Week 1 Task List

This week we will cover Sections 1.1, 1.2, and 1.4 in your e-text. Work through each of the following tasks, carefully filling in the following pages in your notebook.

Polya Time
☐ My time requirement for this week is: _______ minutes

Section 1.1 Linear Equations in One Variable
☐ Work through Objective 1 then do problems #1-4
☐ Work through Objective 2 then do problems #5-15
☐ Work through Objective 4 then do problems #16-24

Section 1.2 Linear Inequalities in One Variable
☐ Work through Objective 1 then do problems #25-26
☐ Work through Objective 2 then do problems #27-31
☐ Work through Objective 3 then do problems #32-34
☐ Work through Objective 4 then do problems #35-38

Section 1.4 Absolute Value Equations and Inequalities
☐ Work through Objective 1 then do problems #39-43

☐ Complete Notebook Quiz Policy Question #44

☐ Now Complete Quiz 1
Section 1.1 Linear Equations in One Variable

Section 1.1 Objective 1: Determine if a Given Value Is a Solution to an Equation

What is an algebraic equation?

What is an algebraic expression?

What do algebraic equations have that algebraic expressions do not have?

What is an equation in one variable? Write 3 examples.
Section 1.1 Objective 2: Solve Linear Equations in One Variable

Write down the Properties of Equality that are used to find simpler equations.

Work through Example 2 and write your notes here.
Use the properties of equality to solve each equation (be sure to show all work for checking your solution).

a. $3x - 1 = 5$

b. $8 = \frac{1}{2}n + 3$
(Fill in the Blanks)
When an equation contains fractions, it is usually best to ________________ the fractions first. To do this, we multiply both sides of the equation by an appropriate common multiple of all the ________________, usually the ________________ of all the fractions.

Work through the video that accompanies Example 5 and write your notes here:

Solve: \(\frac{x}{3} - \frac{5}{12} = \frac{5}{6}x - \frac{11}{12} \)

Work through the video that accompanies Example 6 and write your notes here:

Solve: \(\frac{1}{3} (1 - x) - \frac{x + 1}{2} = -2 \)

NOW WORK WEEK 1 HW EXERCISES #10-13
Skip Objective 3 and go to Objective 4 starting on page 1.1-19

Section 1.1 Objective 4: Use Linear Equations to Solve Application Problems

Write down the key words that all translate to an Equal Sign by filling in the table below. See Table 1 in your eText.

Table 1

<table>
<thead>
<tr>
<th>Key Words That Translate to an Equal Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

What is the mathematical equation for “The product of 5 and a number is 45”?

The equation is: ____________________________

Work through Example 10:

Translate each sentence into an equation. Use x to represent each unknown number.

a. Fifty-two less than a number results in -21.

$$x - 52 = -21$$

b. Three-fourths of a number, increased by 8, gives the number.

$$\frac{3}{4}x + 8$$

c. The difference of 15 and a number is the same as the sum of the number and 1.

$$15 - x = x + 1$$

d. If the sum of a number and 4 is multiplied by 2, the result will be 2 less than the product of 4 and the number.

$$2(x + 4) = 4x - 2$$

NOW WORK WEEK 1 HW EXERCISES #16-20
Work through the video that accompanies Example 13 and write your notes here:

Camille uses the cloud storage services *Dropbox* and *Google Drive* to store her photos in the cloud. The amount of storage she uses in *Google Drive* is 6 times the storage she uses in *Dropbox*. If she uses a total of 14 gigabytes of storage, how much storage does she use with each cloud service?

Now work Week 1 HW Exercises #21-22
Section 1.2 Linear Inequalities in One Variable

Section 1.2 Objective 1: Determine if a Given Value Is a Solution to an Inequality

Write down the 5 different types of inequality symbols.

Work through the interactive video that accompanies Example 1 and write your notes here:

Determine if the given value is a solution to the inequality.

a. $3x + 4 < 8; x = 2$

b. $n^2 + 5n \geq 4; n = -6$

What is the difference between a strict inequality and a non-strict inequality?

