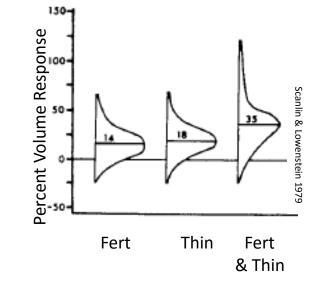
INTERMOUNTAIN FORESTRY COOPERATIVE PROGRAM OVERVIEW AND OBJECTIVES Mark Coleman

IFC Director



IFC Origins: Lowenstein and Pitkin

Loewenstein, H., Pitkin, F.H., 1963. Responses of grand fir and western white pine to fertilizer applications. Northwest Sci. 37, 23-30.
 Loewenstein, H., Pitkin, F.H., 1971. Growth response and nutrient relations of fertilized and unfertilized grand fir. College of Forestry, Wildlife and Range Sciences, Univ, Idaho, p16.
 Scanlin, D.C., Loewenstein, H., 1979. Response of inland Douglas-fir and grand fir to thinning and nitrogen fertilization in northern Idaho. In: Gessel, S.P., Kenady, R.M., Atkinson, W.A. (Eds.), Proceedings, Forest Fertilization Conference, Alderbrook Inn, Univ.Wash, Seattle, WA, pp 82-88.

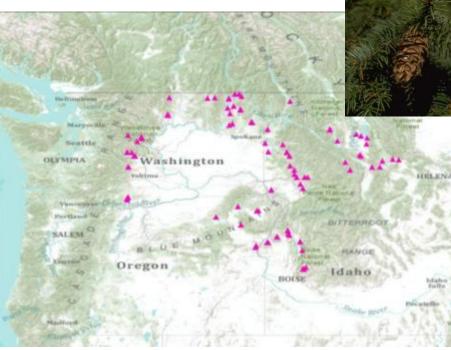
IFTNC established 1980

College of Forestry, Wildlife and Range Sciences

Proposed cooperative in Forest Tree Nutrition Research

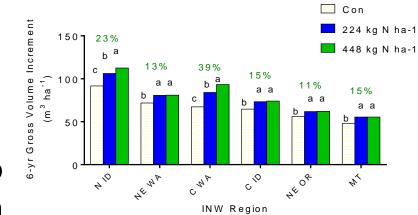
First Draft

March 30, 1979


Forest, Wildlife and Range Experiment Station

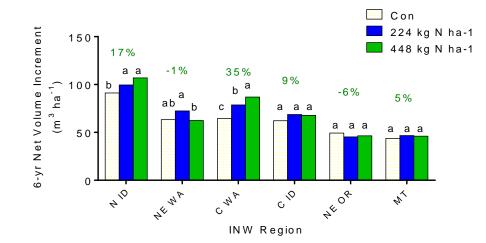
Distribution IFTNC Test Sites, 1980-1982

94 installations in six INW regions



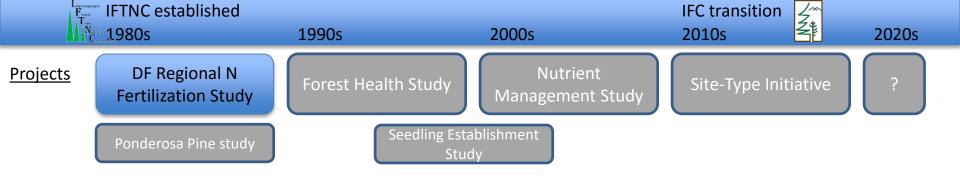
Douglas-Fir Regional N Fertilization Study Nitrogen frequently limits INW forests

Common N deficiency foliage N concentration below critical level



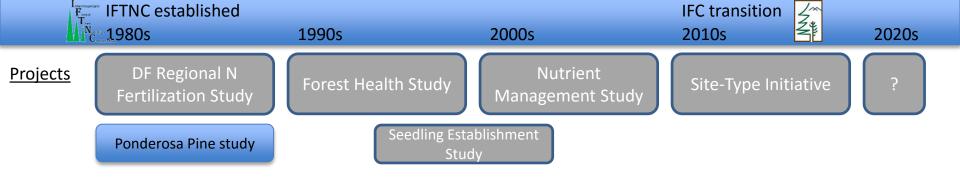
Forests typically respond to N fertilization

