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Abstract 
 
A new approach to intrusion detection is needed to solve the problems of larger and 
faster networks and the constraints on system administrator’s time to manage security 
systems. Current network intrusion detection systems lack solutions to these two 
problems being complex in design and generally incurring larger costs in terms of 
operation and maintenance. We propose a new technique to solve these problems that we 
call “Low Cost” intrusion detection. Our approach features minimal network traffic 
measurement, an anomaly-based detection method and a limited attack scope.   The 
method is similar to other lightweight approaches in its simplified design, but our 
approach, being anomaly based, should be more efficient in both operation and 
maintenance than other lightweight approaches. We present the method and perform an 
empirical test using MIT Lincoln Lab’s data.  
 
1. Introduction 
 
Intrusion detection is the branch of computer security concerned with monitoring a 
system for violations of a site’s security policy. The basic assumption of Intrusion 
Detection Systems is that other forms of security have failed leading to potentially 
harmful actions against the system being monitored. Generally, Intrusion Detection 
Systems (IDS’s) screen for security violations regardless of the source that can originate 
from either outside intruders or inside authorized users. IDS’s are commonly grouped 
based on their monitoring capability into either host-based or network-based systems. 
Host based systems generally utilize system log data for input and monitor intrusions 
affecting one or more hosts. Network based IDS’s focus on network traffic and 
concentrate on attacks that come from outside the system via the network.  
 
IDS research has been ongoing for the past 15 years producing a number of viable 
systems, some of which have become profitable commercial ventures [1]. Yet, research 
has not kept up with today’s rapidly changing computing environment of increasing 
connectivity. With the growing size and speed of today’s networks, there is a critical need 
for IDS’s that can process large volumes of network traffic. A recent CMU report on 
intrusion detection systems noted that most network IDS’s can’t keep up with current 
Ethernet speeds and the trend is towards much faster networks. Another problem related 
to securing networks is that network administrators currently have little time for network 
security [10,14], which will only become worse as networks increase in size. The time 
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constraints of network administration is an often overlooked problem in current IDS 
research where the trend is towards development of comprehensive solutions that require 
significant time for configuration and maintenance from the system administrator. 
 
In this paper, we present a method for detecting network intrusions that addresses the 
problems of monitoring high speed network traffic and the time constraints on 
administrators for managing network security. Our approach is called “Low Cost” 
intrusion detection and is highly efficient in terms of machine and human management 
resources. Low Cost intrusion detection can be distinguished from most existing methods 
by the following features: minimal traffic measurements, simplified IDS management 
and limited attack scope. Other features that are shared with existing systems include 
anomaly based detection and real time operation. This paper will introduce our Low Cost 
ID approach and discuss it briefly in the context of other network IDS solutions. Details 
of our method will be presented followed by results from an empirical analysis using the 
Low Cost approach. Final sections will cover implementation issues and our conclusions. 
 
2. Existing Solutions 
 
As IDS’s can be categorized as either host based or network based, network based 
approaches to detection can further be divided into systems that only monitor the network 
and composite systems that watch both hosts and the surrounding network. In this paper, 
we will discuss these types of systems and their realizations found in the literature. 
 
Strict network based systems include NSM[2], Bro[11], NFR[12] and NetStat[20]. NSM 
was an early system designed to monitor traffic between hosts on a LAN. Bro functions 
as a high-speed passive network monitor that filters traffic for certain applications. NFR 
was designed as a flexible tool for network data generation whose attributes include its 
own language for creating filters that are then compiled into the tool. NetStat is a network 
IDS that offers customization of event collectors and the option of automatic placement 
of network event collectors. 
 
Systems that monitor both hosts and networks include Emerald[9], Grids[19] and 
Dids[18]. Emerald, was designed to detect intrusions in large distributed networks. It is a 
large hierarchical system that can respond to threats on local targets and coordinate its 
monitors to form an analysis hierarchy for network-wide threats. Grids accumulates 
results from both host and network based components which are displayed in a graph. 
The graph allows easy viewing of attacks that might span the network. The Dids IDS is 
an extension of NSM and utilizes data from both host auditing sytems and LAN traffic to 
detect intrusions.  
 
