FOREST PRODUCTIVITY COOPERATIVE

North Carolina State University • Virginia Tech • Universidad de Concepción • Universidade Federal de Lavras

Assessing airborne laser scanning for forestry applications

24th March 2020

By Matthew Sumnall (msumnall@vt.edu)

Who am I? Why am I here?

Senior researcher – focus on:

- airborne LiDAR
- terrestrial LiDAR
- and other sensors

Main responsibilities:

- Research new methods to estimate forest characteristics;
- Explore the utility of new and existing sensor platforms;
- Develop tools for the support of forest managers;

Overview

Airborne LiDAR & tools:

- Area based analyses:
 - Height and crown length;
 - Leaf area index;
 - Estimating basal area and mean DBH;
 - Mapping understory layers;
- Individual tree delineation;

What is remote sensing?

Remote Sensing is a method of obtaining information about the properties of an object at a distance, no physical contact.

Brief Background on airborne laser scanning (ALS), a.k.a. LIDAR.

What is ALS?

3D location determined using a combination of the speed of light, scan angle, GPS and IMU within the plane

What the data actually looks like:

х	Y	z	Int.	Rtn. No.	No. rtn. in pulse	Class	Scan angle	GPS_time
725470.26	4162710.94	10.65	5397	2	3	1	-21	396786.742
725470.29	4162710.96	9.50	771	2	4	1	-21	396786.742
725470.32	4162710.96	8.38	385	2	3	1	-21	396786.742
725470.14	4162710.98	16.35	5782	1	1	1	-21	396786.742
725470.22	4162711.18	15.76	11950	1	1	1	-21	396786.742
725470.35	4162711.50	15.57	10794	1	1	1	-21	396786.742
725470.26	4162711.12	13.40	5011	1	1	1	-21	396786.742
725470.53	4162711.93	14.54	5011	1	1	1	-21	396786.742
725470.37	4162711.32	11.70	6553	1	3	1	-21	396786.742
725470.53	4162711.78	11.80	3855	1	4	1	-21	396786.742
725470.68	4162712.16	11.74	5782	1	3	1	-21	396786.742
725469.64	4162711.04	13.21	1927	1	3	1	-21	396786.749

Sample ALS data

FOREST PRODUCTIVITY COOPERATIVE

Sample flight overview • ~111km² area;

FOREST PRODUCTIVITY COOPERATIVE

Applications for airborne laser scanning (ALS)

Basic height products

The underlying terrain

Vegetation height

Outline

LiDAR tools for the estimation of:

- Canopy top height;
- Height to the live crown;
- Total LAI;
- Canopy only LAI;
- Understory only LAI;
- Generating custom model estimates;
- Mapping the understory;
- Delineating individual tree crowns;

An example of detecting vertical layers

- At the field plot scale (e.g. 15m x 30m);
- A focus on analyzing vertical profiles (binned returns)
 - vertically stacked 'virtual' boxes containing the sum of returns within;
- One bin here is: 15 x 30 x 0.2m.

Canopy height model:

Average canopy top height

-Analyses performed

20x20m Florida (FL01) Area of interest

TIVITY COOPERATIVE

Average Height to the Live Crown

-Analyses performed

20x20m Florida (FL01) Area of interest

Estimating canopy heights

-"Big flight" plot level inventory metric estimation (field metrics from x6 sites) FL, GA and TX.

Some brief background on leaf area index

Leaf Area Index (LAI) background

Why is leaf area is important?

Leaf Area Index (LAI)

 Is a ratio of one-sided green leaf area per unit ground surface area;

 $LAI = \frac{Leaf \ area(m^2)}{Ground \ area(m^2)}$

• LAI ranges from 0 (bare ground) to over 10 (dense vegetation).

Used in predicting:

- photosynthetic primary production
- evapotranspiration
- productivity

"Leaves grow trees"

Leaf Area vs. Periodic Annual Increment in Loblolly pine

Periodic Annual Increment (PAI)

FOREST PRODUCTIVITY COOPERATIVE

-(Loblolly pine - USA)

- Calibrated using field LAI 2200 measurements;
- Data from:
 - four acquisitions (2013, 2014, 2015, 2018);
 - different LiDAR systems;
 - Summer and winter dates;
 - VA, NC, GA and FL;

Above (T) and Below (T) Ratio Index (ABRI):

$$ABRI = \frac{\sum R_{>T}}{\sum R_{$$

• Where *T* is the height threshold (e.g. 1.0m above ground), R is the weighted number of returns (1/NRP).

LeafArea Index

20x20m Florida (FL01) Area of interest

LAI of the dominant canopy only

Process:

- 1. Detect dominant canopy base height
- 2. Apply LAI model using new height threshold

Canopy only Leaf Area Index

20x20m Florida (FL01) Area of interest

Understory contribution to total LAI [New research]

- Required a different equation;
- Uses LiDAR return intensity (≈reflected energy);
- Accounting for light extinction at lower levels:

 Understory energy ≈ intensity from 0.5m to the HTLC;

BL equation applied to under- and over-story

FOREST PRODUCTIVITY COOPERATIVE

Estimating annual increment from LAI

Response to Nitrogen Fertilization is short lived

Generation of increment maps over 10 years

Area contains a mix of loblolly pine and broadleaved vegetation in SC, USA

Input: estimates of LAI from the canopy only..

Outputs: volume and mass per acre per year.

Mean density of Loblolly pine assumption: 1 cubic ft = 0.028 US ton.

