INSECTA TUNDI A Journal of World Insect Systematics

0301

Metopolophium festucae cerealium (Hemiptera: Aphididae), a new addition to the aphid fauna of North America

Susan E. Halbert

Florida Department of Agriculture and Consumer Services Division of Plant Industry P.O. Box 147100 Gainesville, FL 32614-7100

Ying Wu and Sanford D. Eigenbrode Department of Plant, Soil and Entomological Sciences University of Idaho, Moscow, ID 83843

Date of Issue: May 10, 2013

Susan E. Halbert, Ying Wu and Sanford D. Eigenbrode

Metopolophium festucae cerealium (Hemiptera: Aphididae), a new addition to the

aphid fauna of North America

Insecta Mundi 0301: 1-6

ZooBank Registered: urn:lsid:zoobank.org:pub:28028BE7-C9C2-444D-9D9E-41523C9F6EC8

Published in 2013 by

Center for Systematic Entomology, Inc.

P. O. Box 141874

Gainesville, FL 32614-1874 USA

http://www.centerforsystematicentomology.org/

Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non-marine arthropod. Topics considered for publication include systematics, taxonomy, nomenclature, checklists, faunal works, and natural history. **Insecta Mundi** will not consider works in the applied sciences (i.e. medical entomology, pest control research, etc.), and no longer publishes book reviews or editorials. **Insecta Mundi** publishes original research or discoveries in an inexpensive and timely manner, distributing them free via open access on the internet on the date of publication.

Insecta Mundi is referenced or abstracted by several sources including the Zoological Record, CAB Abstracts, etc. **Insecta Mundi** is published irregularly throughout the year, with completed manuscripts assigned an individual number. Manuscripts must be peer reviewed prior to submission, after which they are reviewed by the editorial board to ensure quality. One author of each submitted manuscript must be a current member of the Center for Systematic Entomology. Manuscript preparation guidelines are available at the CSE website.

Managing editor: Paul E. Skelley, e-mail: insectamundi@gmail.com

Production editor: Michael C. Thomas, Brian Armitage, Ian Stocks

Editorial board: J. H. Frank, M. J. Paulsen

Subject editors: G.B. Edwards, J. Eger, A. Rasmussen, F. Shockley, G. Steck, Ian Stocks, A. Van Pelt, J. Zaspel

Spanish editors: Julieta Brambila, Angélico Asenjo

Printed copies (ISSN 0749-6737) annually deposited in libraries:

CSIRO, Canberra, ACT, Australia

Museu de Zoologia, São Paulo, Brazil

Agriculture and Agrifood Canada, Ottawa, ON, Canada

The Natural History Museum, London, Great Britain

Muzeum i Instytut Zoologiczny PAN, Warsaw, Poland

National Taiwan University, Taipei, Taiwan

California Academy of Sciences, San Francisco, CA, USA

Florida Department of Agriculture and Consumer Services, Gainesville, FL, USA

Field Museum of Natural History, Chicago, IL, USA

National Museum of Natural History, Smithsonian Institution, Washington, DC, USA

Zoological Institute of Russian Academy of Sciences, Saint-Petersburg, Russia

Electronic copies (On-Line ISSN 1942-1354, CDROM ISSN 1942-1362) in PDF format:

Printed CD or DVD mailed to all members at end of year. Archived digitally by Portico.

Florida Virtual Campus: http://purl.fcla.edu/fcla/insectamundi

University of Nebraska-Lincoln, Digital Commons: http://digitalcommons.unl.edu/insectamundi/Goethe-Universität, Frankfurt am Main: http://edocs.ub.uni-frankfurt.de/volltexte/2010/14363/

Author instructions available on the Insecta Mundi page at:

http://www.centerforsystematicentomology.org/insectamundi/

Copyright held by the author(s). This is an open access article distributed under the terms of the Creative Commons, Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. http://creativecommons.org/licenses/by-nc/3.0/

Metopolophium festucae cerealium (Hemiptera: Aphididae), a new addition to the aphid fauna of North America

Susan E. Halbert
Florida Department of Agriculture and Consumer Services
Division of Plant Industry
P.O. Box 147100
Gainesville, FL 32614-7100
Susan.Halbert@freshfromflorida.com