IDS detection methods fall into two general categories of rules (or signature based) and 
anomaly based detection. Rules based detection typically is done with an expert system 
by filtering activity according to a predefined set of rules. Signature-based methods 
match intrusions to exact patterns of stored misuse behavior. Anomaly based methods 
seek to characterize normal system behavior and detect deviations from normal. The 
trade-off between anomaly based and rule based methods is that rule based methods can’t 
detect new or novel attacks but their false-positive rate is lower.  Anomaly-based 
detection methods have a potential higher false-positive rate due to inexact methods of 
intrusion identification, but these inexact methods allow detection of new attacks.  
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Most current network IDS’s use rule based methods of detection. This includes Bro, 
NSM, NFR, NetStat (states are similar to rules), Emerald, Grids and Dids. Emerald is the 
only current system that uses anomaly detection with the inclusion of a statistical 
component that complements the expert system. 
 
For completeness, we will mention two public domain network IDS’s that claim to be 
“lightweight” IDS’s. These systems are Snort[13] and Shadow[10]. Snort is a rule-based 
network IDS for small, lightly utilized networks. Snort’s features include simple rule 
format for easy rule creation, packet payload inspection for pattern matching, and a 
streamlined architecture. Shadow is more of a network sensor than an IDS an relies 
heavily on tcpdump[3]. Input from a Shadow sensor is passed to an Analyzer that utilizes 
tcpdump rules, the results of which are fed to a web interface. Shadow does not run in 
real time but performs periodic dumps of collected network traffic. While both of these 
systems claim to be “lightweight”, we believe the reliance on rules is contrary to a truly 
lightweight approach. For each new attack, new rules must be generated which over time 
could create a prohibitively large rule base. System administrators must constantly update 
their system to stay current with known attacks. Although the systems may be 
“lightweight” in terms of the size and complexity of their executables, the day-to-day 
operation and maintenance of these systems brings them out of the realm of a true 
lightweight system; one that fits more into the plug-and-go category of applications. 
 
3. The Low Cost Method 
 
Our Low Cost method differs from all of these systems in its approach to IDS. The most 
important feature of our approach is its emphasis on little human involvement in the 
system’s management and configuration. We have implemented a statistical anomaly 
detection method that differs from previous statistical approaches in its speed and ease of 
use.  Prior anomaly based methods have not been easy to configure or maintain requiring 
knowledge of normal system parameters [4, 17]. Our method is designed to be self-
configuring requiring no human input on the normal system state. The main advantage of 
anomaly detection over rule or signature based methods, is that it minimizes system 
administration because it detects new attacks automatically without the need for rule 
creation or update. A possible weakness is a potential higher false positive rate, which 
could be managed by allowing adjustment of the detection significance threshold. 
 
In terms of data collection, Low Cost ID emphasizes minimal traffic measurement. 
Measuring only packet headers allows for high speed traffic monitoring. Our method also 
deliberately limits attacks to those that exploit vulnerabilities in the network protocols. 
Unlike most other network IDS’s we do not attempt to catch a wide variety of intrusion 
types. Our intention is to develop a network tool that would work in concert with other 
tools such as a host based IDS to provide a comprehensive solution. The advantages of 
deliberately limiting the attack scope, allows for streamlining of the system and a large 
reduction in complexity.  
 
 
4. Traffic Measurement 
 
A “lightweight” intrusion detection system must handle high-speed traffic in a real-time 
format. Our Low Cost approach to network intrusion detection seeks to measure the 
minimum amount of information from the network and still be able to determine normal 
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from anomalous traffic. Previous authors have noted that measuring just packet headers 
as opposed to packet contents greatly speeds throughput [10,11]. We have found that 
looking at tcpdump logs of network traffic generated by known attacks, one obvious 
behavior is that TCP flag distribution changes significantly between normal and attack 
traffic. Many attacks can be characterized by large numbers of TCP control packets such 
as Syn, Fin and Reset packets along with low numbers of P and Ack packets. Also, in 
anomalous streams of traffic, there is an absence of the normal flow of data contained in 
the packets that can be monitored by counting the number of bytes transferred. Therefore, 
we decided to monitor counts of the TCP flags and the number of bytes transferred for 
each packet. Also, we observed that in anomalous traffic there is a low number of packets 
transferred for any particular source to destination ip+port combination. This feature can 
be captured by aggregating the traffic into sessions consisting of all traffic between a 
unique source and destination ip+port. Aggregating at the session level highlights 
intruder traffic since these anomalous sessions contain a different distribution of packets 
than normal sessions. 
 
