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EXECUTIVE SUMMARY 

For signalized intersections, queue length is one of the most important performance measures. 

Knowing the evolution of queue lengths over time and space allows quantifying system 

performance and improving signal operations, and supports eco-driving and eco-signals 

applications. Previously, researchers estimated the average queue length at traffic signals based 

on loop detector data and signal timing information. This study is focused on estimating queue 

lengths using the information provided by probe vehicles. As more vehicles become equipped 

with location tracking and communications systems, they will provide new opportunities to 

observe the transportation networks more effectively. The United States Department of 

Transportation’s Connected Vehicle program is a significant effort to make the vision of 

seamless vehicle-to-vehicle and vehicle-to-infrastructure communication a reality. Within this 

vision, vehicles will be aware of their own locations in the transportation systems and will 

exchange useful information with other vehicles as well as with the infrastructure. By tracking 

the positions of these “probe” vehicles along roadway segments a wealth of information is 

generated to precisely characterize traffic flow dynamics. This in turn allows the system 

operators to improve system efficiency by taking relevant control actions (e.g., retiming traffic 

signals, responding faster to incidents).  

In this study, the time and space coordinates of those probe vehicles going through signalized 

intersections are utilized to predict the back of the queue profile. For a single intersection, 

prediction models are developed where both over-saturated and under-saturated conditions are 

considered. The shockwave theory (i.e., the Lighthill-Whitham-Richards theory) is used to 

estimate the evolution of the back of the queue over time and space from the event data 

generated when probe vehicles join the back of the queue. An analytical formulation was 

developed for determining the critical points required to create time-space diagrams to 

characterize the queue dynamics. These critical points are used to estimate the queue lengths. 

The formulation was tested on the data obtained from traffic simulation software VISSIM. It was 

found that the shockwave-based formulation is effective in estimating queue dynamics at 

signalized intersections for under- and over-saturated conditions even with a relatively low 

percentage of probes (e.g., 10-20%) in the system. For example, under over-saturated conditions 
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simulated, the error is less than ±10% in more 90% of the cycles when the market penetration of 

probe vehicles is 15%.  
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INTRODUCTION 

The overall objective of this research is to develop models for predicting queue lengths at 

signalized intersections based on the data from probe vehicles. As more vehicles become 

equipped with location tracking and communications systems, they will provide new 

opportunities to observe the transportation networks more effectively. The United States 

Department of Transportation’s Connected Vehicle program is a significant effort to make the 

vision of seamless vehicle-to-vehicle and vehicle-to-infrastructure communication a reality. 

Within this vision vehicles will be aware of their own locations in the transportation systems and 

will exchange useful information with other vehicles as well as with the infrastructure. By 

tracking the positions of these “probe” vehicles along roadway segments a wealth of information 

is generated to precisely characterize traffic flow dynamics. This in turn allows the system 

operators to improve system efficiency by taking relevant control actions (e.g., retiming traffic 

signals, responding faster to incidents). In addition, knowing the evolution of (downstream) 

queues over time allows equipped vehicles to adjust their speeds to avoid stopping at the signals 

(if possible) or to minimize the changes to their speed profiles. This will result in less gas 

consumption and less tailpipe emissions. Such systems or strategies are referred to as “eco-traffic 

signal systems” or “eco-driving.”  

Recently, various studies have investigated the use of probe vehicle data for queue length 

estimation (1-7). In this project, probe vehicle data are also used in order to study queuing 

phenomena observed at traffic signals. More specifically, time and space data gathered from 

probe vehicles are used to estimate the back of the queue over time. Shockwave theory is used to 

estimate the evolution of the back of the queue over both time and space from the data when 

probe vehicles join the back of the queue (3, 8). Cumulative curve method is another approach 

for studying queue dynamics (9). In this method, all vehicles at specific locations need to be 

counted which is not possible when market penetration of probe vehicles is less than 100%. 

Moreover, this approach does not represent the spatial extent of the queue explicitly. Although 

there are some studies that show that the cumulative count curves can be used to determine the 

spatial extent of the queue (9, 10), when the arrival rate is time dependent, it is easier to construct 

the back of the queue by using shockwave theory.  
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The kinematic wave model which is known as Lighthill-Whitham-Richards (LWR) model in the 

literature is used in this study to describe traffic flow dynamics (11-13). LWR model is based on 

the principle of conservation of vehicles and a fundamental diagram that relates flow to density. 