Ying Wu and Sanford D. Eigenbrode

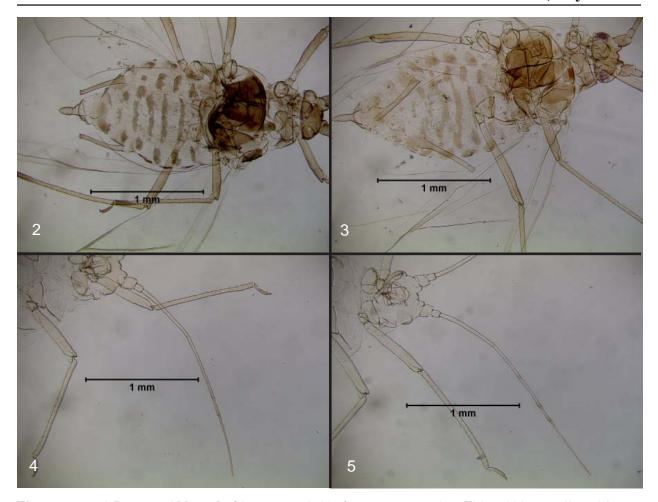
Department of Plant, Soil and Entomological Sciences University of Idaho, Moscow, ID 83843 ywu@uidaho.edu; sanforde@uidaho.edu

Abstract. *Metopolophium festucae cerealium* (Stroyan) (Hemiptera: Aphididae) was found in wheat fields in the Pacific Northwest in 2011 and 2012. This is the first record of *M. f. cerealium* in North America. This subspecies can be a serious pest of cereal crops.

Key Words. Metopolophium festucae cerealium, cereal crops, wheat, cereal aphids

Introduction

Stroyan (1982) separated the subspecies Metopolophium festucae cerealium Stroyan (Hemiptera: Aphididae) from Metopolophium festucae (Theobald, 1917), sensu stricto, based on morphological characters and host preferences. Metopolophium festucae s.s. feeds on a variety of grasses, but is only incidental on cereal crops, whereas M. f. cerealium is a significant pest of cereal crops. It also can be found on grasses.


Plumb (1974) reported that M. festucae (presumably M. festucae cerealium) is more damaging to oats (Avena sativa L.) than to other cereals, causing damage similar to that reported for Schizaphis graminum (Rondani) in the USA. Dent and Wratten (1986) assessed host plant relationships of M. festucae cerealium among various pasture grasses and wheat (Triticum aestivum L.). They found that wheat was more susceptible than any of the grasses tested.

Metopolophium festucae was reported in the USA in California in 1970 (Foottit et al. 2006). It is not listed in the Idaho fauna (Gittins et al. 1976), but it is listed (subspecies unspecified) as occurring in the Pacific Northwest in Pike et al. (2003). In Idaho, M. festucae briefly became a pest in 1994 in Boise on fescue lawns. People who were encouraged to plant drought-tolerant fescue lawns inadvertently planted a monoculture of the favored host plant for this species. Moreover, the mild winter of 1993/1994 enabled this commonly anholocyclic species to overwinter easily in the Boise area. Populations in a few lawns reached hundreds per leaf; however, no colonization of cereal crops was observed. Measurements of the specimens were borderline between the two subspecies, but the dorsal pattern on the alatae appeared to match that of M. festucae s.s. (Fig. 2). Vouchers are deposited in the Florida State Collection of Arthropods (FSCA).

From the mid 1980s through the mid 1990s, cereal crops in the Pacific Northwest were surveyed extensively for aphids because of epidemics of barley yellow dwarf and because of the establishment of the Russian wheat aphid, *Diuraphis noxia* (Mordvilko) in the late 1980s. A few specimens that appeared to be *M. f. cerealium* were collected in suction traps in 1994 in Oregon at Corvallis, Madras, and Hermiston. No colonization of cereal crops was observed. The apparent specimens of *M. festucae cerealium* were reported informally (Halbert and Sandvol 1995), but follow-up with surveys on cereal crops was recommended to confirm the identity of the collections. Until now, this aphid has not been reported on cereal crops in the USA.

