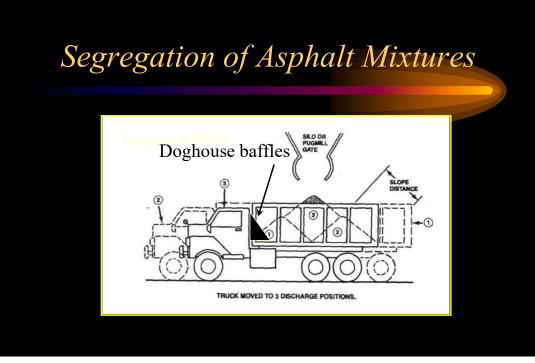


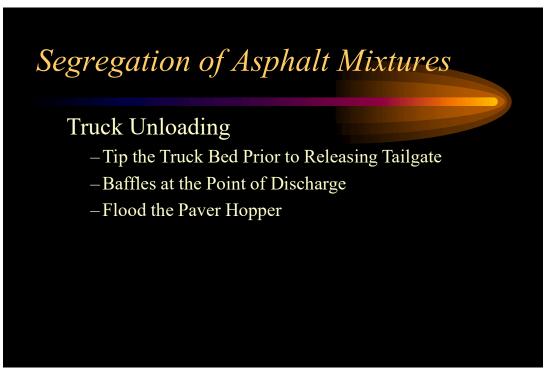


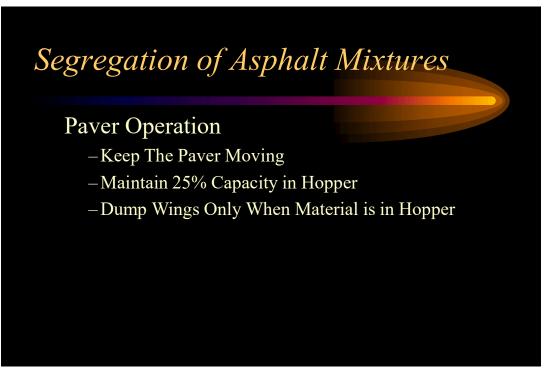


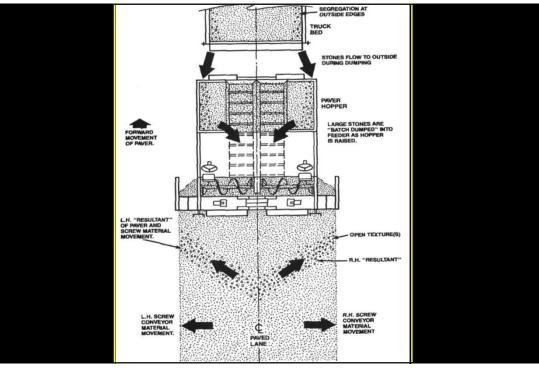

39

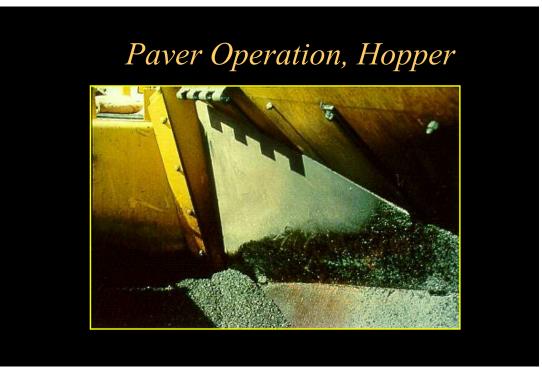


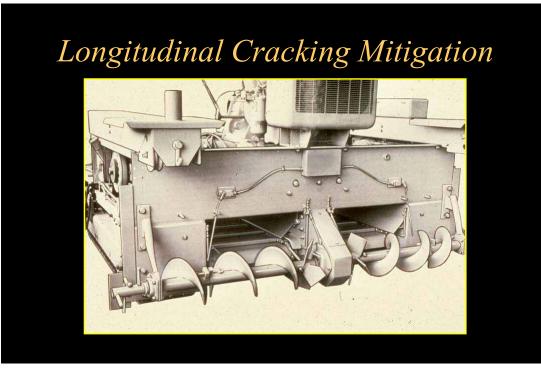


