Redband Trout (Oncorhynchus mykiss gairdneri)

Zhongqi Chen¹, Shawn Narum², Brian Small¹, Ronald Hardy¹

¹ Hagerman Fish Culture Experiment Station, University of Idaho; ² Columbia River Inter-Tribal Fish Commission

Mechanisms of thermal adaptation in Redband Trout (Oncorhynchus mykiss gairdneri)

Summary

- Desert redband trout have superior thermal performance.
 - Tolerate higher temperatures
 - Maintain performance across broader thermal ranges
 - Better cardiac performance

- “Winners” of future climate change may need a “strong” heart to deliver O₂ for sustained aerobic metabolism.

- Putative genomic regions (e.g. CERK gene) for thermal tolerance and adaptation are identified

Collections and Study Area

- Desert
 1) Desert:
 - Little Jacks Creek, Duncan Creek; William Creek
 2) Cool Montane:
 - Keithley Creek; Whiskey Jack Creek; Dry Creek
 3) Cold Montane:
 - Callahan Creek; Fawn Creek; Upper Mann Creek

Habitat characterization

Stream temperature

- Critical thermal maximum (CT_max)
 - Desert
 - Cool Montane
 - Cold Montane

Thermal tolerance

- RMR: routine metabolic rate
- MMR: maximum metabolic rate

Desert redband trout have superior thermal performance:

1. Higher critical thermal maximum
2. Broader thermal window for optimum aerobic activities.

Cardiac function

- Desert redband trout have better cardiac performance:
 - 10°C
 - 15°C
 - 20°C

Genomic markers of thermal adaptation

- Over 5 million SNPs
- Over 50% genome coverage
- Chromosome 4: 8.2M (CERK gene) associated with cardiac function

Future Work and Work in Progress

- Include more acclimation temperatures to study phenotypic plasticity
- Examine adaptive traits related to growth and reproduction

Reference and acknowledgments

1. S. Narum et al., 2010. Molecular Ecology, 19, 4622–4637;
2. Z. Chen et al., 2018. Molecular Ecology, 19, 4622–4637;
4. Z. Chen & S. Narum 2019. In prep;

The authors thank Jeongwhui Hong, Tim Boyle, Seunghan Lee, Hossain Sakhawat and Yang Gang for their help in the field.