 $\textbf{Figure 1.} \ \, \textbf{Maps showing locations and relative numbers of} \ \, \textit{Metopolophium festucae cerealium} \ \, \textbf{Stroyan in samples collected in 2011 and 2012 in the Pacific Northwest.} \ \, \textbf{Map by Alicia Lawrence, FDACS/DPI.} \ \, \textbf{Constant of Metopolophium festucae cerealium} \ \, \textbf{Stroyan in samples collected in 2011 and 2012 in the Pacific Northwest.} \ \, \textbf{Map by Alicia Lawrence, FDACS/DPI.} \ \, \textbf{Constant of Metopolophium festucae cerealium} \ \, \textbf{Stroyan in Samples collected in 2011 and 2012 in the Pacific Northwest.} \ \, \textbf{Map by Alicia Lawrence, FDACS/DPI.} \ \, \textbf{Constant of Metopolophium festucae cerealium} \ \, \textbf{Stroyan in Samples collected in 2011 and 2012 in the Pacific Northwest.} \ \, \textbf{Map by Alicia Lawrence, FDACS/DPI.} \ \, \textbf{Constant of Metopolophium festucae cerealium} \ \, \textbf{Stroyan in Samples collected in 2011 and 2012 in the Pacific Northwest.} \ \, \textbf{Map by Alicia Lawrence, FDACS/DPI.} \ \, \textbf{Constant of Metopolophium festucae cerealium} \ \, \textbf{Stroyan in Samples collected in 2011 and 2012 in the Pacific Northwest.} \ \, \textbf{Map by Alicia Lawrence, FDACS/DPI.} \ \, \textbf{Constant of Metopolophium festucae cerealium} \ \, \textbf{Constant of Metopolophium} \$

Figures 2-5. 2) Dorsum of *Metopolophium* sp., probably *festucae sensu stricto*. This aphid was collected from a fescue lawn in Boise Idaho. Note the lack of a rudimentary patch on abdominal segments V and VI (just anterior to siphunculi), and the curved, slightly darker siphunculi, as compared with *Metopolophium festucae cerealium*, Fig. 3.

3) Dorsum of alate *Metopolophium festucae cerealium*. Note abdominal pattern, especially incomplete patch on segments V and VI (just anterior to the siphunculi). 4) *Metopolophium festucae cerealium* antenna of apterous form. Note that joints are not darkened. 5) *Metopolophium dirhodum* antenna of apterous form. Note dark joints on the antenna, especially on segments V and VI.

Recent surveys and discussion of species

In June and July of 2011, another cereal aphid survey project was initiated that included sweep sampling of wheat fields in Washington, Oregon, and Idaho. Nearly every sample contained *M. festucae cerealium*. The aphids were found in both winter and spring wheat, and in all three states (Table 1). Voucher specimens from fifteen locations are deposited at the FSCA.

More samples were collected in 2012 (Table 2). Large numbers of *M. f. cerealium* were collected at some locations. (Fig. 1)

Only two species of *Metopolophium* occur on cereals in the Pacific Northwest. *Metopolophium dirhodum* (Walker) (rose grass aphid), another adventive species, has been in the USA at least since 1910 (Foottit et al. 2006). It is common and numerous in cereal crops, especially late season wheat (personal observations, S.E. Halbert). Separation of *M. festucae cerealium* from *M. dirhodum* is easier for alatae than for apterae. Alate *M. festucae cerealium* (Fig. 3) specimens have a pattern of broken bars on their abdomens, whereas alate *M. dirhodum* specimens do not have abdominal markings. Alate *M. festucae cerealium* on cereals might also be confused with alate *Sitobion avenae* (Fabricius), but specimens of *S. avenae* have

dark, reticulated siphunculi, whereas *Metopolophium* species have pale to dusky siphunculi without reticulation. Apterous *M. festucae cerealium* (Fig. 4) specimens have antennae that darken progressively from base to apex, whereas apterous *M. dirhodum* (Fig. 5) specimens have antennae with dark joints. Neither species has abdominal markings. Both species are easily separated from *S. avenae* apterae by their pale siphunculi and lack of abdominal markings.

