A Comparison Of Tree Taper Systems

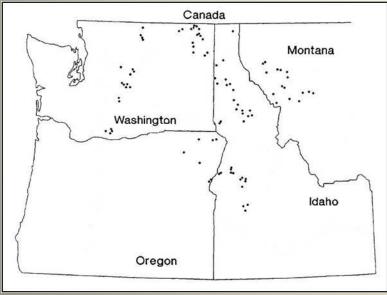
Dr. Charles T. Stiff Forest Biometrician - Retired

Intermountain Forestry Cooperative Annual Meeting

March 19, 2019

The Journey

Project Objectives


- 1. IFC Douglas-fir stem analysis data
- 2. Three taper systems and their input options:

FPS Taper Class System Flewelling's 2 & 3-Point Taper System Natural Cubic Spline Interpolation

- 3. Predict total ft³ volumes (ob) and heights along the bole using IFC stem analysis data.
- 4. Generate residual (predicted observed) statistics and plots for total ft³ volumes (ob) and heights.

IFC Stem Analysis Data

The IFC destructively sampled 1,085 trees in 94 secondgrowth Douglas-fir stands. The stands covered a broad range of ages, stand densities, sites, stand conditions, and geographic regions in the Intermountain Northwest.

IFC	Site Index (ft)									
Region	40	50	60	70	80	90	100	110	Total	
CID	4	53	83	23	0	0	0	0	163	
CWA	6	37	56	67	43	18	4	0	231	
NEOR	0	10	28	40	15	0	0	0	93	
NEWA	2	27	40	56	45	33	4	0	207	
NID	0	2	13	23	80	79	15	2	214	
WMT	13	21	60	58	23	2	0	0	177	
Total	25	150	280	267	206	132	23	2	1,085	

IFC Stem Analysis Data

Tree measurements (ob & ib) included stump diameter (1-ft), DBH, total height, diameter and height at the live crown base, and a variable number (3-7) of diameters and heights along the bole.

		Tree	Attribut	te (n = 1	,085)		240		
Tree	DBH	Total Height	Crown Ratio	Age	Taper	Total ft ³ Volume	210	-	-
Statistic	(in)	(ft)	(%)	(yrs)	Class	(ob)	180		
Min	5.6	32.1	24	25	0.096	2.8	S		п
Max	25.4	124.8	93.4	144	0.447	199.8	0 9 150		러도 티
Median	12	68	59.2	65	0.266	23.8	H-		
Average	12.4	69.8	60.3	64.7	0.268	29.4	5 120		
Std Dev	2.87	14.46	13.03	18.75	0.059	20.70			
DBH		Total H	leight Cl	ass (ft)			Numbe 8	-	
Class (in)	<50	50-70	70-90	90-110	>110	Total	ב ⁶⁰	_	
5 - 10	43	163	3 12			218			11111116
10 - 15	7	379	272	19	9 1	678	30	-	
15 - 20	0	16	83 83	69	9 3	3 171			
>20	0	C) 3	-	7 8	8 18	0)	6 12 18 24 30
Total	50	558	3 370	95	5 12	1,085			DBH (in)

IFC Stem Analysis Data

All diameters and heights along the bole were expressed as proportions of DBH and total height, respectively:

Relative Diameter = $\frac{dob}{DBH}$ Relative Height = $\frac{(h - 4.5)}{(HT - 4.5)}$

Taper data for each tree were then standardized using quadratic interpolation with relative diameters at 10% DBH intervals (0-100%) to generate upper stem relative heights.

				Rela Diam		DOB (in)	Relative Height	ł
					1.0	8.30	0.000	
	Measured	the second second second second	a		0.9	7.47	0.131	
1	Relative	Height	Relative		0.8	6.64	0.253	
	Diameter	(ft)	Height		0.7	5.81	0.370	
С	1.00	4.5	Contract Annual Annual		0.6	4.98	0.487	1
8	0.78	15.0	0.276		0.5	4.15		
0	0.58	24.0	0.512		0.4	3.32	0.670	
2	0.32	33.0	0.748		0.3	2.49	0.760	-
0	0.00	42.6	1.000		0.0	1.66	0.700	
- 68	i i i				0.2	0.83	0.039	_
								_
					0.0	0.00	1.000)

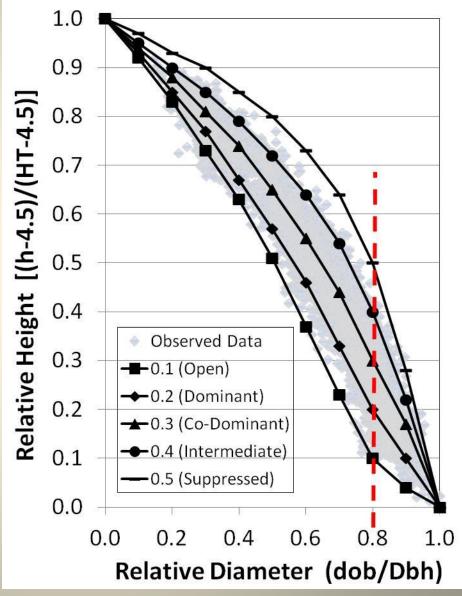
Analysis Specifications

- 1. Tree taper profiles are estimated using observed DBH, total height, and upper stem diameter/height pair(s) to localize/improve estimated stem taper.
- 2. Taper Class, the relative height along the bole at 80% DBH, is used to localize estimated stem taper.
- 3. Relative diameters and heights along the bole are expressed as proportions of DBH and total height starting at 4.5 feet.
- 4. Dob at a 1-foot stump is predicted from DBH.
- 5. Dib along the bole is predicted from observed DBH, total height, and upper stem dob and height.
- 6. Observed cubic-foot volumes along the bole are calculated assuming either a neiloid or paraboloid frustrum, or cone.

