MYTH-BUSTING DEPT. OF DEFENSE FUNDING OPPORTUNITIES

RESEARCH AND FACULTY DEVELOPMENT FACULTY SUCCESS SEMINAR SERIES

Carly Cummings, PhD, CPRA
Director, Office of Research and Faculty Development

Expert Guest: John Russell, PhD
Associate Director, Center for Advanced Energy Studies (CAES)

Please note that this session is being recorded
This seminar is being recorded

- Please stay muted until the Q&A portion at the end of the seminar
- Type questions into the chat box and these will be addressed during the Q&A portion
OFFICE OF RESEARCH AND FACULTY DEVELOPMENT

We provide proposal development assistance across the spectrum*

Meet goals in the UI strategic plan – grow research and creative efforts across all disciplines

Reach out to discuss ideas with us and request service – uidaho.edu/orfd

*Not including budget preparation

All services are optional and are granted on a first come, first served basis
OBJECTIVES

IN THIS SESSION, WE WILL DISCUSS:

- Overview of some U.S. Department of Defense funding agencies
 - Air Force Office of Scientific Research (AFOSR)
 - Army Research Office (ARO)
 - Office of Naval Research (ONR)
OBJECTIVES

IN THIS SESSION, WE WILL DISCUSS:

- New funding opportunities for your research program
- Hear from the expert – Dr. John Russell
 - How to work with and get funding from DoD agencies

BUSTING THE MYTHS
Mission: Leading the discovery, development, and delivery of warfighting technologies for our air, space, and cyberspace force

- Discover, shape, and champion basic research that impacts the Department of the Air Force
- Partner with universities and industry ($150M annually)
- 70% of AFOSR's total budget is spent on funding basic research grants with academia
- Video: How to engage
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFOSR)

Research thrusts

▪ Aerodynamics & propulsion
▪ Structural science & materials performance
▪ Mathematical, data & control sciences
▪ Artificial intelligence, computer & neuro sciences
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFOSR)

Research thrusts (cont’d)

- Physical sciences
- Electromagnetics, plasmas & lasers
- Chemistry & materials sciences
- Biosciences
Notable outcomes & successes

- Stealth technology
- GPS
- Human-computer interface
- 82 Nobel laureates
- 1,600 patents
- 74 spin-off companies
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFOSR)

Improving proposal competitiveness

- 3 simple steps (website)
 1. Review Broad Agency Announcements* (BAAs) and scope idea based on listed needs
 2. Draft and submit a short idea statement to the Program Officer listed in the BAA and discuss research
 - How to contact a PO video (35”)
 3. Submit a full proposal
 - Strong technical merit, Air Force relevance, solid budget justification
BROAD AGENCY ANNOUNCEMENTS (BAA)

- As the name suggests...broad
 - Across the entire agency (86 pg. for AFOSR)
 - Research areas of interest are outlined – it is up to the PI to find the match
- Often open for 1+ years
- Deadlines can vary with specific program – read the BAA carefully!
Open April 30, 2020

No expiration date noted (open until new BAA released)

- “You are highly encouraged to contact the Program Officer, preferably by email, prior to developing a full proposal, to briefly discuss the current state-of-the-art, how your research would advance it, the approximate cost, and if there are any specific submission target dates.”
VIEW GRANT OPPORTUNITY

FA9550-19-S-0003

Research Interests of the Air Force Office of Scientific Research
Department of Defense
Air Force Office of Scientific Research