Separation of *M. festucae s.s.* from *M. f. cerealium* requires discriminant functions (Stroyan 1982). Sometimes results are borderline. According to Stroyan, however, *M. festucae s.s.* is not found on cereal crops. Also according to Stroyan (1982), *M. f. cerealium* alatae have intersegmental markings forming an incomplete patch on abdominal segments V and VI (Fig. 3), whereas *M. festucae s.s.* alatae never have this feature (Fig. 1).

It is not known at this time whether *M. festucae cerealium* will prove to be a significant pest of cereal crops in North America. *Metopolophium festucae* is a recorded vector of one or more the barley yellow dwarf complex of cereal viruses (Jedlinski 1981; Plumb 1974). Blackman et al. (1990) suggested that these records should refer to *M. festucae cerealium*.

Acknowledgments

We thank Mark Rothschild, FSCA Research Associate, and Gary Steck, FDACS, Division of Plant Industry, for helpful reviews of this manuscript. The research was supported by National Institute for Food and Agriculture competitive grant, award number: 2011-68002-30191. This is Entomology Contribution No. 1236, Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Bureau of Entomology, Nematology, and Plant Pathology.

Literature Cited

- **Blackman, R.L., V. F. Eastop, and P.A. Brown. 1990.** The biology and taxonomy of the aphids transmitting barley yellow dwarf virus. p 197-214. *In*: P.A. Burnett (ed.) World Perspectives on Barley Yellow Dwarf. CIMMYT; Mexico, D.F., Mexico. 511 p.
- **Dent, D. R., and S. D. Wratten. 1986.** The host-plant relationships of apterous virginoparae of the grass aphid *Metopolophium festucae cerealium*. Annals of Applied Biology 108: 567-576.
- **Foottit, R. G., S. E. Halbert, G. L. Miller, E. Maw, and L. M. Russell. 2006.** Adventive aphids (Hemiptera: Aphididae) of America north of Mexico. Proceedings of the Entomological Society of Washington 108: 583-610.
- Gittins, A. R., G. W. Bishop, G. F. Knowlton, and E. J. Parker. 1976. An annotated list of the aphids of Idaho (Homoptera: Aphidae [sic]). Research Bulletin No. 95, University of Idaho Agricultural Experiment Station, College of Agriculture; Moscow, ID. 47 p.
- **Halbert, S. E., and L. E. Sandvol. 1995.** New or unusual pests in Idaho in 1994. Research Reports: 54th Annual Northwest Insect Management Conference, Imperial Hotel, Portland Oregon, January 1995. p. 71.
- **Jedlinski, H. 1981.** Rice root aphid, *Rhopalosiphum rufiabdominalis*, a vector of barley yellow dwarf virus in Illinois, and the disease complex. Plant Disease 65: 975-978.
- **Pike, K. S., L. L. Boydston, and D. W. Allison. 2003.** Aphids of western North America north of Mexico with keys to subfamilies and genera for female alatae. Washington State University; Pullman, WA. 282 p. (See especially pages 176-177.)
- **Plumb, R. T. 1974.** Properties and isolates of barley yellow dwarf virus. Annals of Applied Biology 77: 87-91.
- **Stroyan, H. L. G. 1982.** Revisionary notes on the genus *Metopolophium* Mordvilko, 1914, with keys to European species and descriptions of two new taxa (Homoptera: Aphidoidea). Zoological Journal of the Linnean Society 75: 91-140.

Received March 1, 2013; Accepted April 13, 2013.

Table 1. Sweep samples of $Metopolophium\ festucae\ cerealium\ collected\ in\ wheat\ in\ 2011\ in\ the\ Pacific\ Northwest.$ Asterisks (*) indicate that at least one voucher sample was collected from that location. Vouchers are deposited in the Florida State Collection of Arthropods (FSCA).