FPS Taper Class System

The Forest Projection System uses species specific non-parametric look-up tables to describe tree taper profiles by region. Upper stem diameters and heights were expressed as proportions of DBH and total height, and then grouped into five taper classes (10 = open, 20 =dominant, 30 = co-dominant, 40 = intermediate, and 50 = suppressed) based on relative height. Average relative heights along the bole were calculated based on relative DBH and taper class.

Taper		DBH (%) Arney 2019 Region 10										
Class	100	90	80	70	60	50	40	30	20	10	0	
10	0.00	0.04	0.10	0.23	0.37	0.51	0.63	0.73	0.83	0.92	1.00	
20	0.00	0.10	0.20	0.33	0.46	0.57	0.67	0.77	0.85	0.93	1.00	
30	0.00	0.17	0.30	0.44	0.55	0.65	0.74	0.81	0.88	0.94	1.00	
40	0.00	0.22	0.40	0.54	0.64	0.72	0.79	0.87	0.90	0.95	1.00	
50	0.00	0.28	0.50	0.64	0.73	0.80	0.85	0.90	0.93	0.97	1.00	


Arney, James D. 2009. Tree Taper Profiles by Species and Region. FBRI Research Paper No. 105, 20 p.

Douglas-fir Taper Profiles

Tree profiles are the average relative heights by taper class and relative DBH.

Profiles are referenced at the greatest vertical distance between curves occurring at 80% DBH.

Observed data are the IFC stem analysis data.

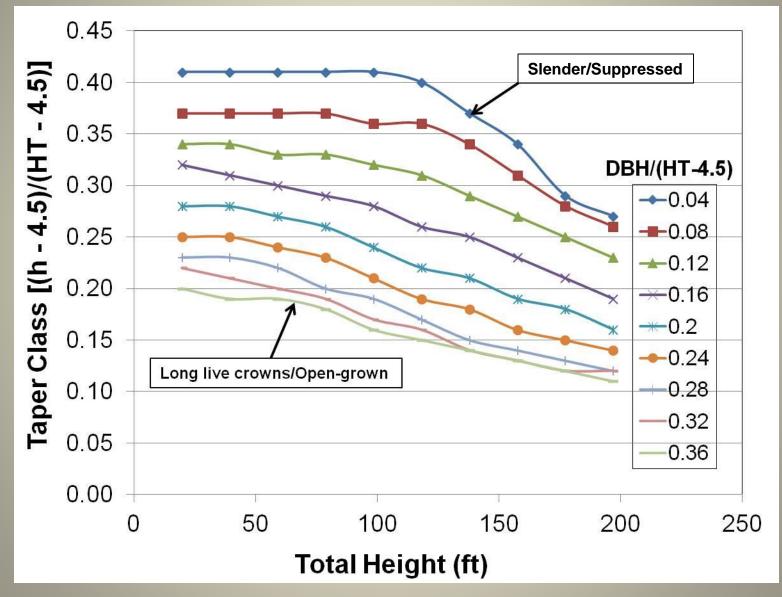
Using FPS Taper Class Table

	9		V									
Taper		DBH (%) Arney 2019 Region 10										
Class	100	90	80	70	60	50	40	30	20	10	0	
10	0.00	0.04	0.10	0.23	0.37	0.51	0.63	0.73	0.83	0.92	1.00	
20	0.00	0.10	0.20	0.33	0.46	0.57	0.67	0.77	0.85	0.93	1.00	
30	0.00	0.17	0.30	0.44	0.55	0.65	0.74	0.81	0.88	0.94	1.00	
40	0.00	0.22	0.40	0.54	0.64	0.72	0.79	0.87	0.90	0.95	1.00	
50	0.00	0.28	0.50	0.64	0.73	0.80	0.85	0.90	0.93	0.97	1.00	

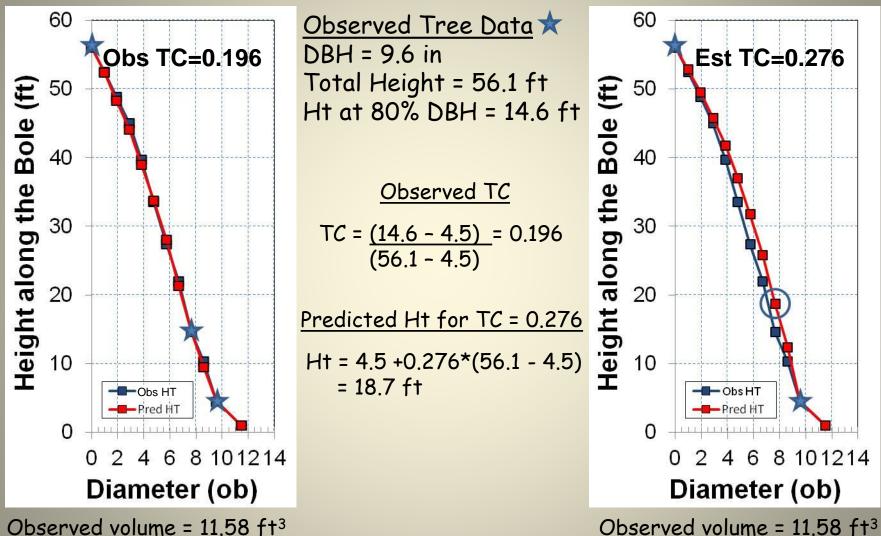
For example, a tree with DBH = 8.3° , total height = 42.6° , height to 80° DBH = 14.1° , and Taper Class = (14.1-4.5)/(42.6-4.5) = 0.253. Calculate the TC relative distance between 0.20 and 0.30 in the 80° DBH column, and use that value to interpolate between relative heights in rows labeled Taper Class 20 and 30.