NOW WORK WEEK 1 HW EXERCISES #25-26
Work through Example 2 and write your notes here:
Graph each solution set on a number line.

a) \(\{x| x \geq 0\} \)

b) \(\{x| 1 < x \leq 7\} \)

c) \(\{x| x < 3\} \)

d) \(\{x| 0 < x < 4\} \)

e) \(\{x| x \neq -2\} \)

f) \(\{x| -1 \leq x \leq 5\} \)

g) \(\{x| -3 \leq x < 2\} \)

h) \(\{x| x \text{ is any real number}\} \)

NOW WORK WEEK 1 HW EXERCISES #27-31
Work through Example 3 and take notes here. Write each solution set using interval notation.

a) \(\{x | x < 5\} \)

b) \(\{x | 2 \leq x < 10\} \)

c) \(\{x | x \geq -3\} \)

d) \(\{x | -6 < x < 0\} \)

e) \(\{x | -1 \leq x \leq 5\} \)

f) \(\{x | x \text{ is any real number}\} \)

NOW WORK WEEK 1 HW EXERCISES #32-34
Work through Example 4 and take notes here.
Solve the inequality \(4x - 8 \geq 6x + 6\). Graph the solution set on a number line and write the solution in interval notation.

Work through the video that accompanies Example 5 and take notes here.
Solve the inequality \(2 - 5(x - 2) < 4(3 - 2x) + 7\). Write the solution set in set-builder notation.

Work through the video that accompanies Example 6 and take notes here.
Solve the inequality \(\frac{m}{2} - 5 + 2m > -\frac{m}{4} + \frac{1}{2}\). Write the solution set in interval notation.

NOW WORK WEEK 1 HW EXERCISES #35-38
Work through the video that accompanies Example 2 and take notes here: Solve $|1 - 3x| = 4$.

Work through the video that accompanies Example 3 and take notes here: Solve $|2x - 5| = 0$.

Work through Example 4 and take notes here: Solve $|3x + 7| = -4$.

Write down the Strategy for Solving Absolute Value Equations (See page 1.4-8)

Step 1:

Step 2:

Step 3:

Step 4:
Week 2 Task List

This week we will cover Sections 1.5 and 2.1 in your e-text. Work through each of the following tasks, carefully filling in the following pages in your notebook.

Grade Check
☐ Fill out your Grade Calculation page

Polya Time
☐ My time requirement for this week is: _______ minutes

Prerequisite
☐ Earn at least a 25% on Practice Test 1

Read the brief overview of the upcoming Week 3 testing procedures. Then do problem #1.

Section 1.5 Formulas and Problem Solving
☐ Work through TTK 3 then do problems #2-4
☐ Work through Objective 1 then do problems #5-11
☐ Work through Objective 2 then do problems #12-15
☐ Work through Objective 5 then do problems #16-19

Section 2.1 The Rectangular Coordinate System and Graphing
☐ Work through Objective 1 then do problems #20-25
☐ Work through Objective 2 then do problems #26-27
☐ Work through Objective 3 then do problems #28-29
☐ Work through Objective 4 then do problems #30-32
☐ Work through Objective 5 then do problems #33-34

☐ Complete Notebook Quiz Policy Question #35

☐ Now Complete Quiz 2
NBQ Week 2—Grade Calculation

Log into PolyaWeb to find your individual scores. Use these scores to fill out the tables below. Bring this completed grade sheet to class. It must be filled out completely and correctly at the beginning of class to receive credit. Ask a tutor if you need help finding your individual scores.

In Class Notebook Quizzes (NBQ)

<table>
<thead>
<tr>
<th>Week</th>
<th>Possible</th>
<th>Earned</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBQ 0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>NBQ 1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Polya Lab Attendance (PA)

<table>
<thead>
<tr>
<th>Week</th>
<th>Possible</th>
<th>Earned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Homework (HW)

<table>
<thead>
<tr>
<th>Homework</th>
<th>Possible</th>
<th>Earned</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW 1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Quizzes

<table>
<thead>
<tr>
<th>Quiz</th>
<th>Possible</th>
<th>Earned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiz 1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Copy your subtotals here and find the grand total:

<table>
<thead>
<tr>
<th>Subtotal</th>
<th>NBQ</th>
<th>PA</th>
<th>HW</th>
<th>Quizzes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBTOTAL</td>
<td>NBQ</td>
<td>PA</td>
<td>HW</td>
<td>Quizzes</td>
</tr>
</tbody>
</table>

GRAND TOTAL

Do not include extra credit.

