What is this course about? This course examines a broad range of geographic dimensions linked to the production, distribution, acquisition and consumption of energy. The central focus will examine how and why a diverse range of energy related phenomena manifest spatially across the surface of the earth, at local, national, regional and global scales. The resulting “Geography of Energy Systems” will be used as a lens to analyze and deconstruct inherent complexity in various topics, themes and current challenges bound in energy development. The course will combine analyses of conceptual frameworks through lectures and reading, Self-Organized Learning Environments (SOLE), simulations and case studies along with field trips to energy installations across Idaho.
The ability or lack thereof to acquire energy has long influenced the fate of communities, indeed even whole societies. In modern times, although much has changed, fundamental truths concerning energy endure. While technology has allowed humans to create new methods of production and improve distribution efficiency, access to simple forms (such as electricity) remains a challenge for billions worldwide, particularly in places beset by a state of underdevelopment. However, while numerous communities survive ‘on the margins’, energy plays a central role in macro-scale economic development for powerful nation-states and other actors. Consequently, energy contributes to a range of current challenges including—but not limited to—climate change, territorial conflict and international trade. The array of implications accompanying energy production, distribution, acquisition and consumption transcend national boundaries, regional affiliations and standard binaries such as developed-developing, east-west, biophysical-human. The result is a complex, often confusing network of actors, implications and outcomes. This course will analyze and deconstruct this nexus, and in doing so make sense of the complexity accompanying the multi-faceted nature of energy.

As the modern world becomes increasingly interconnected and interdependent, social, economic, political and environmental challenges originating in one part of the planet, frequently have far-reaching implications in a variety of other locations. These challenges not only transcend geographical boundaries and scales, but also overlap a range of academic disciplines and approaches. Consequently, if students are to understand and create effective responses to a wide variety of challenges and be prepared for the world they will navigate upon graduation, it is imperative to acquire local, regional and global perspectives that are multidisciplinary in nature. This course, therefore, will examine a range of dimensions emanating from energy production, distribution, acquisition and consumption upon physical and human environments at a range of scales. While framed through a geographic lens, this course will adopt multiple perspectives and positions, in order to adequately understand challenges (and create solutions) emanating from the ‘Geography of Energy Systems.’

Learning Outcomes: This course is designed to facilitate development of students’ knowledge and skills for engaging critically in geographical inquiry centering on energy. By the end of the term, students who invest their time and effort to meet course expectations and requirements should be able to:

- Use geographic perspectives to explain key concepts and themes related to energy
- Analyze and evaluate relationships linking sites of extraction, production and consumption through transmission, distribution and supply infrastructure
- Analyze a range of social, political, economic and environmental implications resulting from energy production, distribution and consumption, based in analysis of the ways energy illustrates inequality
- Recognize how energy shapes—and is shaped by—policies at local, regional and global scales
- Develop critical and spatial thinking skills by engaging in debates centered on energy
- Reflect on personal experiences and perspectives to develop strategies for navigating a “new energy paradigm”
Assessment Criteria:

To be finalized

*In order to receive a passing grade, students must complete all components of the course, including activities and assignments. Students that are absent without for any reason other than a medical emergency will automatically receive a failing grade. Furthermore, without strong reason and appropriate supporting documentation, late work will not be graded, no exceptions.

Course Text Book:

Additional readings must be completed before the class for which they are assigned.