		Relative Diameter (% DBH)									
Tree Attribute	100	90	80	70	60	50	40	30	20	10	0
Relative Height	0.000	0.137	0.253	0.388	0.508	0.612	0.707	0.791	0.866	0.935	1.000
Dob (in)	8.3	7.5	6.6	5.8	5.0	4.2	3.3	2.5	1.7	0.8	0.0
Height (ft)	4.5	9.7	14.1	19.3	23.8	27.8	31.4	34.6	37.5	40.1	42.6

 $\text{Height} = 4.5 + \text{TC}^{*}(\text{HT} - 4.5)$


Using FPS Taper Access Table

The access table provides taper class values based on observed or predicted DBH and total height when height at 80% DBH has not been observed, and to change taper profiles over time for growth projections.

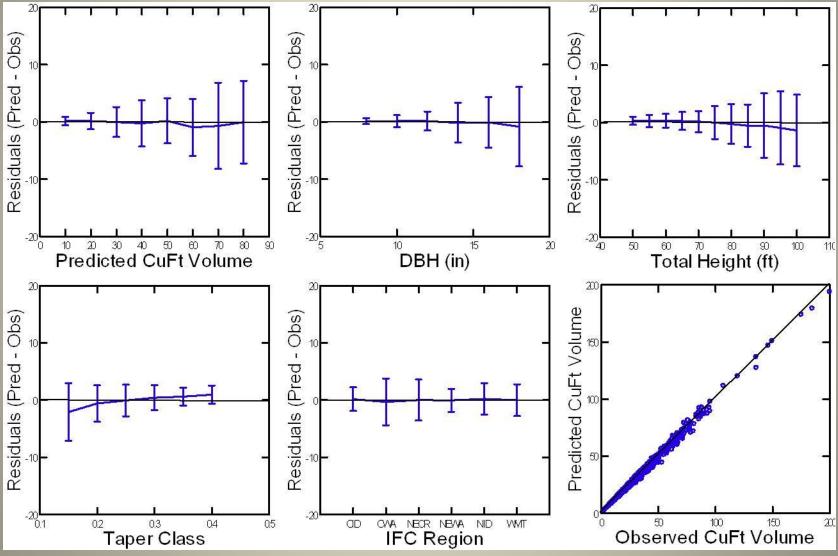

2										
DBH/(HT-4.5)		Z	TAL HI	EIGHT (ft) A	rney (20)19) I	Region	10	
(in/ft)	19.7	39.4	59.1	78.7	98.4	118.1	137.8	157.5	177.2	196.9
0.04	0.41	0.41	0.41	0.41	0.41	0.40	0.37	0.34	0.29	0.27
0.08	0.37	0.37	0.37	0.37	0.36	0.36	0.34	0.31	0.28	0.26
0.12	0.34	0.34	0.33	0.33	0.32	0.31	0.29	0.27	0.25	0.23
0.16	0.32	0.31	0.30	0.29	0.28	0.26	0.25	0.23	0.21	0.19
0.20	0.28	0.28	0.27	0.26	0.24	0.22	0.21	0.19	0.18	0.16
0.24	0.25	0.25	0.24	0.23	0.21	0.19	0.18	0.16	0.15	0.14
0.28	0.23	0.23	0.22	0.20	0.19	0.17	0.15	0.14	0.13	0.12
0.32	0.22	0.21	0.20	0.19	0.17	0.16	0.14	0.13	0.12	0.12
0.36	0.20	0.19	0.19	0.18	0.16	0.15	0.14	0.13	0.12	0.11

For example, a tree with DBH = 8.3" and total height = 42.6', and DBH/(HT-4.5) = 0.218 has an estimated Taper Class = 0.261 using double linear interpolation.

