I

University of Idaho

Aquaculture Research Institute

DIETARY REQUIREMENTS OF ORGANIC AND INORGANIC ZINC IN DIPLOID AND TRIPLOID RAINBOW TROUT (*Oncorhynchus mykiss*)

KRISTEN A. MEILER AND VIKAS KUMAR AQUACULTURE RESEARCH INSTITUTE DEPARTMENT OF ANIMAL AND VETERINARY SCIENCE

AQUACULTURE

- Fastest growing food sector
- Provides > 50% fish/shellfish consumed by humans
- Feed: 60-70% of total operational cost

Feed Conversion Ratio

Pounds of feed to produce one pound of animal protein

Source: http://www.earth-policy.org/books/pb2/pb2ch9_ss4

VARIABLES

Zn: Essential trace mineral

- Present in all organs, tissues and fluids
- Produce deficiency symptoms when removed

Organic: Chelated with other ingredients

- More bioavailable
- Organic = 15% Zn, Inorganic = 75-80% Zn

Triploids:

- Sterile
- Potential for faster growth
- May have different nutrient requirements

Troutlodge

GOAL AND OBJECTIVES

To determine Zn requirements in a commercial strain of rainbow trout.

1. Organic vs. inorganic zinc

2. 2X vs. 3X ("Genetically similar")

MATERIALS AND METHODS FEED FORMULATION

- Basal diet 33 mg/kg Zn
- 43% crude protein [isonitrogenous]
- 20% lipid [isolipidic]
- Incremental organic (Alltech)/inorganic (ZnSO₄) Zinc

Basal	Inorganic					Organic				
Α	В	С	D	E	F	G	Н	1	J	K
Zn ₃₃	Zn ₆₃	Zn ₉₃	Zn ₁₂₃	Zn ₁₅₃	Zn ₁₈₃	Zn ₆₃	Zn ₉₃	Zn ₁₂₃	Zn ₁₅₃	Zn ₁₈₃

MATERIALS AND METHODS

SAMPLING

RESULTS

CATARACTS AND LENS HISTOLOGY

DISTAL INTESTINE HISTOLOGY

6a: Diploid control
6b: Triploid control
6c: Diploid organic Zn₁₈₃
6d: Triploid organic Zn₁₈₃

Intestinal morphology are labeled as follows: A: Serosa B: Muscularis C: Submucosa D: Lamina propria E: Goblet cell F: Absorptive vacuoles G: Epithelial layer

CONCLUSIONS

- 1. Zinc requirements for fish tended to be higher in the inorganic diets when compared with organic diets
- 2. No significant growth differences were seen between treatments for zinc type, amount, or ploidy
- **3.** Organic diets yielded significantly higher lipid retention and wholebody protein content
- 4. Skeletal and operculum deformities varied between treatments, more deformities were observed in triploids
- No significant differences were seen in cataract formation or lens histology
- 6. No significant differences were seen in distal intestine histology

ONGOING ANALYSES AND FUTURE RESEARCH

I Ongoing analyses:

- Mineral analysis
- Fatty acid analysis
- Gene expression
 - Oxidative stress related
 - Bone development
 - Growth
- Determination of antioxidant enzyme activity
- Bone density (X-ray)

I Future research:

- Digestibility study
- Increase genetic variability
- Fillet quality

<section-header>ACKNOWLEDGEMENTS

- ARI staff
- I Dr. Seunghan Lee
- I Dr. Erin Scott, Texas A&M University
- I Dr. Nicholas Romano, University of Arkansas at Pine Bluff
- Scott Williams and Daniel Korbel