5. Statistical Methods 
 
Statistical methods have long been used to detect anomalies in system and network audit 
data [4,17]. To date, statistical anomaly detection has relied on probability-based methods 
by comparing new sets of measurements to a normal database of measurements or 
summary statistics. If the new measurement has a low probability that it came from the 
historical measurement distribution, then a flag is raised for a potential intrusion [4,17].  
 
We propose a completely different statistical procedure for anomaly detection based on 
multivariate statistics. Multivariate statistics are appropriate for any data set where 
multiple measurements are taken with possible correlations between the measurements. 
Multivariate techniques in general, account for the correlation structure of the variables 
being analyzed often yielding a more complete picture of the analysis results than if the 
variables had been analyzed separately [5]. 
 
5.1 Cluster Analysis 
 
Cluster analysis is a multivariate technique used for finding groups in observed data. The 
objective is to form groups in such a way that objects in each group are similar to each 
other but as different from other groups as possible [6]. Cluster analysis is used when 
researchers have no apriori hypothesis about their data but are in an exploratory stage of 
research [6]. We chose cluster analysis as a means of forming normal groups of TCP/IP 
sessions; we have found no reference to similar techniques in the literature. 
 
Cluster analysis forms clusters based on dissimilarities between objects. Quantitatively, 
dissimilarities are distances computed from the measured variables, which in our case are 
the TCP flag and byte counts. The most common distance measure used in cluster 
analysis is Euclidian Distance, the geometric distance in multidimensional space [5].  
 
Euclidian distance can be measured as follows: 
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Where x and y are two objects to be clustered. 
i =  represents the variables measured, and ranges from 1 to p. 
 
Most texts on cluster analysis place cluster algorithms into two major categories: 
partitioning and hierarchical methods [6]. Partitioning works by dividing the data into k 
groups where k < n, and n is the number of objects to be clustered. Hierarchical methods 
(agglomerative) start with all n objects as single clusters and combine objects until 
ultimately a single cluster is formed [15]. 
 
A common problem in cluster analysis is determining some optimum number of clusters 
[6]. Unfortunately, there is no well-defined rule for determining the number of clusters in 
a given data set. Usually, there are some general statistics given as guidelines, but 
deciding the number of clusters is often left up to the researcher. One of the general 
statistics for determining the number of clusters is the Pseudo T2 statistic that closely 
resembles a multivariate T2 test for deciding group differences. If the value is small, then 
the two clusters can be combined, if large, then the two clusters show differences and 
should probably not be combined [15]. 
 
Another common method for verifying cluster results is through visual confirmation of 
cluster formation. If the number of variables is greater than three, then the data cannot be 
easily plotted and some type of data reduction will be needed. A commonly used data 
reduction technique is Principal Components Analysis (PCA). PCA combines variables 
based on the correlation between them. Highly correlated variables will be combined into 
an aggregated variable called a principal component. The goal in using PCA is to reduce 
the multidimensional space down to a few dimensions so the data can be plotted to 
identify potential clusters [15]. The cluster results are then overlaid onto this PCA plot to 
see how well the cluster solution fits the natural distribution of the data points.  
 
5.2 Sampling Methodology 
 
In performing an analysis of network data, that constitutes a potentially unlimited 
population, we must somehow limit the amount of information that we input into our 
normal database. Unlike previous probability based techniques, which constantly update 
the normal state with new information [4], our technique collects the data once and then 
updates the database later only if necessary to incorporate new normal behavior1. 
Therefore, it is important to determine when we have collected enough data to build our 
normal cluster database. If we collect too few data points then the sample will not be 
representative of the normal network state and later testing between new sessions and the 
clusters will produce a large number of false positives since normal points will be 
identified as anomalies. In an effort to capture a wide range of normal behavior, we 
decided to include samples of each major network traffic type. Thus, each of the most 
frequent traffic types will be sampled as a separate population using traditional statistical 
sampling theory. For example, separate random samples of FTP, HTTP, SMTP and other 
types of traffic will be independently collected. We believe that applications will form 
clusters if not strictly by type, then by similarities between the types such as HTTP and 
FTP-DATA which both focus on file transfer. By insuring that each traffic type is 
adequately represented, the combined samples should represent the range of normal 

                                                           
1 Unlike anomaly-based systems that profile user behavior, which is often erratic at best, our approach 
profiles the behavior of protocols, which change over much longer time periods. 
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network traffic.  Infrequent network types can be included along with the major traffic 
types.  
 