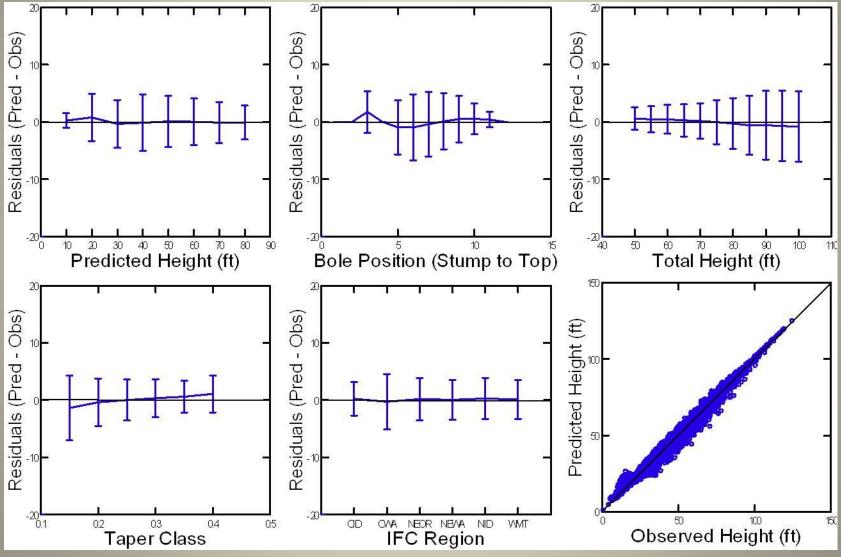
FPS Taper Access Curves

FPS Taper Class - Example

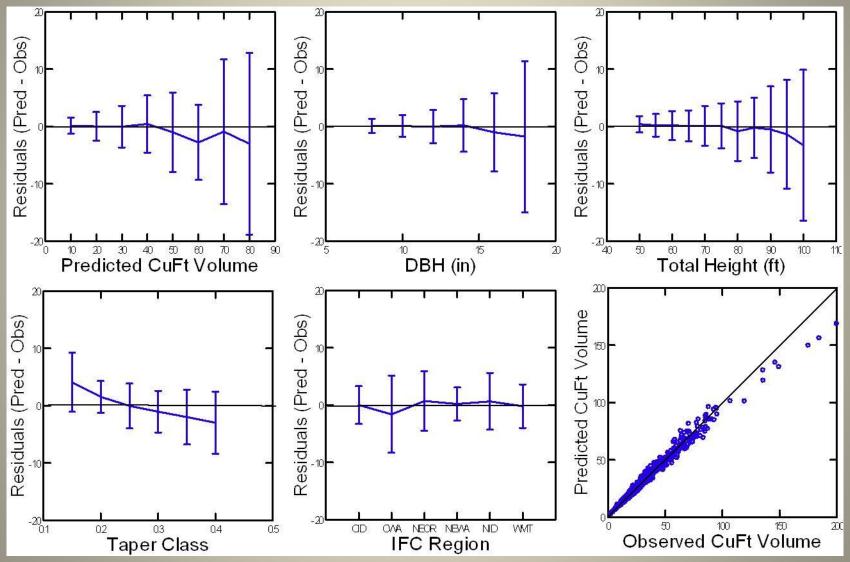
Observed volume = 11.58 ft³ Estimated volume = 11.44 ft³

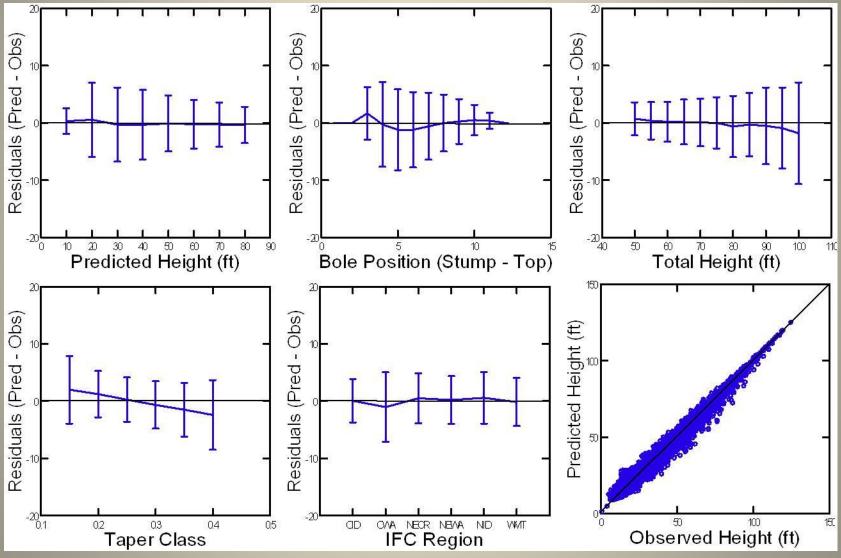

13

Estimated volume = 12.92 ft^3


FPS Taper Class - Residual Analysis

	Observed T	aper Class	Estimated 1	Taper Class
Statistic	Total ft ³	Height	Total ft ³	Height
(Residual = Pred - Obs)	Volume	(ft)	Volume	(ft)
n	1,085	13,020	1,085	13,020
Mean	0.000	0.088	-0.231	-0.038
Standard Dev	1.513	1.929	2.923	2.449
Standard Error	0.046	0.017	0.089	0.021
Root Mean Sq Error	1.517	6.950	2.931	2.449
Mean % Resid	0.553	1.172	0.531	1.411
Mean Abs Resid	0.977	1.120	1.687	1.527
Minimum	-8.737	-15.214	-31.238	-16.918
Maximum	7.070	10.678	11.445	13.730
Low Value 95% Cl	-0.090	0.055	-0.405	-0.080
High Value 95% Cl	0.090	0.121	-0.057	0.005

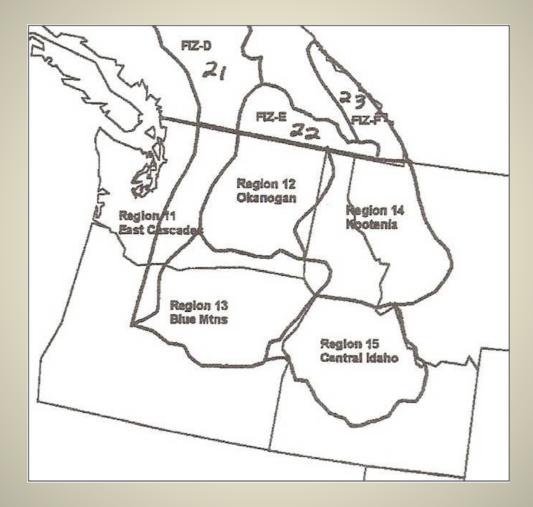

Volume Residuals – Observed TC


Height Residuals - Observed TC

Volume Residuals - Estimated TC

Height Residuals - Estimated TC

Flewelling 2 & 3-Point Taper System


The Flewelling taper system was developed for eastern Oregon, eastern Washington, Idaho, and western Montana as an INGY cooperative project. The system inputs include either DBH and total height (2-point), or DBH, total height and an upper stem diameter/height pair (3-point). The 3-point system, which passes through all measured stem data, uses upper stem data to localize predicted 2-point stem-profiles.