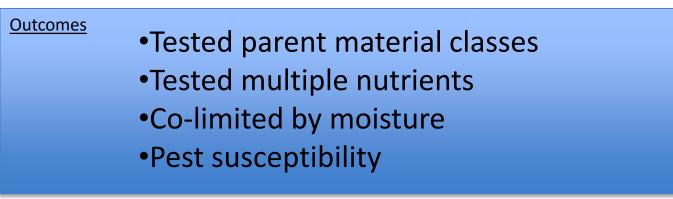
Moore, Mika and Vander Ploeg 1991. WJAF. 6:94


Douglas-Fir Regional N Fertilization Study N fertilization increases mortality

- Lower net volume responses indicates considerable mortality
- Mortality response is lowest in regions with greatest growth response
- Something besides N is limiting growth: moisture, other nutrients

Moore, Mika and Vander Ploeg 1991. WJAF. 6:94


<u>Outcomes</u>


- Nitrogen deficiency
- •Fertilizer response
- •Nutrient imbalance (NxK)
- •Regional variation in response

Mika & Moore1991. Water Air Soil Pollution 54:477

Garrison-Johnston et al 2005. PSW-GTR-198:123

Forest Health & Nutrition Study

Lacking stands on some site types

	vegetation Series		
Parent Material	Douglas-Fir	Grand Fir	Western Red Cedar/ Western Hemlock
Granitic	3	4	2
Basaltic	3	3	3
Metamorphic	0	1	3
Mixed (glacial and alluvial deposits)	2	3	4

Shaw, Coleman, Kimsey, and Mika. 2014. Intermountain Forest Tree Nutrition Cooperative. Technical Document.

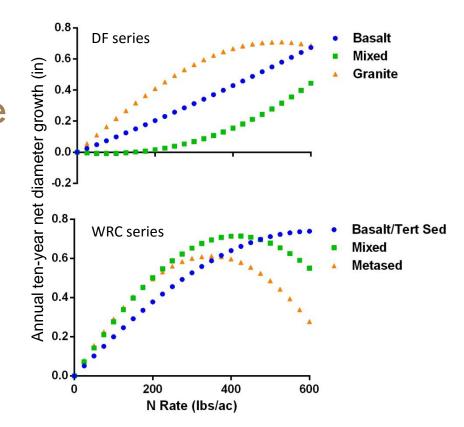
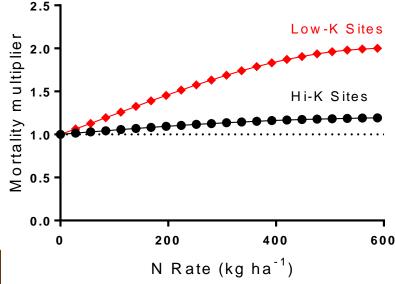

Northern Idaho belt strata with variable nutrient status Trees grow on the argillite-siltite rock layers, but not quartzite argillite-siltite

Photo by Reed Lewis

ALC: NO

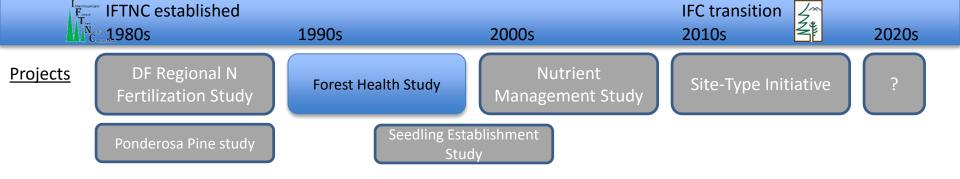
Forest Health & Nutrition Study Growth response varies among rock type & vegetation series

• Sites supply variable growth resources that also interact with nitrogen nutrition



Shaw et al. 2014. IFTNC. Technical Document.

Forest Health & Nutrition Study

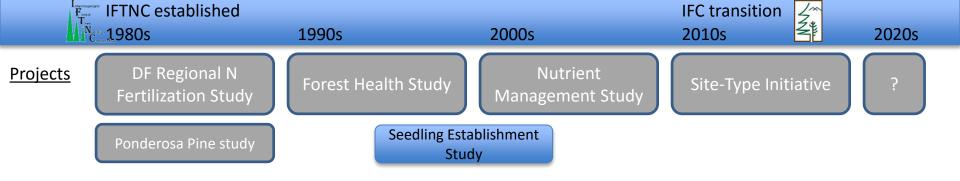

Mortality response depends on initial K status

- Decrease the risk of N-induced mortality by selecting sites with adequate K supply
- Avoid heavily weathered Belt Series metamorphic rocks

Shaw et al. 2014. IFTNC. Technical Document.