The general procedure for computing sample size is to get an initial estimate of a sample 
standard deviation, which is used in calculating a bound on the sample error.  
 
The formula for computing a sample bound is: 
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Where B is the bound on the error, s2/n is the sample variance, N is the population total 
and D is the adjusted bound to be used in the subsequent calculation of sample size. The 
sample error bound is then used to compute a sample size as follows: 
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where n = the sample size calculated from the formula, N is the population total, D is 
from the previous equation and s 2 is the population variance which can be estimated from  
s2/n the sample variance [16]. 
 
This sampling technique will be applied to each major network group where “major” is 
loosely defined as a certain percentage of network traffic.  
 
6. Empirical Analysis 
 
In order to test the feasibility of our Low Cost ID approach, we evaluated the method 
against a real data set. Using these results, we can determine its effectiveness in detecting 
intrusions, identify weaknesses and assess the potential false positive rate.  
 
6.1 Data Set Selection 
 
It was decided to use a publicly available data set for our analysis explicitly created for 
testing IDS’s. The data set was created by, MIT Lincoln Labs, for their 1998-1999 IDS 
evaluation study [8]. We chose this particular data set due to the time required to create a 
good data set and the fact that using a known data set would lend credibility to our 
results. 
 
The Lincoln Labs data consists of network traffic dumps and host audit logs saved as 
files. For our analysis, we selected outside tcpdump data that contained simulated 
network traffic captured outside the firewall of a medium sized LAN. The tcpdump files 
were generated daily with some of the files containing embedded labeled attacks. 
 
6.2 Experimental Method 
 
The MIT Lincoln Labs data set contains several weeks of daily tcpdump files for both 
1998 and 1999. Each daily file contains up to 1 milllion TCP records. We developed 
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methods for selecting a reasonable subset of data from this huge population of records 
and for aggregating the individual packets into sessions of unique source ip+port to 
destination ip+port. In addition, we identified a set of attacks that we could reasonably 
hope to detect from among the attacks embedded in the MIT data. 
 
6.3 Subset Identification 
 
Because the data set was so large, we had to develop a record screening method that 
would insure we had captured the entire range of normal network traffic. As previously 
outlined in Section 5.2, we included records according to traffic type frequency. In 
looking at traffic type frequency, it was noticed that about nine groups dominated the 
tcpdump traffic. Other types of traffic occurred within the data but the frequency was so 
low that we elected to ignore these types for the purposes of this empirical evaluation. 
The nine groups identified along with their frequencies are listed in Table 1. 
 
As can be seen from the group frequencies, the data is completely dominated by HTTP 
records, which means that most of the network traffic is web traffic. The second most 
frequent traffic types are SMTP, electronic mail and FTP-DATA/FTP, file transfer 
traffic. The other groups represent very few records but were included in an attempt to 
capture a wide range of normal traffic seen on this network. 
 
Within a single days worth of traffic, the less frequent groups such as Pop3, Auth, Time, 
and Telnet, had only a few records. It was thus decided to select one of the daily files as a 
base file, collect records from other files for the low frequency groups, and add these 
records to the base file. One important assumption with this method is that there are no 
systematic differences in the network traffic between days. Since we are interested in 
getting representation from all of the traffic types we wanted to have at least some 
minimum number of records from each of the nine dominant types and then take a 
random sample from each group (see Section 5.2). It was decided that a minimum 
number of 30 records would needed for each group since it was difficult to find more 
than 30 records in two weeks worth of data for the least frequent groups.  
 