> Flewelling, J.W. 1996. Development of Inland Growth & Yield Cooperative Taper Models. Internal Report. INGY Cooperative. College of Forestry, University of Montana.

> Flewelling, J.W. and L.M. Raynes. 1993. Variable-shape stem-profile predictions for western hemlock. Part I. Predictions from DBH and total height. Can. J. For. Res. 23: 520-536.

Flewelling, J.W. 1993. Variable-shape stem-profile predictions for western hemlock. Part II. Predictions from DBH, total height, and upper stem measurements. Can. J. For. Res. 23: 537-544.

INGY Taper Regions

National Volume Estimator Library

The Volume Estimator Library is a collection of volume and taper equations used by the USDA Forest Service which are also available to the public.

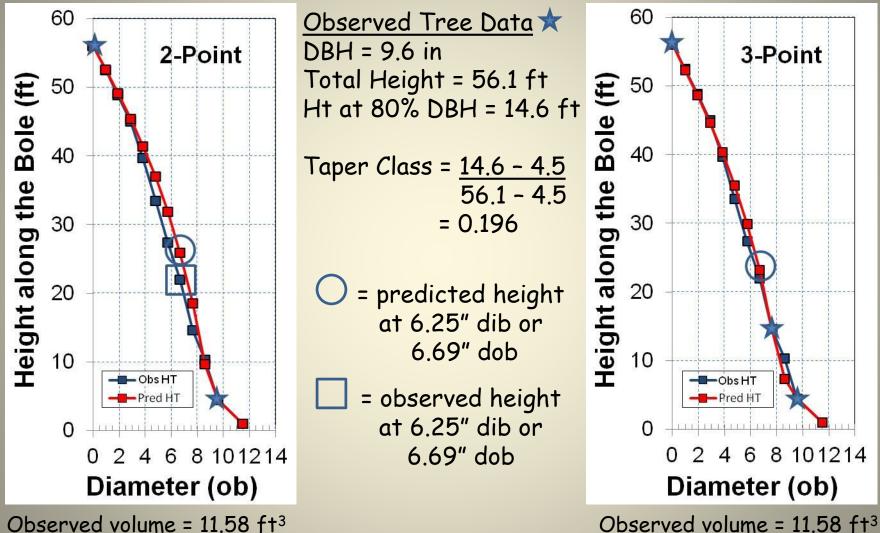
EXCEL add-in functions were created for Flewelling's taper system and added to the volume DLL library.

The add-in functions are linked to EXCEL spreadsheets to calculate volumes and other tree attributes.

USDA	INGY			Flewe	elling
Regions	Regions	Codes	IFC Regions	2-Point	3-Point
6	East Cascades	11	CWA	I11FW2W202	
	Okanogan	12	NEWA	I12FW2W202	100FW3W202
	Blue Mountains	13	NEOR	I13FW2W202	100FW3W202
1	Kootenai	14	NID / WMT	100FW2W202	100FW3W202
4	Central Idaho	15	CID	I15FW2W202	I15FW3W202

National Volume Estimator Library (NVEL)

https://www.fs.fed.us/forestmanagement/products/measurement/volume/nvel/index.php


EXCEL Volume Library Functions

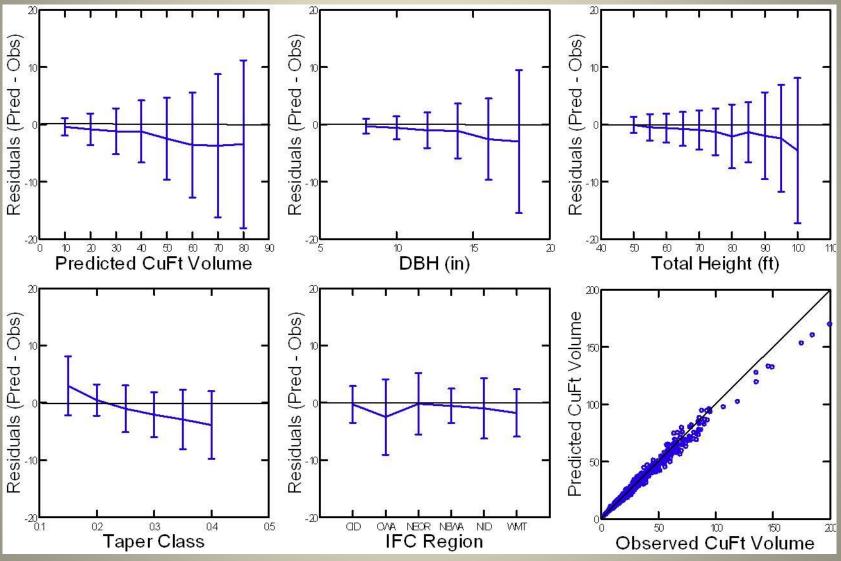
	EXCEL Add-	In NV				
CalcHt	CalcHt (2-Point)					
Variable	Input					
Region	1	2				
Forest	0					
VolEquNum	"I15FW2W202"					
DBH	9.55					
TotalHt	56.1					
UpStemDia (ib)	6.25					
Pred Height	25.9					

Add-in functions for 2point and 3-point taper models were solved for heights associated with upper stem DIBs, which were estimated from DOBs using predicted double bark thickness.