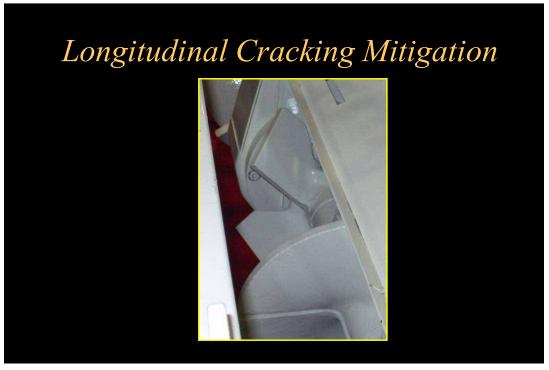


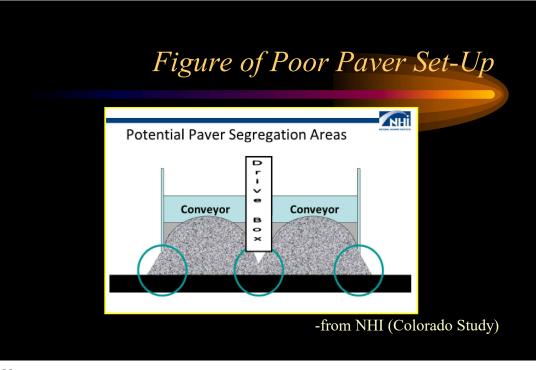

54

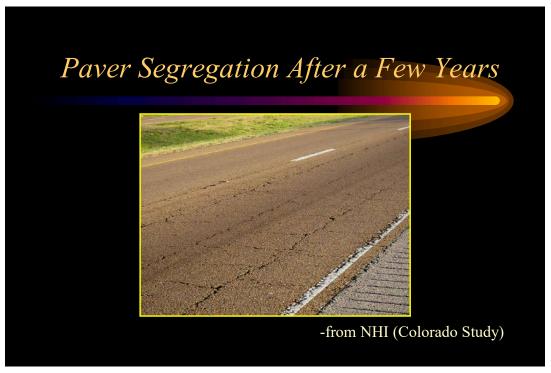


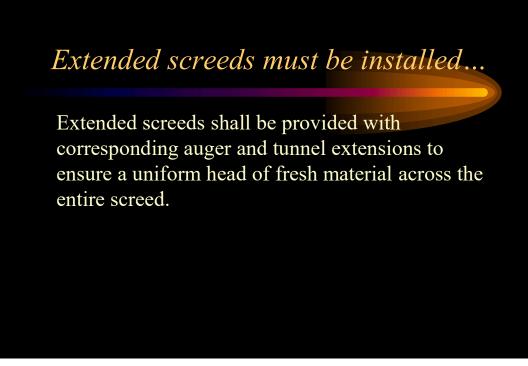

60

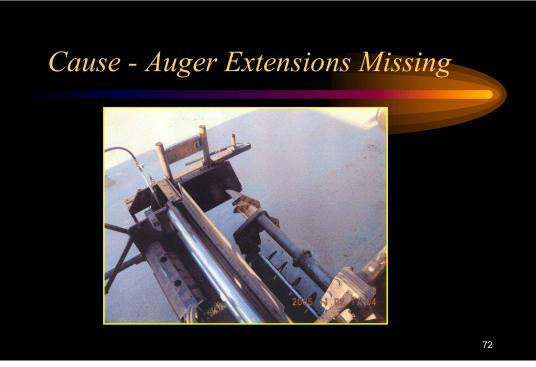

Page 30 Murphy Pavement Technology, Inc.