State	County	Municipality	Crop	Sample Date	Alatae	Apterae	Altitude
Idaho	Idaho	Cottonwood	Spring wheat	11-Jul-11	7	3	3717 ft
Idaho	Idaho	Cottonwood	Winter wheat	11-Jul-11	1	0	2225 ft
Idaho	Idaho	Greencreek	Spring wheat	11-Jul-11	6	2	3130 ft
Idaho	Idaho	Greencreek	Winter wheat	11-Jul-11	1	1	3129 ft
*Idaho	Latah	Genesee	Spring wheat	7-Jul-11	4	1	2600 ft
Idaho	Latah	Genesee	Spring wheat	15-Jul-11	4	4	2762 ft
Idaho	Latah	Genesee	Spring wheat	7-Jul-11	1	4	2218 ft
Idaho	Latah	Genesee	Winter wheat	7-Jul-11	2	2	2658 ft
Idaho	Latah	Genesee	Winter wheat	15-Jul-11	12	5	2762 ft
Idaho	Latah	Genesee	Winter wheat	7-Jul-11	2	1	2441 ft
Idaho	Latah	Moscow	Spring wheat	1-Jul-11	3	1	2677 ft
*Idaho	Latah	Moscow	Winter wheat	1-Jul-11	3	1	2682 ft
Idaho	Nez Perce	Culdesac	Winter wheat	11-Jul-11	1	9	2960 ft
Oregon	Gillian	Condon	Winter wheat	10-Jun-11	5	18	3463 ft
*Oregon	Sherman	Moro	Spring wheat	10-Jun-11	2	0	1882 ft
Oregon	Sherman	Moro	Winter wheat	10-Jun-11	3	4	1882 ft
Oregon	Umatilla	Adams	Winter wheat	22-Jun-11	2	22	1574 ft
Oregon	Umatilla	Milton-Freewater	Winter wheat	21-Jun-11	14	46	1683 ft
Oregon	Umatilla	Pendleton	Spring wheat	10-Jun-11	16	3	3470 ft
Oregon	Umatilla	Pendleton	Winter wheat	22-Jun-11	2	13	1454 ft
*Oregon	Umatilla	Pendleton	Winter wheat	10 Jun-11	2	3	3470 ft
*Oregon	Wasco	Maupin	Winter wheat	9-Jun-11	1	2	1660 ft
*Oregon	Wasco	The Dalles	Winter wheat	9-Jun-11	5	13	1063 ft
*Washington		Lind	Winter wheat	17-Jun-11	4	4	1872 ft
Washington	Adams	Ritzville	Winter wheat	17-Jun-11	2	2	1737 ft
Washington	Asotin	Asotin	Spring wheat	5-Jul-11	3	5	2900 ft
Washington	Asotin	Asotin	Winter wheat	5-Jul-11	6	7	3017 ft
Washington	Benton	Prosser	Winter wheat	22-Jun-11	0	2	1207 ft
Washington	Douglas	Bridgeport	Spring wheat	16-Jun-11	0	3	2058 ft
Washington	Franklin	Connell	Dark Northern	17-Jun-11	7	2	2342 ft
			Spring wheat				
Washington		Connell	Winter wheat	17-Jun-11	1	16	2340 ft
*Washington		Wilbur	Winter wheat	15-Jun-11	2	0	2136 ft
*Washington	-	Fairfield	Winter wheat	30-Jun-11	4	1	2558 ft
*Washington			Winter wheat	22-Jun-11	0	2	976 ft
*Washington		aTouchet	Winter wheat	21-Jun-11	4	10	973 ft
Washington		Almota	Spring wheat	5-Jul-11	3	2	2369 ft
Washington	Whitman	Almota	Winter wheat	5-Jul-11	5	25	2353 ft
Washington	Whitman	Colfax	Spring wheat	30-Jun-11	0	2	2337 ft
Washington	Whitman	Colfax	Winter wheat	30-Jun-11	1	0	2379 ft
*Washington		Pullman	Spring wheat	14-Jul-11	1	3	2621 ft
Washington	Whitman	Pullman	Winter wheat	14-Jul-11	1	8	2629 ft
Washington	Whitman	Rosalia	Spring wheat	30-Jun-11	0	2	2316 ft
Washington	Whitman	Rosalia	Winter wheat	17-Jun-11	0	1	2102 ft
*Washington		Uniontown	Spring wheat	5-Jul-11	14	2	2806 ft
Washington	Whitman	Uniontown	Winter wheat	5-Jul-11	10	0	3012 ft

 $\textbf{Table 2.} \ \text{Sweep samples of} \ \textit{Metopolophium festucae cerealium} \ \text{collected in wheat in 2012 in the Pacific Northwest.}$