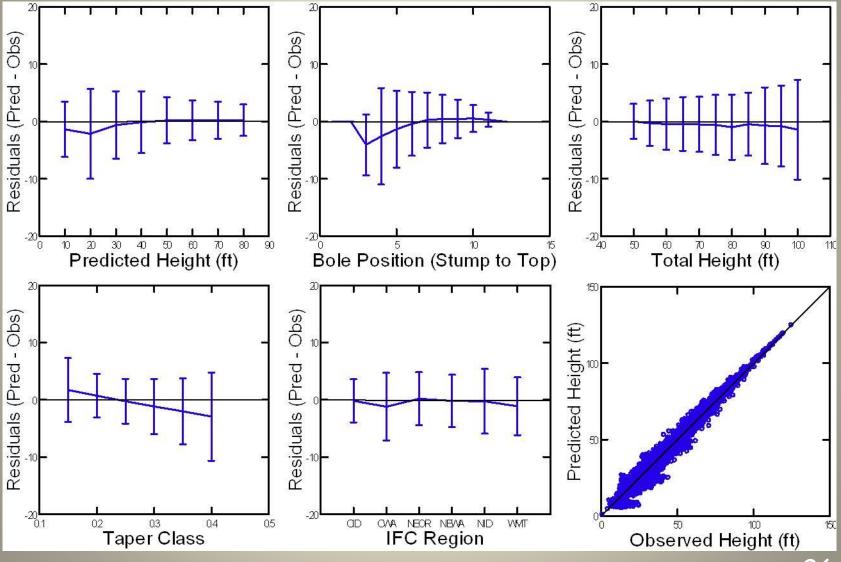
EL Functions										
GetXHtAd	lv (3-Point)									
Variable	Input									
Region	1									
Forest	0									
VolEquNum	"I15FW3W202"									
DBH	9.55									
TotalHt	56.1									
MerchHt	0									
DIB	6.25									
LogOrFeet	0									
LogLength	0									
UpStemHT	14.6									
UpStemDia (ib)	7.09									
AvgZ	0									
RefHt	0									
FormClass	0									
Product	0									
DblBarkBH	0									
BarkRatio	0									
BasalArea	0									
SiteIndex	0									
Pred Height	23.3									

Flewelling - Example

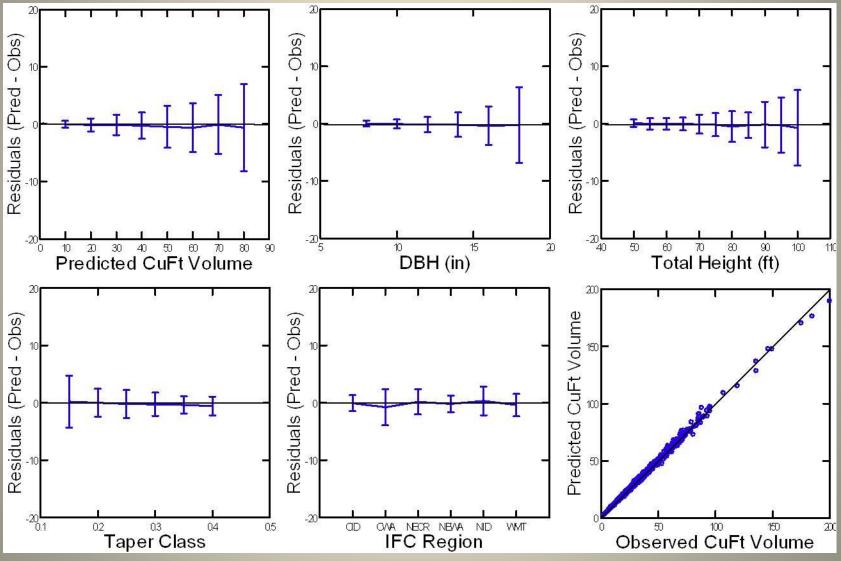
Observed volume = 11.58 ft³ Estimated volume = 12.63 ft³