 
 
 
 
 
 
Traffic Type Frequency – Percent % Description 
http             80-98 Web based traffic 
smtp               7-33 Mail transfer protocol 
ftp-data               1-3 File transfer – data 
telnet              .5-2 Remote connection 
ftp              .2-1 File transfer – connection 
finger              .2-.5 Identification information 
auth             <.2 Authentication svice 
time             <.2 Time server – service 
pop3            < .2 Mail protocol 
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Table 1: Frequency of network traffic types 
 
In order to insure that there was no bias in selecting the records and to provide further 
empirical evidence for testing our method, two separate data files were created. After 
constructing the data files, Mon99 and Wed99, using two separate base files from 
different weeks in the 1999 MIT data, a SAS[15] program was written to perform random 
sampling from each group to get an error estimate for the highest variance variable, Total 
Packets. Sample size calculations indicated that samples of 28-30 would be needed for 
the high frequency data types, HTTP, SMTP, FTP-DATA and FTP and smaller sample 
sizes of 20-24 would be enough for the low frequency types, Auth, Pop3, Time and 
Telnet. Since there was so little difference in the sample sizes between groups, it was 
decided to sample all nine groups at 30 providing a total data set of 270 sessions. The 
sample size calculations were performed on Wed99 and extrapolated to Mon99 since 
there was little difference between the variability of Total Packets between the two files. 
 
6.4 Attack Identification 
 
Of the attacks included in the MIT Lincoln Labs data, attacks that were classified as 
remote probes and DOS types of attacks could potentially be detected from analyzing 
network headers [7]. Thus, five TCP attacks were selected for testing our Low Cost 
method. These attacks are listed in Table 2, along with attack descriptions and the  attack 
impacts as defined by Kendell in his classification of attacks included in the Lincoln Lab 
study [7]. 
             
Attack Description Attack Impact 
Portsweep Scans multiple ports for services Probe Services 
Neptune Syn flood denial of service Deny temporary 
Satan Network probing tool  Probe Services 
nmap Network mapping using nmap Probe machines/services 
Mailbomb DOS for the mail server Deny temporary/perm 
 
Table 2: TCP attacks from MIT Lincoln Labs data set 
 
 
6.5 Statistical Analysis  
 
Prior to conducting the cluster analysis, the variables were analyzed to see if all of the 
variables should be included in the analysis. Summary statistics2 including the min, max, 
means and standard deviations were computed for each traffic type for both the data files, 
Mon99 and Wed99. The variables measured included TCP flag counts for Syn, Fin, Ack, 
Push, Reset and Urgent plus the a count of the Total Packets and Total Bytes transferred. 
After looking at the summary statistics, it was decided to drop the TCP flag variables, 
Syn, Fin and Reset from further analysis because they showed little variability between 
the groups. Urgent count was also dropped since this count was zero for all the records 
analyzed. Total Bytes displayed a huge range of values from 0 to over 470,000 and was 
discarded because the high values from this variable would dominate the cluster analysis. 
To retain the usefulness of the control flag counts in later discriminating between normal 
                                                           
2 All statistical analysis was performed with the SAS statistical software system [SAS]. 
 



 9

and anomalous sessions, it was decided to create a new variable, Totcon, consisting of  
Syn+Fin+Reset / Total Packets. This variable would represent the percent of control 
packets per session. Similarly, to utilize bytes transferred but dampen the effect of the 
high values, another variable was created, Average Bytes, which equaled Total 
Bytes/Total Packets. The set of variables included for further analysis were Average 
Bytes,  Totcon, Push and Ack flag counts and Total Packets. 
 
 In order to graph the data to see its distribution, the data was reduced using PCA (see 
Section 5.1) and graphed as 3D plots (Figures 1 and 2). As can be seen from the plots of 
the two data sets, the data does not form well-defined clusters, but instead displays a 
large number of points distributed centrally with long fingers of data extending in several 
directions. The lack of cleanly separated groups may be normal for network traffic or 
might be due to the simulated nature of the Lincoln Lab data. Much of the data appears to 
be highly similar. Analysis of real network data would confirm whether this distribution 
of data points is typical of network data given the nine traffic types included in the 
analysis. 
 

 
  
Figure 1: Wed 99 3-D plot of first three principal components 
 

 



 10

                                                                    
Figure 2: Mon99 3-D plot of first three principal components 
 
 
Next, cluster analysis was performed for each of the data sets, Mon99 and Wed99 
yielding the clusters described in Table 3. For the data file, Wed99, seven clusters were 
identified and for Mon99, five clusters were sufficient to describe the data. The decision 
to select these seven and five clusters respectively was based on the Pseudo T2 statistic as 
described in Section 5.1  
 