This model can be used to analyze important traffic flow phenomena (e.g., shockwaves). In 

various studies, the original LWR model has been extended to describe further complexities (14-

17).  

Liu et al. use the LWR shockwave theory with high-resolution traffic signal data to distinguish 

different traffic states at the intersection so that queue length is estimated under congested 

conditions (14). Ban et al. propose methods to estimate real-time queue lengths at signalized 

intersections using sample travel times from mobile traffic sensors between some predefined 

virtual points before and after the signalized intersections (1). They identify the critical points 

when the queue is maximum, minimum or cleared within a cycle by using the delay patterns. 

There are additional studies that use LWR theory in estimating the queue lengths (e.g.,(18)). 

Statistical methods are also used in estimating queue lengths at signalized intersections. Comert 

and Cetin proposed analytical models for errors in queue length estimation using probe vehicle 

data (6, 7). Some studies assumed discrete arrivals and integer cycle lengths, and Markov chain 

or similar statistical analysis techniques were applied to estimate the mean or distribution of 

queue lengths. Some studies estimated the average queue length of a fixed-time signal by 

assuming traffic flow and signal timing parameters are continuous variables (19). However, these 

models are point queue models and do not represent the space or distance explicitly. 

In a recent study, Cetin and Rakha (20) present methods to estimate the total fuel consumption 

and CO2 emissions at a signalized intersection from the probe vehicle data. Traffic flow through 

an intersection is simulated to generate vehicle trajectories under both congested and 

uncongested conditions. By using the Virginia Tech Comprehensive Power-Based Fuel 

Consumption Model (21), the total fuel consumed by each vehicle is determined for a given 

trajectory. Several alternative methods are presented to estimate the total fuel consumption from 

the sample data provided by the probe vehicles. Their results show that a simple extrapolation of 

the fuel consumed by probes to the rest of the traffic does not yield very accurate results. A more 

accurate solution is obtained by capitalizing on the probe trajectories to construct trajectories for 
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the non-probe vehicles. For the simulated conditions, it is demonstrated that the total fuel 

consumption can be estimated with a reasonable accuracy at relatively low probe-vehicle market-

penetration levels. It is further demonstrated that if a proper “average vehicle” is specified for 

estimating the total fuel consumption level, then knowing the make & model of individual probe 

vehicles does not enhance the estimation accuracy. The models presented by Cetin and Rakha 

(20) can support data collection systems needed for eco-signals and other similar applications to 

improve fuel consumption and to reduce CO2 emissions which are directly proportional to the 

fuel usage. 

The methodology proposed in this study differs from the previous studies. The queue length is 

estimated by using the time-space coordinates of the probe vehicles when they join the back of 

the queue in each cycle. For over-saturated conditions, data only from the first and last probe 

vehicles are used to estimate the queue length while only the last probe vehicle data is used for 

under-saturated conditions. The methodology does not make any assumptions about the 

percentage of the probe vehicles. Moreover, it does not require probe observations in each cycle, 

in contrast to the minimum requirement of two probe observations per cycle as indicated by Ban 

et al.(1). 

Cetin proposed a methodology to estimate the queue lengths for over-saturated conditions at a 

signalized intersection (3). This study is an extension of the aforementioned study to account for 

number of cycles which can be either in over-saturated or under-saturated conditions.  
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PROBLEM DEFINITION AND SETTING 

To develop the formulation for queue length estimation, some simplifying assumptions are made. 

Figure 1 shows a sample time–space diagram with vehicle trajectories in which the cycles are 

either in under-saturated or over-saturated conditions. Based on the LWR theory, shockwave 

lines between different traffic states are also shown in the figure. Critical points indicated by Rn 

and Qn, characterize the dynamics of the back of the queue, where n denotes the cycle number. 

The assumptions under which the formulation is developed are described in the following 

subsections.  

In this section the assumptions to derive the queue estimation model are presented.  

 Roadway geometry and signal timing: 

A single-lane road leading to a signalized intersection is considered. The traffic 

signal is assumed to operate on a fixed cycle with alternating green and red phases 

of equal durations. This should not be considered as a limitation of the work since 

the formulation can be easily adapted to varying cycle and phase lengths.  

 Probe data: 

Even though probe vehicles can technically collect data continuously (e.g., every 

second), such large dataset is not needed to estimate the queue dynamics. In this 

paper, only the location and time data when probe vehicles join the back of the 

queue are used. In other words, for each probe vehicle, a single data point is 

needed, which contains its location on the link and the time instant when it joins 

the back of the queue.  