<u>Outcomes</u>

- Missing stands from some site types
- •Parent material & veg. series effects
- •Fertilizer response period
- •Species effects


Low-risk, cost-effective, late-rotation fertilization Forest fertilization opportunities

- Important potential returns from fertilizing forests
- However, it is important to:
 - Recognize which sites
 to fertilize
 - Time the harvest to capture investment in fertilizer

Parent 2009 IFTNC Annual Meeting presentation

<u>Outcomes</u>

- •Seedlings don't respond to site amendments
- Value of nursery nutrition
- Effectiveness of vegetation control
- Deficiencies occur at crown closure

Xiao et al 2003 IFTNC Technical Report

Nutrient Management Study Harvest impacts on future forest productivity

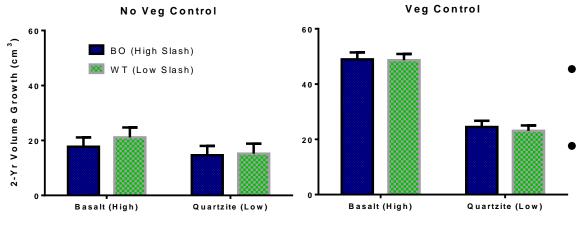
Х

Basalt; high site

Quartzite; low site

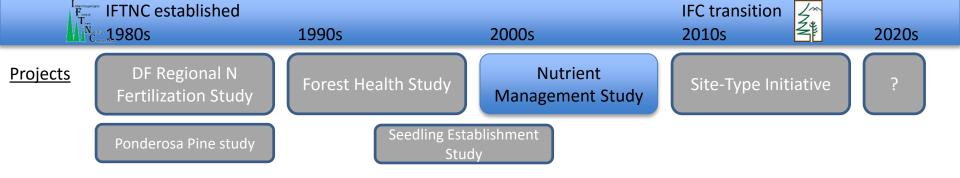
Bole Only, High Slash

Whole Tree, Low Slash


Vegetation control

Х

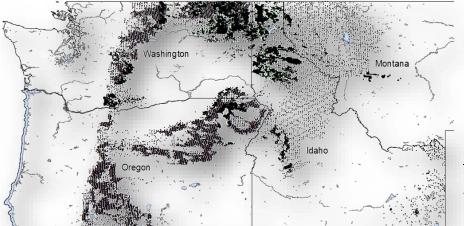
Nutrient Management Study **Two-year volume growth**


Site Quality

• Few slash retention effects

- Differences between parent material
 - Strong herbicide effects that vary by parent material

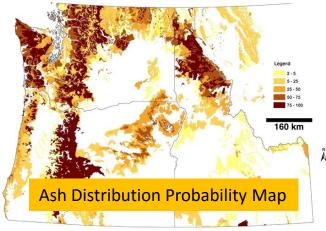
Shaw 2015 IFTNC Meeting Presentation



Outcomes
 Site quality affects seedling growth
 Herbicide x site effects
 Soil disturbance monitoring
 Slash seasoning to needle drop

Garrison-Johnston 2009 IFTNC Annual Meeting presentation

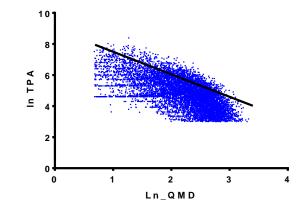
Data assembly Site Type Initiative Stand inventory



<u>Cooperator Data Suppliers:</u> Bennett Lumber, BLM, Forest Capital, Hancock, IDL, Inland Empire Paper, Stimson, USFS-FIA/CVS, WA DNR Dataset: >110,000 plots 4+ million trees 28 tree species

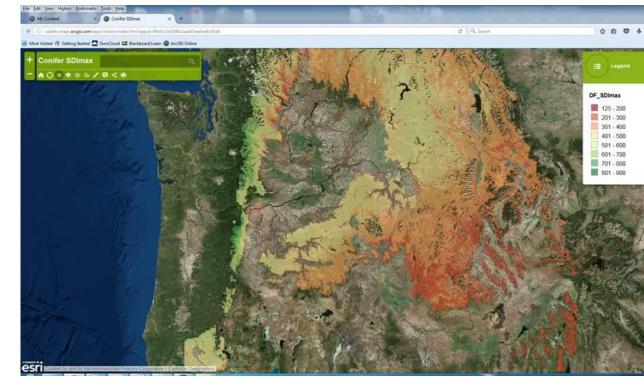
Associated Input: Sand/tree level, climate, geology, topography