<table>
<thead>
<tr>
<th>CFDA</th>
<th>Competitor ID</th>
<th>Opportunity Package(s) Currently Available for this Funding Opportunity:</th>
<th>Opportunity Package ID</th>
<th>Opening Date</th>
<th>Closing Date</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>RTB-1.1</td>
<td>Controlled Matter Physics, Quantum Systems, and Control Theory</td>
<td>PK000251720</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-3</td>
<td>Dynamics and Control Theory</td>
<td>PK000249956</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-1.4</td>
<td>Laser and Optical Physics</td>
<td>PK000249506</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-2.4</td>
<td>Molecular Dynamics and Therapeutic Chemistry</td>
<td>PK000250690</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-2.1</td>
<td>Southern Office of Aerospace Research and Development</td>
<td>PK000250806</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-2.3</td>
<td>Energy, Combustion, and Turbulent Thermodynamics</td>
<td>PK000251480</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-1.5</td>
<td>High-Speed Aerodynamics</td>
<td>PK000251483</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-1.7</td>
<td>Electromagnetics</td>
<td>PK000251497</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-2.1</td>
<td>Biophysics</td>
<td>PK000251492</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-2.3</td>
<td>Mechanics of Multifunctional Materials and Microsystems</td>
<td>PK000250803</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>IGx</td>
<td>European Office of Aerospace Research and Development</td>
<td>PK000250805</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-1.6</td>
<td>Plasma and Electromagnetic Physics</td>
<td>PK000250808</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-1.5</td>
<td>Optoelectronics and Photonics</td>
<td>PK000249596</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-2.6</td>
<td>Space Propulsion and Power</td>
<td>PK000249994</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-1.1</td>
<td>Computational Cognition and Machine Intelligence</td>
<td>PK000249566</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-2.5</td>
<td>Information Assurance and Cybersecurity</td>
<td>PK000249566</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-2.6</td>
<td>Mathematical Optimization</td>
<td>PK000249570</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-2.10</td>
<td>Cognitive and Computational Neuroscience</td>
<td>PK000249877</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-1.2</td>
<td>Atomic and Molecular Physics</td>
<td>PK000249879</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-2.6</td>
<td>Human Performance and Biomedical Systems</td>
<td>PK000249986</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-1.2</td>
<td>Computational Mathematics</td>
<td>PK000250997</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-2.5</td>
<td>Complex Networks</td>
<td>PK000249976</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-1.7</td>
<td>Quantum Information Systems</td>
<td>PK000249980</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-1.4</td>
<td>Unsteady Aerodynamics and Turbulent Flow</td>
<td>PK000249561</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-1.7</td>
<td>Multiscale Structural Mechanics and Prognosis</td>
<td>PK000249861</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-2.6</td>
<td>Trust and Influence</td>
<td>PK000249873</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>OHRC</td>
<td>Other Innovative Research Concepts</td>
<td>PK000249889</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-1.1</td>
<td>Materials with Extreme Properties</td>
<td>PK000249878</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-1.10</td>
<td>Ultrashort Pulse Laser-Matter Interactions</td>
<td>PK000249884</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTA-1.9</td>
<td>Asian Office of Aerospace Research and Development</td>
<td>PK000250998</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-1.1</td>
<td>Remote Sensing</td>
<td>PK000249882</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-1.3</td>
<td>Space Science</td>
<td>PK000249563</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTB-1.6</td>
<td>Organic Materials Chemistry</td>
<td>PK000249587</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTA-1.1</td>
<td>Agile Science of Test and Evaluation (ASET)</td>
<td>PK000249595</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTA-2.4</td>
<td>Dynamic Data and Information Processing</td>
<td>PK000249565</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTA-2.7</td>
<td>Science of Information</td>
<td>PK000249571</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTA-2.5</td>
<td>Quantum Materials Systems and Applications</td>
<td>PK000249586</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTA-1.6</td>
<td>Aerospace Composite Materials</td>
<td>PK000249982</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTA-1.1</td>
<td>Dynamic Materials and Interactions</td>
<td>PK000249959</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
<tr>
<td>1.00</td>
<td>RTA-1.2</td>
<td>Optical and Electronics Materials</td>
<td>PK000249960</td>
<td>04/20/2022</td>
<td>03/20/2022</td>
<td>Preview</td>
</tr>
</tbody>
</table>
Types of funding mechanisms

- Traditional grants
- University Research Initiatives*
 - Multidisciplinary University Research Initiative (MURI), Defense University Research Instrumentation Program (DURIP)
- Special Programs*
- Young Investigator Programs (YIP) (video)
ARMY RESEARCH OFFICE (ARO)

- Founded in 1951
- Manage Army’s extramural research program
- Generates the new knowledge required to maintain technological superiority (ARO in Review – 2019 report)

 - Increase fundamental knowledge and understanding in the chemical, life, physical, engineering, materials, mechanical, computing, information, network, mathematical, earth, and social sciences, related to long-term national security needs.

 - The research funded is conducted at 250 universities across the country and around the world, with more than 1,100 individual researchers.
ARMY RESEARCH OFFICE (ARO)

Organizational structure similar to NSF – Directorates; description

- Physical Sciences Directorate
 - Divisions: Chemical Sciences, Life Sciences (including Social Science), Physics
- Engineering Sciences Directorate
 - Divisions: Electronics, Materials Sciences, Mechanical Sciences
- Information Sciences Directorate
 - Divisions: Computing Sciences, Network Sciences, Mathematical Sciences
Science and Technology in support of the U.S. Navy and Marine Corps

Organized into Departments (Code 31-35 for S&T)

- Program officers manage specific research efforts, but unique to ONR, program officers can pursue an idea from discovery to deployment because they have access to all three phases of developmental funding: basic research (6.1), applied research (6.2) and advanced technology development (6.3).

Naval Research and Development Framework (download here)

ONR Technology Areas: A-Z list here
Corrosion Control Technologies

The objective of the Office of Naval Research program is to develop corrosion-resistant alloys and coatings, corrosion-control and -prevention technologies, and processes to mitigate corrosion and its effects under sea water and marine environments.

The primary focus is to explore science-based understanding of corrosion damage evolution mechanisms, corrosion-informed materials concepts, and surface protection and modification sciences.