 Probe vehicle population: 

There is no assumption on the percentage of the probe vehicles joining the back of 

the queue.  

 Traffic flow: 

It is assumed that the vehicles arrive randomly at the intersection with an 

unknown rate. The method presented here does not consider scenarios in which 

vehicle platoons form because of an upstream signal.  
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 Shockwave speed: 

The shockwave speed is constant and the same for each cycle. Triangular 

fundamental diagram is used to find the shockwave speed. This will be explained 

in detail in the methodology section.  

In VISSIM data, vehicles are assumed to be stopped when their speeds are less 

than 5 km/hr. For over-saturated conditions, speeds of the backward-moving 

shockwaves AnRn and BnQn in Figure 1 are assumed to be known and equal. This 

assumption is based on the LWR theory. Based on the LWR theory, shockwave 

speed is computed by ∆q/∆k where 

∆q = the difference in flows of the two traffic states separated by shockwave 

∆k = the difference in densities 

These differences will be the same for shockwaves AnRn and BnQn in Figure 1. 

Therefore, the shockwave speeds will also be the same. 

 Online Versus Offline Application 

The methodology proposed in this study can be applied for both offline and online 

applications. When applied online, the results obtained from probe vehicles 

arriving in the previous cycles can be used for predicting queue lengths. In this 

report, queues are estimated whenever a new probe vehicle joins the back of the 

queue.  

 Queue Conditions  

The formulations for over-saturated conditions (when there is a residual queue) 

and under-saturated conditions are different. 
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METHODOLOGY 

Time and space coordinates from probe vehicles when they join back of the queue are used in the 

formulation. The critical points Rn and Qn for over-saturated and Qn for under-saturated 

conditions are estimated (Rn for under-saturated condition is already known since it corresponds 

to the start of red phase). Once these are estimated, the queue length can be computed since these 

points define the boundary points of the queues. In order to find these unknown points, 

formulations are derived based on LWR theory. In this section, the formulations for both under-

saturated and over-saturated conditions are presented. 

 

 

Figure 1: Vehicle trajectories and shockwave diagram (both under-saturated and over-saturated 

conditions exist). 
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Figure 2: Shockwave lines at traffic signal under over-saturated conditions. 

 

Shockwaves representing queue growth (i.e., all RnQn lines) are unknown for all cycles. The goal 

is to determine these shockwave speeds (or the slopes for the straight RnQn line segments) by 

using probe vehicle data. For over-saturated conditions, the first and the last probe vehicle 

observations (if any) are identified for each cycle. The last probe data in cycle n and the first 

probe vehicle data in cycle n+k (n+k is the next cycle with some probe vehicle observation) are 

used to find a constant shockwave speed (α in Figure 2). Since no information is available 

between these two points, the arrival rate is assumed to be constant. This assumption is realistic 

since there is no additional information to be used. After computing this constant speed α, the 

coordinates for all critical points for over-saturated cycles between these two probe observations 

are estimated. The formulation for over-saturated conditions is explained in more details in a 

previous study (3).  

The formulas for over-saturated conditions (referring to Figure 2 below) are given as follows: 

𝑡𝑛
𝑄 =

(𝑥𝑛
𝐿 − 𝑥0) + 𝑤𝑛𝐶+∝ 𝑡𝑛

𝐿

𝑤+∝
 (1) 

𝑥𝑛
𝑄 = 𝑥0 + 𝑤(𝑡𝑛

𝑄 − 𝑛𝐶)  (2) 

∝=
∆𝑥−(𝑥𝑛+1

𝐹 −𝑥𝑛
𝐿)

(𝑡𝑛+1
𝐹 −𝑡𝑛

𝐿)−∆𝑡
  (3) 
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Where  

 𝑥𝑛
𝑄 𝑎𝑛𝑑 𝑡𝑛

𝑄 denote the space and time coordinates for point Qn 

X0 = space coordinate of stop bar 

w = shockwave speed 

C = cycle length 

𝑥𝑛
𝐿  𝑎𝑛𝑑 𝑡𝑛

𝐿 = the space and the time coordinates of the last probe vehicle in cycle n 

𝑥𝑛+1
𝐿  𝑎𝑛𝑑 𝑡𝑛+1

𝐿  = the space and the time coordinates of the first probe vehicle in cycle n+1 

α = the tangent of the angle shown in figure 

Once 𝑥𝑛
𝑄 𝑎𝑛𝑑 𝑡𝑛

𝑄
 are found, 𝑋𝑛+1

𝑅  and 𝑡𝑛+1
𝑅  are calculated as 

where u is the shockwave speed shown in Figure 2 and G is the length of green phase. 