 
                                                Wed 99                                       Mon99 
Cluster  Traffic Type Main Trait Traffic Type Main Trait 
1 time, finger, telnet Low packets time, auth, pop3 Low packets 
2 auth, ftp-data Higher bytes, 1 auth Med. packets 
3 finger, ftp-data Higher bytes, 2 finger, smtp, http Higher bytes, 2 
4 pop3 Higher acks, 1,2 ftp, telnet Higher acks P, 1-3 
5 ftp,telnet Highest Ack P Total telnet Highest Ack P Total 
6 http, ftp-data Low P Ack   
7 smtp, pop3 Higher P than Ack   
 
Table 3: Cluster composition for Wed99 and Mon99 data files 
 
In examining the clusters, it appears that the traffic types are split between clusters with 
few clusters consisting of a single type. However, similar types do tend to group together 
such as SMTP and Pop3, both mail protocols, HTTP and FTP-DATA, file transfer types, 
and Telnet and FTP, which feature user interaction. 
 
6.6 Intrusion Identification 
 
Once the normal cluster DB was created for each data set, the five selected attacks were 
tested against each cluster DB. While Euclidian distance was used in creating the 
clusters, for anomaly detection, we needed a distance metric that would map to a known 
statistical distribution so significance could be calculated. The selected distance measure 
is the Mahalanobis Distance that maps directly to a ?2 distribution. The formula for the 
Mahalanobis Distance is: 
 
                ∑− ′−−=
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Where xi, is the new session vector, yik, is the cluster mean for the kth cluster, Σ -1 is the 
variance-covariance matrix for the kth cluster, and i ranges from 1 to p, the number of 
variables measured. 
 
 Tables 4 and 5 show the Mahalanobis Distances computed between the five attacks and 
the normal clusters along with the distances between selected sessions and the normal 
clusters. 
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Type              Cluster 1      Cluster 2          Cluster 3       Cluster 4       Cluster 5       Cluster 6       Cluster 7 
Portsweep3                 319         2393      3391     43282     2796       71    611358 
Satan            275         2102      3834     41203     2722       62    618048 
Neptune              84           681        671     16596     1455       30    267237 
Mailbomb          8769          5354      1617         268         60        9.3*         269 
Pop3          1389         2212      1107          .81*         68        8.3*          251 
Auth            355           2.6*        422       1025       263        9.5*      29772 
Time           .15*           177          15*        2397       448        7.2*      45275 
Ftp-data      420940       73426        658      40219         60        9.3*          269 
Telnet    9045497   2792646 62197424  3046285         10*     3368   6016501 
Telnet  68792220  21089242   4746545  2349253           3*    24085   4718378 
Smtp    3155646        97687     218268 10709158           4*    11126   2159827 

 
Table 4. Mahalanobis Distances for attack and normal sessions, Wed99 
 Note:  distance translates to a χ2 distribution with 5 df which at .001 significance level is 20.5 
          *means distance is not significant 
 
In evaluating the distances between the attacks, Portsweep, Satan and Neptune, we find 
that all of the distances between these attack sessions and the clusters are significantly 
different. Mailbomb, however, matches Cluster 6 with a non-significant distance of 9.3. 
Since individual Mailbomb sessions appear normal, it is likely that this attack would 
match one of the normal clusters. The anomalous nature of Mailbomb appears at a higher 
level of aggregation when multiple sessions are evaluated.  A possible solution to 
Mailbomb and other similar attacks will be addressed in the section on Implementation 
Issues. In contrast to the results from the attacks, all of the normal sessions match at least 
one and sometimes several of the clusters, which is indicated by non-significant distances 
as is expected. The normal sessions tested were selected from non-clustered sessions and 
represents a wide range of values. 
          
 
 
 
 
 
 
 
 
 
Type              Cluster 1      Cluster 2          Cluster 3       Cluster 4       Cluster 5        
Portsweep       6390           5819      323   3284  48075880 
Satan  5522  5244      331   3302  48052114 
Neptune  1048  4694      120   1795  26993707 
Mailbomb    462 22492       2.3*      70.8    1711039 
Pop3       6.7*   5450       2.7*       81    1897470 
Auth      83     352      11.3*     446    6512639 
Time        .96*   1507      12.6*     569    9428474 
Ftp 14945 127630    107.6        2.0*      226046 
Telnet 20303736 53685766  196250      14.3*           89.5 
Telnet 4962511 19016405    49720      20.6**            987 
 
Table 5. Mahalanobis Distances for attack and normal sessions, Mon99 
 
   *means distance is not significant 

                                                           
3 Nmap matched Portsweep’s results exactly 
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** means distance is barely significant 
 
Examining the results of the second data file, Mon99, with a fewer number of clusters, it 
appears that the results are similar to Wed99. The attacks, with the exception of 
Mailbomb, all display distances that are significantly different from the normal clusters 
while the normal sessions match one or more of the five clusters. One interesting result 
comes from testing an extremely large telnet session, which was outside the range of the 
data clustered, but was still barely significant at a distance of 20.6. This can be 
considered a borderline false positive. The problem of false positives and adjusting the 
sensitivity level of the method will be addressed in the next section. 
 