Do not drop any scores.

Your current grade through week 1:

Enter your Grand Total in the box

Round to the nearest tenth as needed
It is Time to Start Thinking About Your First Test!

Your first test week starts NEXT week during Week 3. Test 1 will cover material from Week 1 and Week 2. Below are some important procedures to be aware of as we get closer to the beginning of your Test 1 week:

- You must earn at least a 60% on Practice Test 1 before taking Test1A.
- You may take the computer tests three times in the Polya lab (no more than one test per day).
- You will not be allowed to use any calculator other than the TI 30xIIS on any tests.

See the Week 3 Notebook pages for more test details.

NOW WORK WEEK 2 HW EXERCISE #1
Section 1.5 Objective 1: Solve a Formula for a Given Variable

What is the definition of a formula?

Give an example of a formula that describes the perimeter of a rectangle.

Work through the interactive video on page 1.5-3 and use the formulas provided to find the value of the unknown variable.

a) \(P = 2l + 2w; P = 46\text{cm}, l = 13\text{cm}. \) Find \(w \).

b) \(A = lw; l = 12 \text{ in}, w = 8 \text{ in}. \) Find \(A \).

c) \(V = \frac{1}{3}Bh; V = 200 \text{ m}^3, h = 25 \text{ m}. \) Find \(B \).

We are often interested in solving for specific variables of a formula. In Example 1, we are given the formula for the area of a triangle and the formula for the perimeter of a rectangle. Work through Example 1 now and see if you can solve each formula for the given variable. (Part b has video solution)

\[A = \frac{1}{2}bh; \text{Solve for } b. \]
\[b. \ P = 2l + 2w; \text{Solve for } l. \]

NOW WORK WEEK 2 HW EXERCISES #5-11
Section 1.5 Objective 5: Solve Applications Involving Mixtures

Go to Objective 5 which starts on page 1.5-14 of your eText

What is the definition of concentration?

Work through the animation that accompanies Example 8 and take notes here.
Suppose 2 gallons of a 10% bleach solution is mixed with 3 gallons of a 25% bleach solution.
What is the concentration of bleach in the new 5-gallon mixture?
Section 2.1 The Rectangular Coordinate System and Graphing

Section 2.1 Objective 1: Plot Ordered Pairs in the Rectangular Coordinate System

Read page 2.1-3 through page 2.1.5:

- What is an equation in two variables?

- Give three examples of an equation in two variables.

- Work through the interactive video on page 2.1-4 to practice identifying equations in two variables.

- What is another name for the rectangular coordinate system and who was the inventor of this system?
Work through the video that accompanies Example 1 and write your notes here:

Plot each ordered pair in the coordinate plane. In which quadrant or on which axis does each point lie?

$A(-4,4)\quad B(-5,-2)\quad C(0,-2)\quad D\left(\frac{3}{2},\frac{5}{2}\right)\quad E(3.5,-4.5)\quad F(2,0)$
Section 2.1 Objective 4: Graph Equations by Plotting Points

Every equation in two variables has a graph in the coordinate plane. The graph is the set of all ordered pairs that are solutions to the given equation. One way to graph an equation in two variables is to find several ordered pairs that are solutions, plot the points in the coordinate plane, and connect the points with a curve.

Write down the 3-step Strategy for Graphing Equations by Plotting Points

Step 1

Step 2

Step 3

Work through the interactive video that accompanies Example 4. (Part b and c are on the following page)

Graph each equation by plotting points.

a. \(2x + y = 1\)
Section 2.1 Objective 5: Find x-and y-Intercepts

What is the definition of a y-intercept?

What is the definition of an x-intercept?

Take a look at your graph of $2x + y = 1$ from Example 4a on the previous pages. The y-intercept of $2x + y = 1$ is _______. The x-intercept of $2x + y = 1$ is _______.

Work through Example 5: What are the x-and y-intercepts of the graph below?

NOW WORK WEEK 2 HW EXERCISES #33-34

COMPLETE THE NOTEBOOK QUIZ POLICY QUESTION #35

YOU ARE NOW READY TO TRY WEEK 2 QUIZ. REMEMBER THAT YOU CAN TAKE THIS QUIZ UP TO 10 TIMES.