Initial LAI: 1.68

	Cumulative	Cumulative
	Inc. (ft ³ per	Inc. (us ton
Year	acre)	per acre)
2	246.28	6.90
4	574.64	16.09
6	820.92	22.99
8	903.01	25.28
10	903.01	25.28

Initial LAI: 2.74

	Cumulative	Cumulative
	Inc. (ft ³ per	Inc. (us ton
Year	acre)	per acre)
2	102.84	2.88
4	239.96	6.72
6	342.80	9.60
8	377.08	10.56
10	377.08	10.56

Spatial resolution of 15x15m

Modelling estimates of quadratic mean diameter and basal area in Brazil

Mapping custom models (part 1) -An example

- 141 covariates can be calculated summarizing the distribution of:
 - return heights or;
 - Intensity;

	mean_ht	var_ht_al		skew_ht_	kur_ht_al	max_ht_	min_ht_a	med_ht_	stdev_ht	MAD_ht_	range_ht
FID	_all	l	CV_ht_all	all	l	all	II	all	_all	all	_all
0	4.7	23.3	103.3	0.3	-1.6	14.5	0.0	3.7	4.8	4.6	14.5
1	5.4	33.1	106.6	0.2	-1.7	15.7	0.0	0.2	5.8	5.6	15.7
2	1.7	3.8	116.3	0.9	-0.2	8.7	0.0	0.5	2.0	1.7	8.7
3	1.2	3.1	144.5	1.5	1.7	8.2	0.0	0.0	1.8	1.4	8.2
4	1.5	4.2	134.2	1.2	0.3	8.2	0.0	0.0	2.0	1.7	8.2
5	1.4	3.9	142.8	1.3	0.9	8.5	0.0	0.0	2.0	1.7	8.5
7	2.3	3.9	87.8	0.4	-1.0	7.7	0.0	1.9	2.0	1.7	7.7
6	1.6	4.3	128.5	1.2	0.4	8.5	0.0	0.3	2.1	1.8	8.5
8	3.3	6.3	75.7	0.1	-1.1	9.5	0.0	3.6	2.5	2.2	9.5
9	4.9	22.0	95.0	0.1	-1.7	14.4	0.0	6.4	4.7	4.5	14.4
10	2.7	12.0	127.5	1.0	-0.5	12.5	0.0	1.1	3.5	3.0	12.5
11	4.4	26.7	116.6	0.4	-1.6	14.9	0.0	0.0	5.2	5.0	14.9
12	6.2	8.3	46.2	-1.0	0.2	13.0	0.0	6.9	2.9	2.2	13.0
13	5.4	8.9	55.7	-0.8	-0.6	11.7	0.0	6.2	3.0	2.4	11.7
14	12.8	65.3	63.3	-0.9	-1.1	21.8	0.0	17.0	8.1	7.2	21.8
15	12.9	66.2	63.2	-0.8	-1.2	22.3	0.0	17.3	8.1	7.3	22.3
16	5.8	9.5	53.3	-0.7	-0.5	13.1	0.0	6.6	3.1	2.5	13.1

LiDAR covariates

Example location near Telêmaco Borba, Brazil;

Correlations with LiDAR derived covariates -Quadratic mean DBH and Basal Area

Group 1 – "P. taeda"

Group 2 – "Non-P. taeda"

Custom model creation

- Plot level LiDAR summary metrics can be extracted and statistically analyzed (e.g. by regression);
- Once a model has been created, a map of the estimate can be produced;
- Different models can be applied for different land cover classes, e.g. Loblolly pine and Eucalyptus;
- These relationships are often site specific.

Klabin data, Telêmaco Borba, Brazil

Mapping understory

- Purpose: to provide a means of finding competing vegetation in managed pine plantations.
- Applications in:
 - Competition control;
 - Locating potential fire risk;

Understory detection

- Goal: filter out noise and classify those returns belonging to understory layers.
- First, classify the upper canopy, and remove it;
- DBSCAN clustering used to find and remove isolated points in 3D space, e.g. from tree stems;
- Example: 20x20m plot.

For a given 20x20m area

Rasterize the non-canopy returns

Mapping understory

-Analyses Work-in-progress

Classifying overlapping layers

- Currently in development;
- Purpose: to enhance the existing understory mapping method for more complex forests;
 - Particularly where the competing vegetation can intersect with the main canopy;

Classifying overlapping layers [work in progress] -broadleaved mid-story

Individual tree crown (ITC) delineation

- Purpose: estimate the number or, height, and spatial location of individual trees automatically;
- Applications in:
 - Assessment of population;
 - ITC volume and estimates of ITC LAI (not validated, but aligns with plot level validation) can allow the assessment of vigor at small scales.
- Requirements:
 - A raster canopy height model;

Individual tree crown delineation

- There is a new (re-designed) individual tree delineation method;
- Validation from all available sites from 2018 and 2015.

Classifying trees within the point cloud -making a better method

Top down

FOREST PRODUCTIVITY COOPERATIVE

Classifying trees within the point cloud -making a better method

Points grouped into crown objects.

Arbitrary colors assigned.

100% correct classification of plot tree locations.

Summary

- Tested & transferable methods;
- Estimate features below the stand-scale:
 - Plot-size;
 - Individual tree;
- Metrics for forest inventory can be estimated e.g. basal area;
- Applications in predicting future quantities;
- And monitoring competition;

 Methods are being updated all the time;

Questions?