7. Implemention Issues 
 
Implementing the Low Cost approach to IDS efficiently for real time operation posses 
some interesting challenges. Currently, the method is based on tcpdump files created and 
saved for offline analysis. However, tcpdump is capable of real-time operation and based 
on other system’s favorable reports[10] of tcpdump’s capacity to handle large traffic 
volumes, we plan to continue using it to monitor the network traffic stream.Our Low Cost 
ID tool will need two distinct phases of operation. Phase 1 will consist of data collection 
and database creation, while Phase 2 will be real-time operation and anomaly detection. 
During the data collection phase, the system would need to be closely monitored for 
possible attacks since this phase is supposed to capture only normal data. If attacks exist 
in the normal data used to create the clusters, then future occurrences of these attacks will 
be labeled normal.  This is a common concern with anomaly based IDS’s [1]. Also, the 
data collection method must determine automatically when enough normal data has been 
gathered. A real-time method similar to the one described in this paper could be 
developed where the number of major groups is first identified and then sampled using 
individual group random sampling. Perhaps the greatest implementation challenge will be 
to create a cluster algorithm that will automatically create clusters that encapsulate the 
normal behavior of the network without human assistance. It is not expected that network 
system administrators will be able to assist in the creation of the normal network 
database. Statistics that assist in deciding optimal cluster solutions such as the pseudo T2 
statistic can be built into the cluster routine. 
 
All anomalies will be saved in a log file for analysis and inspection. Ideally, there should 
be a way to incorporate normal misidentified behavior into the cluster database without 
having to rebuild the database. Normal sessions that need to be added to the database 
must be identified by the system administrator and then incorporated into the DB. Each 
normal session would be added to the cluster according to the smallest distance or a new 
cluster could be created if the session represents new behavior. The database can thus 
change in response to new behavior not captured in the original creation of the database. 
 
False positives could be a potential problem with real-time operation. Adjusting the 
significance level of the distance measure would change the detection rate by allowing 
larger distances. The significance level could be left as a tunable parameter that could be 
set in response to the number of false positives. 
 
Finally, in solving the problem of individual attack sessions that appear to be normal, the 
strictly anomalous detection method could be supplemented by some general rules. For 
example, individual sessions that are normal but together appear to flood a given service 
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could easily be detected by keeping track of the total number of bytes during a set time 
period. For the Mailbomb attack and other script generated sessions, a rule for detection 
might be if several sessions over a short time period all have the exact same counts of 
packets and bytes. In looking at a tcpdump of Mailbomb, a variable number of packets 
appear to be sent until the stream is aggregated into sessions. Then, a long stream of 
identical sessions appears that individually look normal but taken all together try to flood 
the smtp service. 
 
7. Conclusion and Future Work 
 
In this paper, we presented our work on Low Cost intrusion detection based on minimal 
network traffic measurement. Empirical evaluation with an established data set was 
highly successful in identifying intrusions while creating few false positives among the 
normal sessions evaluated. Our approach represents a departure from the status quo of 
large, complex network IDS’s which are comprehensive solutions to ID. Low Cost ID is 
consistent with the current trend of a layered approach to security with the deployment of 
multiple tools with complimentary functionality. 
 
Future work includes implementing and testing a similar approach for the UDP and 
ICMP protocols. Since UDP traffic does not keep state information, experimentation with 
counts of specific UDP packet fields must be done to identify the information that 
distinguishes normal from anomalous traffic. 
 
Another area to be investigated will be to identify a different distance metric other than 
Mahalanobis distance. This measure requires computation of the variance-covariance 
matrix for each cluster and that could be time consuming if the database needs frequent 
updates. Forming an empirical distribution based on Euclidian distances of each point 
with its cluster mean might prove better for real-time operation. Then distances between 
cluster means and new sessions could be compared to a cut-off value of the empirical 
distribution. 
 