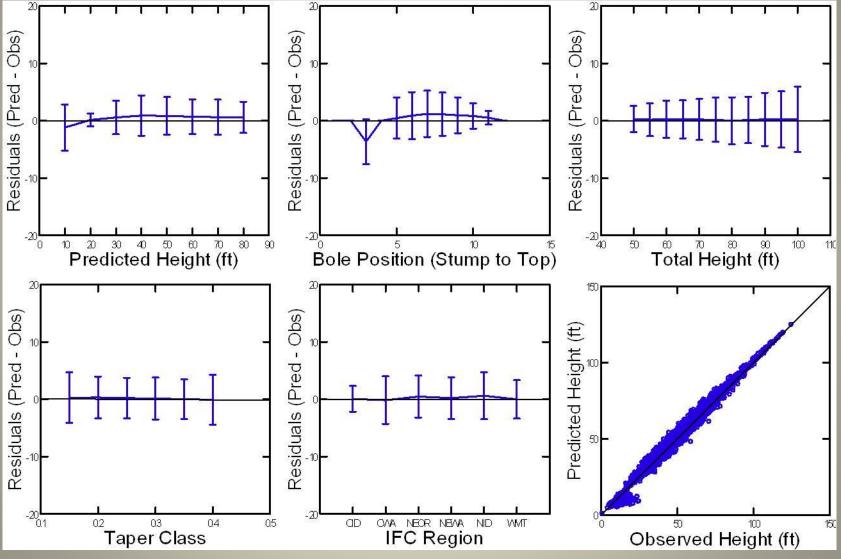

23

Estimated volume = 11.65 ft^3


Flewelling – Residual Analysis

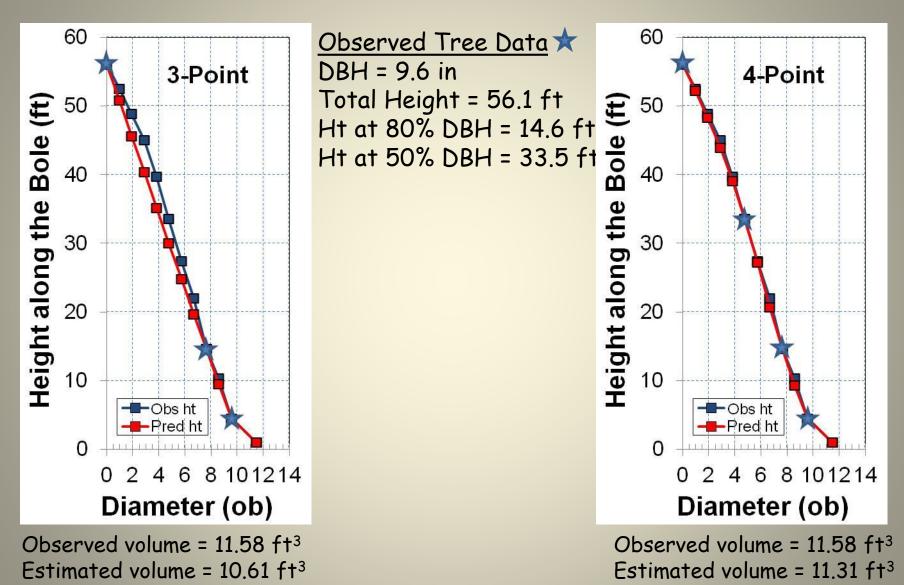
	2-Point (I	DBH,HT)	3-Point (D	BH,HT,TC)
Statistic	Total ft ³	Height	Total ft ³	Height
(Residual = Pred - Obs)	Volume	(ft)	Volume	(ft)
n	1,085	13,020	1,085	13,020
Mean	-1.232	-0.534	-0.175	0.183
Standard Dev	2.879	2.634	1.203	1.875
Standard Error	0.087	0.023	0.037	0.016
Root Mean Sq Error	3.130	2.687	1.215	1.884
Mean % Resid	-3.478	-3.156	-0.427	-1.258
Mean Abs Resid	1.932	1.626	0.721	1.138
Minimum	-30.136	-19.136	-10.339	-16.031
Maximum	10.822	12.866	8.326	9.358
Low Value 95% Cl	-1.403	-0.579	-0.247	0.150
High Value 95% Cl	-1.060	-0.489	-0.104	0.215


Volume Residuals – 2-Point


Height Residuals - 2-Point

Volume Residuals - 3-Point

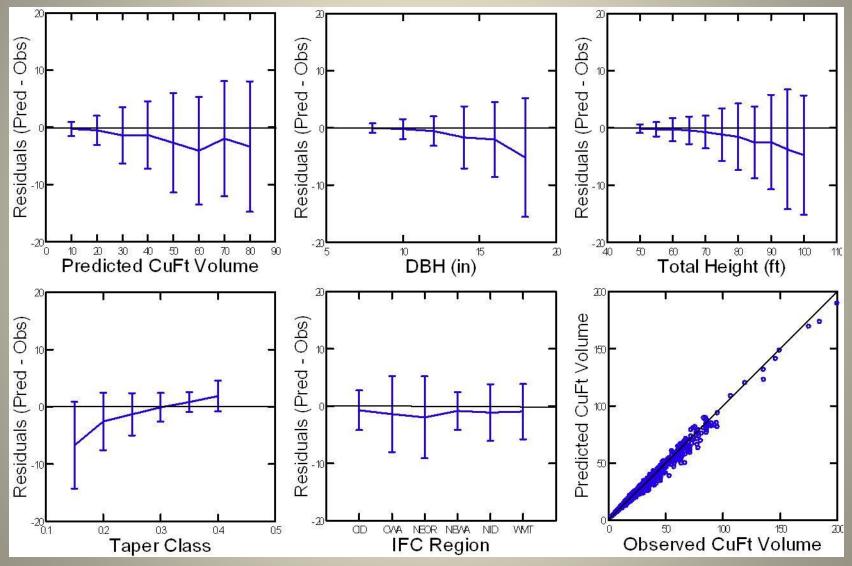
Height Residuals - 3-Point


Natural Cubic Spline Interpolation

Natural cubic splines are smooth, continuous functions that pass through all observed diameter/height pairs along the bole. They consist of a series of third-order polynomials fit together in a piecewise fashion, under the condition that the function is continuous and differentiable at the observed data points. In addition, the second derivative of the splines at end points (i.e., at tree base = (DBH,4.5) and tree top = (0,total height) are zero.