Geospatial site information

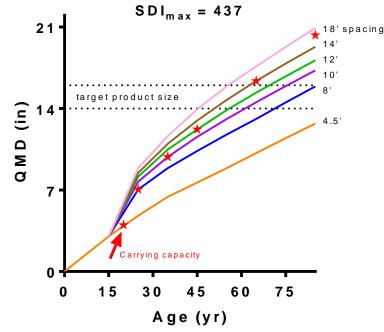


University of Idaho Intermountain Forestry Cooperative

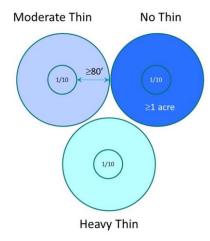
Kimsey 2014 IFTNC Meeting Presentation


Data analysis and modeling Site Type Initiative

Stochastic Frontier Regression

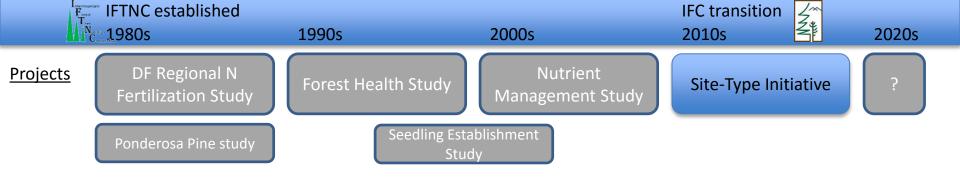


Site-specific stocking guidelines


Thinning prescriptions for highest stand vigor Site Type Initiative

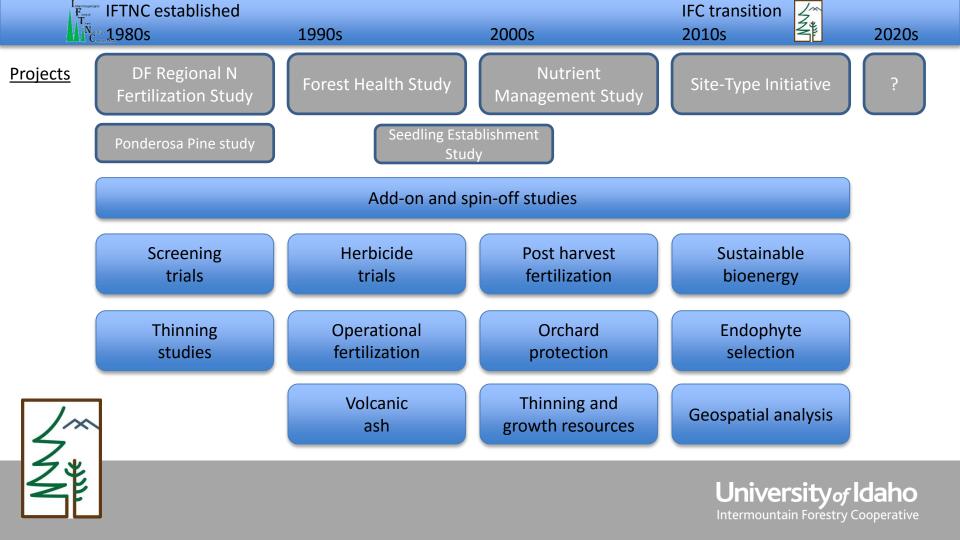
Paired-Plot Density Management project Site Type Initiative

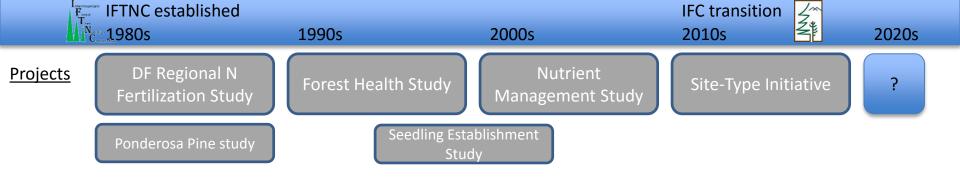
Regional-scale testing of thinning effects



University of Idaho Intermountain Forestry Cooperative

Shaw 2015 & 2016 IFTNC Meeting Presentation




<u>Outcomes</u>

Data assembly
Modeling and validation
Paired plot density trials
Site productivity layers

Future directions

- •Site x genotype interactions
- •Fire rehabilitation
- Vegetation control
- Maximum productivity