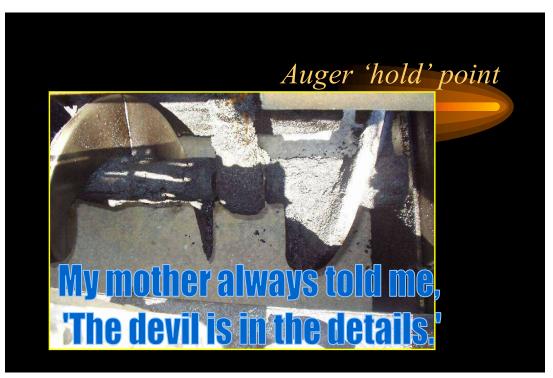


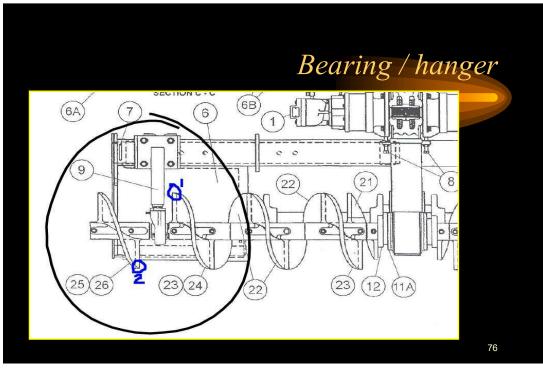


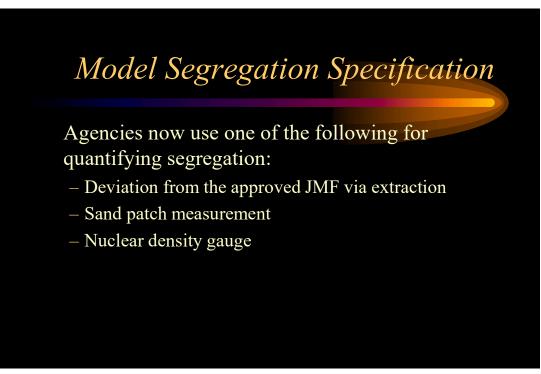


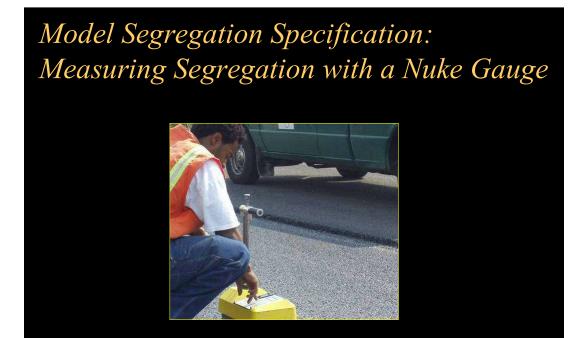


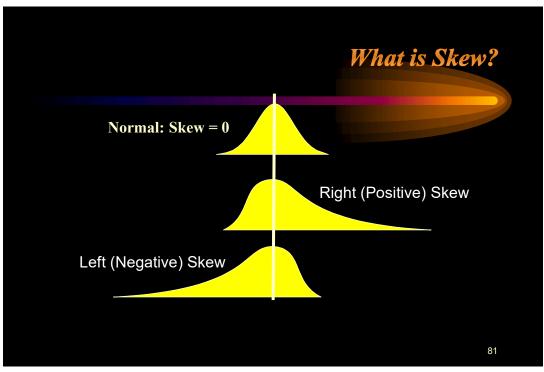


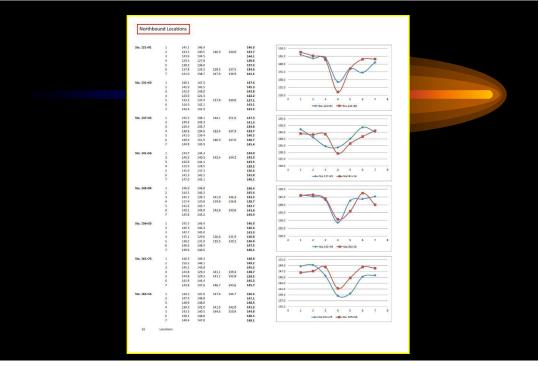


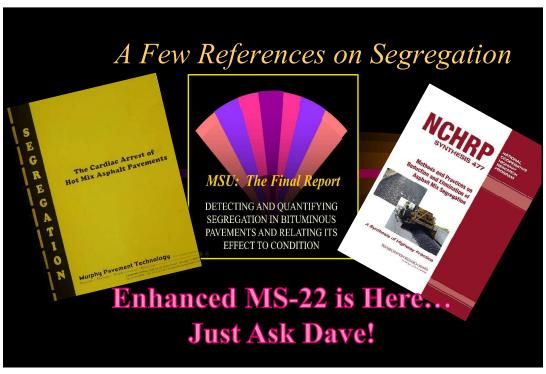


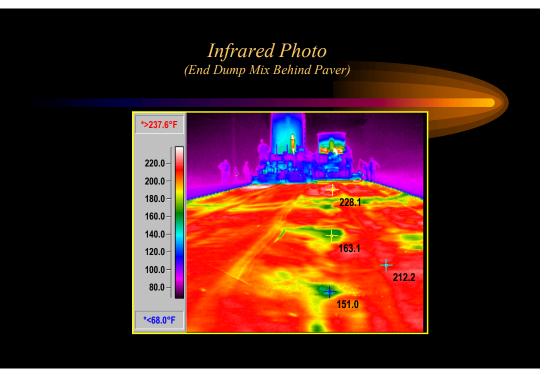




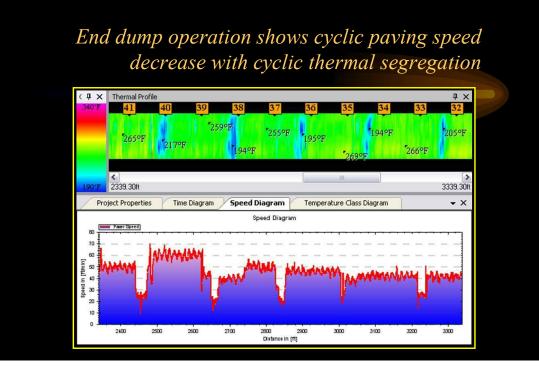







82

Page 41 Murphy Pavement Technology, Inc.



84