Equations (1) through (7) are for the scenario in which there are probe vehicle observations in 

two consecutive cycles. A more general formulation is for the scenario in which there are probe 

vehicle observations in the nth and (n+k)th cycles. Let n and n+k be any two cycles for which 

probe vehicle observations are available. The slope ∝ is calculated as; 

∆𝑡 =
𝑤𝐺

𝑤−𝑢
  (4) 

∆𝑥 = 𝑢
𝑤𝐺

𝑤−𝑢
  (5) 

𝑋𝑛+1
𝑅 = 𝑋𝑛

𝑄 + ∆𝑥  (6) 

𝑡𝑛+1
𝑅 = 𝑡𝑛

𝑄
+ ∆𝑡  (7) 

∝=
𝑘∆𝑥−(𝑥𝑛+𝑘

𝐹 −𝑥𝑛
𝐿)

(𝑡𝑛+𝑘
𝐹 −𝑡𝑛

𝐿)−𝑘∆𝑡
  (8) 
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Once ∝ is determined from Equation (8), coordinates of Qn can be found by using Equations (1) 

and (2). Rn+1 can be found by using equations (6) and (7). Finally 𝑥𝑛+1
𝑄  𝑎𝑛𝑑 𝑡𝑛+1

𝑄
 can be found as 

follows: 

 

Under-saturated Condition 

To illustrate how deterministic queuing analysis can be employed for under-saturated condition, 

Figure 3 below illustrates the evolution of a queue of vehicles at an under-saturated signalized 

intersection where vehicles arrive at a uniform rate. 

 

Figure 3: A closer look to time-space diagram during green and red phases. 

 

For calculations, the triangle in Figure 3 is used, which shows the variables needed for the 

formulation. In order to estimate the critical points for under-saturated conditions, the 

intersection of two straight lines is found. 

𝑡𝑛+1
𝑄 =

𝛼𝑡𝑛+1
𝑅 +𝑥𝑛+1

𝑅 −𝑥0+𝑤(𝑛+1)𝐶

𝑤+∝
  (9) 

𝑥𝑛+1
𝑄

= 𝑥0 + 𝑤(𝑡𝑛+1
𝑄

− (𝑛 + 1)𝐶)  (10) 

 

Q  

 ( , X ) 

 

 

 Probe 

Vehicle 
 ( , ) 

 time(sec) 
 X(m) 
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Qn is the point where the maximum queue reaches. As mentioned before, the purpose of this 

study is to derive a formulation to find the coordinates of this point. In order to find the 

coordinates of Qn, the equations for lines 
1l  and

2l are obtained. The coordinates for the end of the

thn  cycle green phase, ),( 0Xt G

n  in the figure, is known. 

where  G : Green time 

 C : Cycle length 

Since the coordinates of last probe vehicle which is denoted by ),( L

n

L

n Xt  on the figure, equation 

for 
1l  can be written as; 

Where 















G

n

L

n

L

n

tt

XX 0  is the slope of the 
1l  and will be denoted by   

Q

nt  : The time coordinate of nQ  

Q

nX : The space coordinate of nQ  

Equation of 
2l  can be written as; 

where Cnt C

n    n = 1, 2, … 

 w = shockwave speed 

Solving Equations (12) and (13) for the unknowns Q

n

Q

n Xt ,  , yields: 

CnGtG

n )1(    n=1, 2,... (11) 

 G

n

Q

nG

n

L

n

L

n
o

Q

n tt
tt

XX
XX 














 0   (12) 

 C

n

Q

no

Q

n ttwXX   (13) 
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For all cycles, the point nQ  can be calculated by using equations (14) and (15).  

If there is no probe vehicle for a cycle, since the shockwave line for nth cycle by using the 

formula derived is independent from (n-1)th and (n+1)th cycles, it is assumed that it has the 

same shockwave line as the previous one. Once the shockwave speeds are estimated, the queue 

dynamics can be predicted.  