State	County	Municipality	Crop	Sampling Date	Alatae	Apterae	Altitude
Idaho	Idaho	Cottonwood	Winter wheat	19-Jun-12	12	11	3393 ft
Idaho	Idaho	Greencreek	Winter wheat	19-Jun-12	25	41	3295 ft
Idaho	Latah	Genesee	Winter wheat	4-Jun-12	6	11	2760 ft
Idaho	Latah	Genesee	Winter wheat	4-Jun-12	32	29	2484 ft
Idaho	Latah	Genesee	Winter wheat	25-Jun-12	13	8	2655 ft
Idaho	Latah	Genesee	Winter wheat	27-Jun-12	9	14	$2762~{\rm ft}$
Idaho	Latah	Kendrick	Winter wheat	25-Jun-12	10	15	$2371 \mathrm{\ ft}$
Idaho	Latah	Moscow	Winter wheat	6-Jun-12	1	1	1737 ft
Idaho	Nez Perce	Culdesac	Winter wheat	19-Jun-12	11	26	$2386~{\rm ft}$
Oregon	Gilliam	Condon	Winter wheat	21-May-12	0	1	3143 ft
Oregon	Morrow	Heppner	Winter wheat	15-Jun-12	1	6	2173 ft
Oregon	Sherman	Moro	Winter wheat	22-May-12	0	1	1871 ft
Oregon	Sherman	Wasco	Winter wheat	23-May-12	1	1	1235 ft
Oregon	Umatilla	Adams	Winter wheat	11-May-12	0	2	1596 ft
Oregon	Umatilla	Milton-Freewater	Winter wheat	10-May-12	2	0	1683 ft
Oregon	Umatilla	Pendleton	Winter wheat	11-May-12	0	1	1562 ft
Oregon	Umatilla	Pendleton	Winter wheat	11-May-12	10	43	3470 ft
Oregon	Wasco	Maupin	Winter wheat	21-May-12	0	1	$1652 \mathrm{\ ft}$
Oregon	Wasco	The Dalles	Winter wheat	21-May-12	0	1	898 ft
Washington	Adams	Lind	Winter wheat	30-May-12	17	8	1890 ft
Washington	Adams	Ritzville	Winter wheat	30-May-12	2	2	$1724 \mathrm{\ ft}$
Washington	Asotin	Asotin	Winter wheat	31-May-12	45	49	2806 ft
Washington	Benton	Prosser	Winter wheat	23-May-12	1	0	934 ft
Washington	Douglas	Bridgeport	Winter wheat	5-Jun-12	0	4	$2266~{\rm ft}$
Washington	Franklin	Connell	Winter wheat	16-May-12	0	8	1190 ft
Washington	Franklin	Connell	Winter wheat	16-May-12	0	1	1131 ft
Washington	Grant	Coulee City	Winter wheat	5-Jun-12	1	2	$2324~{\rm ft}$
Washington	Grant	Quincy	Winter wheat	16-May-12	0	0	1200 ft
Washington	Klickitat	Bickleton	Winter wheat	14-Jun-12	8	23	2793 ft
Washington	Klickitat	Bickleton	Winter wheat	14-Jun-12	3	14	$2576~{\rm ft}$
Washington	Lincoln	Wilbur	Winter wheat	5-Jun-12	1	2	2315 ft
Washington	Spokane	Fairfield	Winter wheat	25-Jun-12	10	7	2604 ft
Washington	Walla Walla	Prescott	Winter wheat	10-May-12	1	2	1044 ft
Washington	Walla Walla	Touchet	Winter wheat	10-May-12	4	22	973 ft
Washington	Whitman	Colfax	Winter wheat	11-Jun-12	17	3	$2360 \mathrm{\ ft}$
Washington	Whitman	Almota	Winter wheat	22-Jun-12	116	417	2348 ft
Washington	Whitman	Palouse	Winter wheat	7-Jun-12	9	9	2199 ft
Washington	Whitman	Pullman	Winter wheat	22-Jun-12	15	26	2738 ft
Washington	Whitman	Rosalia	Winter wheat	7-Jun-12	0	3	$2185~\mathrm{ft}$
Washington	Whitman	Uniontown	Winter wheat	13-Jun-12	21	41	2799 ft