 
8. References 
 
[1]      J. Allen et al, “State of the practice Intrusion Detection Technologies”, Carnegie  
          Mellon, SEI, Tech Report, CMU/SEI-99-TR-028, ESC-99-028, January 2000 
 
[2]      L. T. Heberlein, G. V. Dias, K. N. Levitt, B. Mukherjee, J. Wood, and D. Wolber, 

“ A Network Security Monitor”, In Proceedings of the IEEE Symposium on 
Research in Security and Privacy, Oakland, CA, April 1990, pp 296-304 

 
[3]      V. Jacobson, C. Leres, and S. McCanne, tcpdump, LBNL, University of 

California, June 1997, ftp://ftp.ee.lbl.gov/tcpdump.tar.Z 
 
[4]       H. S. Javitz, and A. Valdes, “The NIDES Statistical Component: Description and 

Justification”, Tech. Report, Computer Science Lab., SRI-Int., Menlo Park , CA, 
March 1994 

 
[5]       D. E. Johnson, Applied Multivariate Methods for Data Analysis, Brooks/Cole 

Publishing Co., 1998 



 14

 
[6]       L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction to 

Cluter Analysis, Wiley Series in Probability and Mathematical Statistics, John 
Wiley and Sons, Inc., 1990 

 
[7]        K. Kendell. “A Database of Computer Attacks for the Evaluation of Intrusion 

Detection Systems”, Masters Thesis, MIT, June 1999 
 
[8]        R. Lippmann and M. Zissman, “Intrusion Detection Technical Evaluation – 1998 

Project Summary”, www.darpa.mit/ito. 
 
[9]         P. G. Neumann, P. A. Poras, “Experiences with Emerald to Data”, Proceedings 

of 1st Usenix Workshop on Intrusion Detection and Network Monitoring, Santa 
Clara, CA, Apr. 11-12, 1999 

 
[10]      S. Northcutt, V. Irwin, B. Ralph, Shadow, Naval Surface Warfare Center 

Dahlgren Lab., 1998 
 
[11]       V. Paxson, “Experiences Learned from Bro”, login; The Usenix Assoc. 

Magazine, Sept. 1999, 21-22 
 
[12]      M. J. Ranum, K. Landfield, M. Stolarchuk, M. Sienkiewicz, A. Lambeth, E. 

Wall, “Implementing a Generalized Tool for Network Monitoring”, Proceedings 
of 11th Syst. Admin. Conf. (LISA 97), San Diego, CA, Oct. 1997 

 
[13]      M. Roesch, “Snort – Lightweight Intrusions Detection for Networks”, 

www.clark.net/~roesch/security.html 
 
[14]      D. Ruiu, “Cautionary Tales: Stealth Coordinated Attack HowTo”, 

www.nswc.navy.mil/ISSEC/CID/Stealth_Coordinated_Attack.html, 1999 
 
[15]      SAS Institute, SAS/STAT Users’ Guide, Version 6, Fourth Edition, Vol. 1, 

SAS Institute, 1990 
 
[16]      R. L. Scheaffer, W. Mendenhall III and R. L. Ott, Elementary Survey 

Sampling, Wadsworth Publ. Co., 1996 
 
[17]      S. E. Smaha, “Haystack: An Intrusion Detection System”, Proceedings IEEE 

Fourth Aerospace Computer Science Applications Conference, Orlando, FL, Dec. 
1988 

 
[18]     S. E. Smaha, T. Grance, D. M. Teal and D. Mensur, “Dids – Motivation, 

Architecture, and an Early Prtotype”, Proceedings of 14th National Computer 
Security Conference, Washington, DC, Oct. 1991, pg. 167-176 

 
[19]      S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland, K. 

Levitt, C. Wee, R. Yip, D. Zerkle, “GrIDS – A Graph-Based Intrusion Detection 
System for Large Networks”, The 19th National Information Systems Security 
Conference, Oct. 1998, pp 361-370 

 



 15

[20]      G. Vigna, R. A. Kemmerer, “NetStat: A Network-based Intrusion Detection 
Approach”, Proceedings of the 14th Annual Computer Science Applications 
Conference, Scottsdale, AZ, Dec. 1998 

 
 
 
 
                                 
 
 
 
 