 

 

  

w

twt
t

C

n

G

nQ

n








  (14) 



















 C

n

C

n

G

nQ

n t
w

twt
wXX




0  (15) 
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APPLICATION TO SIMULATION DATA 

The application of the formulation and its performance are tested in simulation software 

VISSIM. A single one-lane link of 1 km is created to generate the necessary data. A traffic signal 

with 45 second green and 45 second red phases is created at the end of the link. All vehicles are 

passenger cars with desired speed of 50 km/h. Vehicles are assumed to be stopped when their 

speed drops below 5 km/h. Simulation resolution is set to five time steps per second. All the 

parameters are kept at the default values built within VISSIM. Simulation is run for 1800 

seconds (20 cycles). Vehicle input rates of 900 vph and 1,050 vph are simulated selected in order 

to have both under-saturated and over-saturated conditions.  

In order to check the performance of the formulation derived to determine the critical points to 

find the maximum queue length, several scenarios are considered. These scenarios are created by 

varying the probe vehicle penetration rate (10%, 20%, and 30%). Simulation was run five times 

for each penetration rate. Figure 4, Figure 5 and Figure 6 show estimated critical points and 

shockwave lines together with the location of all vehicles when they join back of queue 

determined from simulation. In these plots, the signal is located at a distance of 1000 m. These 

figures show all the vehicles when the first time they come to a stop, the estimated critical points, 

shockwave lines and the location of the probes used in finding these critical points. Figure 4 is 

for a scenario in which probe vehicle percentage is 30% whereas in Figure 6 the probe 

percentage is 10%, a relatively low value as compared with previous studies. As it can be 

observed in Figure 5 and Figure 6, there are cycles in which no probe vehicles are observed. In 

both scenarios, although no probe vehicles are observed for some cycles (e.g., cycle 6 in Figure 

5, cycles 12 and 19 in Figure 6) the estimated critical points are reasonably close to the data 

obtained from simulation.  

To apply the formulation explained in the previous section, each cycle needs to be tested whether 

it is in under-saturated or over-saturated condition. In order to do this, the following test is 

performed: If the space coordinate of Rn+1 > X0 (space coordinate of stop line which is 1000 in 

this study), cycle n is determined to be under-saturated, otherwise it is over-saturated. This test is 

realistic since the point Rn+1 cannot be after the stop line. 
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Figure 4: Estimated back of queue and shockwave lines with all vehicles (30% probe). 

 

 
Figure 5: Estimated back of queue and shockwave lines with all vehicles (20% probe). 
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Figure 6: Estimated back of queue and shockwave lines with all vehicles (10% probe). 
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Table 1: Summary Statistics for Queue Length Estimation at Different Probe Levels  

      

Percentage of samples with errors 

greater or less than given thresholds 

Probe 
Level Avg 

Stdev of 
% Error < -10% > 10% < -20% > 20% 

10% 23.6% 10.3% 27% 11% 13% 7% 

20% 11.0% 11.6% 29% 12% 8% 7% 

30% 9.0% 32.1% 26% 8% 4% 4% 

  

To assess the performance of the formulation under heavier congestion and longer over-

saturation conditions, the input demand is increased to 1,150 vph whereas other VISSIM 

parameters are kept the same. Similar to the previous graphs, Figure 7 shows the evolution of the 

back of the queue profile as well as the predicted profile for a scenario when the probe 

percentage is 10. As it can be observed, there is a more substantial growth in queue, in 

comparison to the previous graphs. In the scenario with 10% probes shown in Figure 7, at least 

one probe data point is observed in each cycle. The estimated queue profiles based on the limited 

probe data follow the true profile reasonably well. 

 

Figure 7: Back of queue estimated with all vehicles and 10% probes (input volume 1150 

vph). 
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The results graphically shown so far in Figure 7 (and in previous graphs) are for a single random 

sample of probe vehicles at a given rate. To investigate the sample variability, Figure 8 shows 

the back of queue profiles estimated from 10 different replicas generated at 5% probe rate when 

the vehicle input is 1,150 vph. The critical points for the true profile are indicated by diamond 

markers. Overall, most of the estimated profiles are following the true profile reasonably close. 

In several of the replicas, there is some deviation from the true answer, especially for cycles 4 

and 5 where there is a sudden jump in queue size. After examining the data, it is observed that 

these differences tend to get larger when there are no probe data points nearby the critical points.  