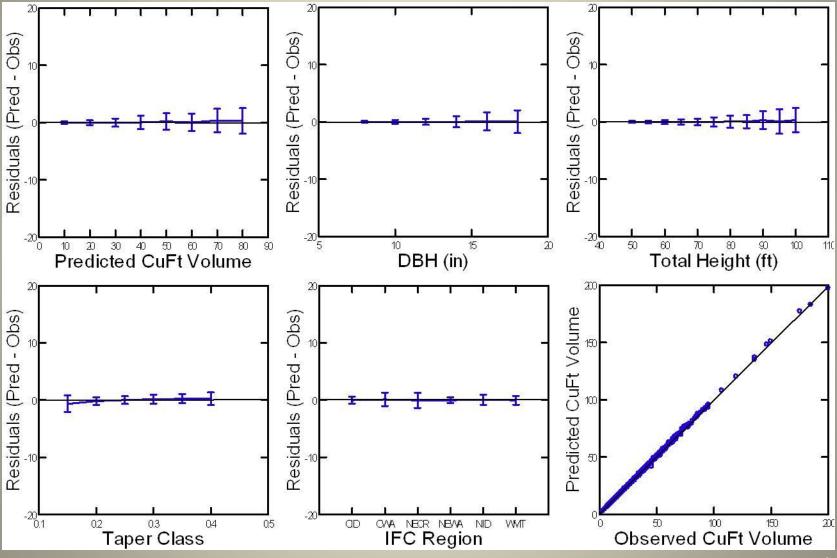
Given observed dob/height data points along the bole, a computer program fits a series of piece-wise cubic polynomials between each of the data points resulting in a smooth continuous curve. The piece-wise spline function is used to interpolate heights for observed dob values.

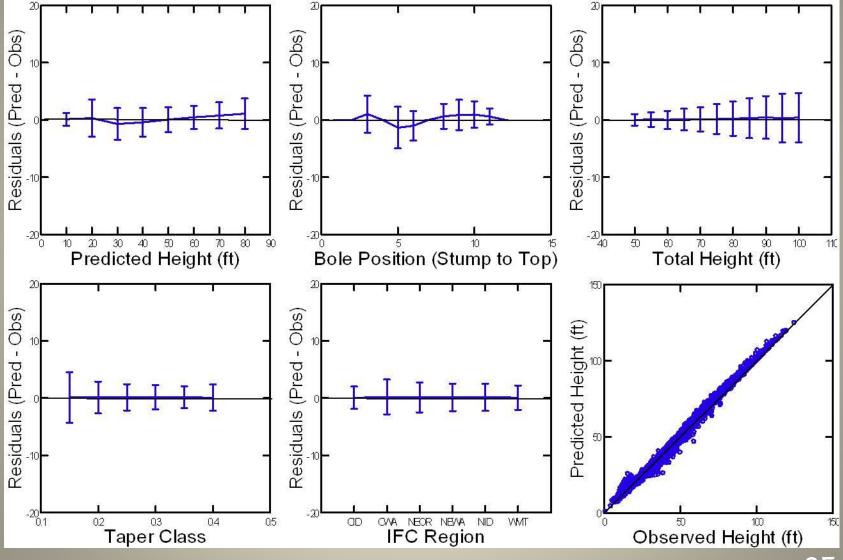
> Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. 1989. Numerical Recipes - The Art of Scientific Computing (FORTRAN Version). Cambridge University Press, New York, 702 p.


Cubic Spline - Example

Cubic Spline - Residual Analysis

	Spline – (DBH,HT	And the second se	Spline – 4-Point (DBH,HT,TC=80/50)		
Statistic	Total ft ³	Height	Total ft ³	Height	
(Residual = Pred - Obs)	Volume	(ft)	Volume	(ft)	
n	1,085	13,020	1,085	13,020	
Mean	-1.097	-0.880	0.029	0.142	
Standard Dev	2.614	3.063	0.454	1.254	
Standard Error	0.079	0.027	0.014	0.011	
Root Mean Sq Error	2.833	3.187	0.455	1.262	
Mean % Resid	-2.889	-1.214	0.029	0.567	
Mean Abs Resid	1.669	1.756	0.267	0.674	
Minimum	-16.972	-21.023	-4.033	-12.667	
Maximum	6.618	10.232	2.469	10.075	
Low Value 95% Cl	-1.252	-0.933	0.002	0.120	
High Value 95% Cl	-0.941	-0.828	0.056	0.163	


Volume Residuals - 3-Point


Height Residuals - 3-Point

Volume Residuals – 4-Point

Height Residuals - 4-Point

Summary

		Residual Statistics							
		Mean		Std Error		RMSE			
Taper		Volume	Height	Volume	Height	Volume	Height		
System	Input	(ft ³)	(ft)	(ft ³)	(ft)	(ft ³)	(ft)		
FPS Taper	Obs TC	0.000	0.088	0.046	0.017	1.517	6.950		
Class	Est TC	-0.231	-0.038	0.089	0.021	2.931	2.449		
Flewelling	2-PT	-1.232	-0.534	0.087	0.023	3.130	2.687		
	3-PT	-0.175	0.183	0.037	0.016	1.215	1.884		
Spline	3-PT	-1.097	-0.880	0.079	0.027	2.833	3.187		
	4-PT	0.029	1.254	0.014	0.011	0.455	1.262		