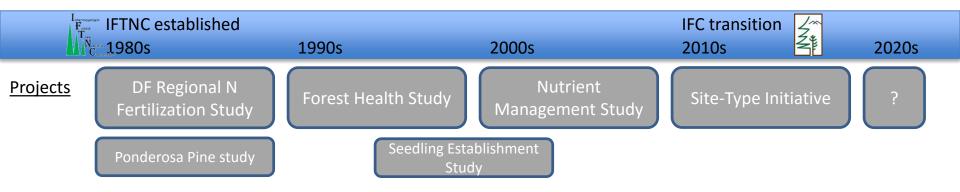
Value to IFC members Research capacity and support

Provide research capabilities

- Required for certification
- Addresses organization-specific management questions
- Cost-effective and nimble

Maintain independence

- Provide documentation for planning process
- Liaison between managers and critics



University support

- Contract administration
- Library access
- Interdisciplinary academic connections

INTERMOUNTAIN FORESTRY COOPERATIVE

References

</> Oigital Initiatives University of Idaho Library

Intermountain Forestry Cooperative

Documents published by the Intermountain Forestry Cooperative

- Garrison-Johnston, M.T., Shaw, T.M., Mika, P.G., Johnson, L.R., 2005. Management of Ponderosa Pine Nutrition Through Fertilization. In: Ritchie, et al (Eds.), Proceedings of the Symposium on Ponderosa Pine: Issues, Trends, and Management, October 18 - 21, 2004, Klamath Falls, Oregon, PSW-GTR-198. pp. 123-143.
- Garrison-Johnston, M.T 2009. Potlatch Slash Leaching Trial: Branch and Soil Results. IFTNC Annual Meeting presentation.

http://digital.lib.uidaho.edu/cdm/ref/collection/iftnc/id/3456

- Kimsey, M. 2014 Site Type Initiative Phase 1 Progress Report: Species Max SDI Model V2.0. . IFTNC Annual Meeting presentation. http://digital.lib.uidaho.edu/cdm/ref/collection/iftnc/id/3533
- Loewenstein, H., Pitkin, F.H., 1963. Responses of grand fir and western white pine to fertilizer applications. Northwest Sci. 37, 23-30.
- Loewenstein, H., Pitkin, F.H., 1971. Growth response and nutrient relations of fertilized and unfertilized grand fir. College of Forestry, Wildlife and Range Sciences, Univ, Idaho, No. 9 p16.
- Mika, P.G., Moore, J.A., 1991. Foliar potassium status explains Douglas-fir response to nitrogen-fertilization in the Inland Northwest, USA. Water Air and Soil Pollution 54, 477-491.

- Moore, J.A., Mika, P.G., Vander Ploeg, J.L., 1991. Nitrogen fertilizer response of Rocky Mountain Douglas-fir by geographic area across the Inland Northwest. West. J. App. For. 6, 94-98.
- Parent, D. 2009. Brickel Creek operational multi-nutrient fertilization in north Idaho. IFTNC Annual Meeting presentation. <u>http://digital.lib.uidaho.edu/cdm/ref/collection/iftnc/id/3453</u>
- Scanlin, D.C., Loewenstein, H., 1979. Response of inland Douglas-fir and grand fir to thinning and nitrogen fertilization in northern Idaho. In: Gessel, S.P., Kenady, R.M., Atkinson, W.A. (Eds.), Proceedings, Forest Fertilization Conference, Alderbrook Inn, Univ.Wash, Seattle, WA, pp 82-88.
- Shaw, T., M. Coleman, M. Kimsey, and P. Mika. 2014. Forest health and nutrition study ten-year growth, mortality and foliar nutrition. Intermountain Forest Tree Nutrition Cooperative. Technical Document. University of Idaho, Moscow. 122 p. (IFC Member access only)
- Shaw, T. 2015 Site Type Initiative Phase 2 progress report: Second year paired plot density management trials. IFTNC Annual Meeting presentation. <u>http://digital.lib.uidaho.edu/cdm/ref/collection/iftnc/id/3530</u>
- Shaw, T. 2015 Management effects project update: Multi-year seedling response to slash loading and vegetation control. IFTNC Annual Meeting presentation. http://digital.lib.uidaho.edu/cdm/ref/collection/iftnc/id/3533
- Xiao, Y., Moore, J., Shaw, T., 2003. Growth Responses of Four Conifer Species to Fertilizer and Herbicide. In. Intermountain Forest Tree Nutrition Cooperative, , University of Idaho, Moscow, ID, p. 42. & p. 65.