 

 

Figure 8: Ten different back of queue profiles estimated with randomly selected 5% 

probes. 
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(i.e., the vertical coordinate of point Qn measured from stop bar) and is compared to the 

predicted value in each cycle in each replica. The error is found by subtracting the estimate from 

the actual and by dividing the result by the actual queue length. The average and standard 

deviation of the error are shown in Table 2 along with the percentage of cycles (out of 180) that 

exhibit errors larger than ±10% and ±20%. Overall, it can be observed that error decreases as 

probe percentage is increasing as expected. It is found that the predicted queue lengths are longer 

than the actual values since the average error is negative. This is perhaps an artifact of using a 

single VISSIM run to generate the input data. Additional runs at the same input flow level and at 

different flow levels can be conducted in the future to investigate the performance of the method 

more comprehensively. 

 

Table 2: Summary Statistics for Back of Queue Prediction at Different Probe Levels  

(input volume 1150 vph) 

      
Percentage of samples with errors 

greater or less than given thresholds 

Probe 
Level Avg 

Stdev of 
% Error < -10% > 10% < -20% > 20% 

5% -4% 10% 20% 6% 6% 2% 

10% -5% 7% 18% 1% 4% 1% 

15% -2% 6% 8% 3% 0% 1% 

20% -2% 5% 4% 1% 1% 0% 
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DISCUSSION OF RESULTS 

As illustrated in the previous section, the proposed method is effective in estimating the queue 

dynamics from limited probe vehicle observations for both under-saturated and over-saturated 

conditions. The methodology can be particularly useful, even with a relatively small number of 

probe observations, to evaluate the performance of signalized intersections experiencing 

significant congestion or over-saturation. As probe vehicle data become available, it is important 

to develop similar methodologies to make the best use of such data.  

The methodology shown here provides a much richer understanding of congestion and system 

performance than just travel times and delays that are typically estimated from probe data. For 

example, the evolution of queues over time (e.g., peak hours) can be estimated from limited 

probe data. Since, signal timing data (e.g., phase and cycle lengths) are collected by some traffic 

operations centers, the formulation presented here can be used to make the best use of the probe 

data.  

The methodology can be extended to real-time applications to predict the back of queue at every 

cycle (e.g., at the end of red phase) which can help better optimize signal timing. For example, 

predicting how far the queue will grow for each cycle (i.e., more precisely the critical points Qn 

as described in the paper) help determine the green time needed to clear the queue so that no 

residual queue is left in the next cycle. 

In addition, the work presented here can help with the development of data collection policies 

from probe vehicles as the methodology shows what type of data is more useful than others to 

predict queues and consequently systems performance. For example, in the context of this study, 

only event data when vehicles join the back of the queue for the first time are utilized. Even 

though vehicles may make subsequent stops before departing at the stop bar (e.g., under over-

saturated conditions) the data pertaining to these other events are not needed (for the methods 

developed here).  
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CONCLUSIONS 

A new methodology is presented in this study to estimate the queue by using the probe vehicle 

data at signalized intersections for a time period without knowing the type of cycle condition 

(either under-saturated or over-saturated). An analytical formula is developed to estimate the 

queue length for under-saturated and over-saturated conditions. Firstly, by using probe vehicle 

data, whether the cycle is in under-saturated or over-saturated condition is tested. Once this is 

determined, either the formulation for under-saturated condition or the formulation for over-

saturated condition is applied. The formulation for under-saturated condition estimates the 

maximum queue of each cycle by using only one probe data point (i.e., the last point observed in 

that cycle) and it does not depend on the data from other cycles. If there is no probe vehicle in a 

given cycle, it is assumed that it has the same shockwave speed as in the previous cycle. The 

performance of the formulation is evaluated on data from VISSIM simulation runs. The results 

show that the method is effective in estimating the queue length for both under-saturated and 

over-saturated conditions. For example, under the over-saturated conditions simulated here, the 

error is less than ±10% in more 90% of the cycles when the market penetration of probe vehicles 

is 15%.  
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APPENDIX 

Publications resulting from this project: 

O. Unal and M. Cetin “Estimating Queue Dynamics and Delays at Signalized Intersections from 

Probe Vehicle Data” Presented at the 93rd Annual meeting of the TRB, Washington, D.C., 

January 12-16, 2014.  

M. Cetin and H. Rakha “Estimating Fuel Consumption at Signalized Intersections from Probe 

Vehicle Trajectories” Presented at the 93rd Annual meeting of the TRB, Washington, D.C., 

January 12-16, 2014.  

 