Research Concentration Areas

Specific areas of interest include:

- Corrosion-resistant materials
- Environmentally benign, advanced marine coatings
- Fundamental understanding of corrosion mechanisms and processes
- Multi-scale, corrosion phenomena models to predict corrosion behavior that enable corrosion-informed materials selection and design
- Surface-modification technologies

Research Challenges and Opportunities

- Understand factors that control the effects of additively manufactured alloy (AMA) defects, including the role of porosity connectedness, defect density, impurity segregation, and solidification structure and anisotropy on corrosion behavior
- Quantify non-equilibrium segregation of liquid phases, local chemistry and the effect of present carbide, oxide and sulfide during processing of AMAs
- Study microstructural characteristics that enhance resistance of AMAs to localized corrosion, especially pitting and crevice corrosion, hydrogen embrittlement and stress corrosion cracking
- Explore the process-microstructure-chemical/electrochemical properties linkages leading to a fundamental understanding of corrosion mechanism in AMAs
- Explore the relation of processing to microstructure, and microstructure and compositional evolution, the thermodynamic and kinetic properties of compositionally complex crystalline phases, grain and phase boundaries, and surfaces, especially as they relate to corrosion properties of compositionally complex alloys (CCAs)
- Study the energetics and kinetics of electrochemical reactions of CCAs at multiple length scales, and the characterization of these materials in corrosive environments
- Study the rates of compositional and structural complexity in reactivity, passivation and repassivation, the development and evolution of cracks, and the synergistic effects of compositional complexity and corrosion on crack propagation in CCAs

Program Contact Information

Name: Dr. Arun Panz
Title: Programs Officer
Department: Code 33
Email For Questions: arun.panz@onr.navy.mil
OFFICE OF NAVAL RESEARCH (ONR)

Code 31: Information, cyber, and spectrum superiority
- Math; electronics; computer & information sciences and their applications in command & control; communication; cyber & electronic warfare; intelligence, surveillance; and reconnaissance

Code 32: Ocean battlespace & expeditionary access
- S&T in oceanographic and meteorological observations; modeling/prediction in the battlespace environment; submarine detection/classification; mine warfare
Code 33: Mission capable, persistent & survivable naval platforms
- Develops and delivers technologies that enable superior warfighting and energy capabilities for naval forces, platforms, and undersea weaponry
- Material science, water desalination and purification

Code 34: Warfighter performance
- Enhances warfighter effectiveness and efficiency through bioengineered and biorobotic systems, medical technologies, improve manpower, personnel, training and system design
- Human-robot interaction, neural computation, biorobotics
OFFICE OF NAVAL RESEARCH (ONR)

Code 35: Aviation, force projection and integrated defense

- Supports the Navy’s power projection needs, fostering the technology development of naval aircraft, structures, propulsion, autonomy, energetics, directed energy and electric weapons

ONR BAA: https://apply07.grants.gov/apply/opportunities/instructions/PKG00263730-instructions.pdf

- Opening date: 10/08/2020; Closing date: 09/30/2021
OFFICE OF NAVAL RESEARCH (ONR)

https://www.onr.navy.mil/
DOD SPECIAL PROGRAMS

- Young Investigator Programs
- Summer Research Programs
Overview

- Supports the best and brightest early-career academic researchers whose scientific pursuits show outstanding promise for supporting the DoD agency, while promoting their professional development

- **ONR, AFOSR**

- $510,000 for 36-month period

- ONR FY19 FOA [here](#) – click ‘Expired’ tab and scroll; AFOSR solicitation is on [this](#) page

- Goal to publish FOA in Mar; proposals due in June
YOUNG INVESTIGATOR PROGRAMS (YIPS)

Eligibility

- PIs must be in their 1st or 2nd full-time tenure-track or tenure-track-equivalent academic appointment
- PIs must have received their PhD (or equivalent) on or after *Jan 1, 2013*
- PIs must be U.S. citizens, national, or permanent resident
YOUNG INVESTIGATOR PROGRAMS (YIPS)

Tips for success

- Become familiar with agency’s terminology and where your technology fits
- Review websites, attend national conferences, ask questions
- Research the Program’s interests and portfolio
- Contact PO before submitting the proposal
SUMMER FACULTY RESEARCH PROGRAMS

- 10-week paid program providing faculty members an opportunity to participate in research of mutual interest to faculty members and peers at a naval laboratory or warfare center
- Establish research relationships with R&D personnel of host lab
- Application process open! Deadline is Dec. 14, 2020
1. Find the labs that match your interest (2 maximum)
2. Reach out to the labs to access their suitability for your research.
3. Locate a mentor at the lab willing to host you (not required, but extremely helpful)
4. Develop a research statement that will align with the intended research the lab and your expertise
5. Create an applicant account and wait for verification email
6. Log-in to the online application and complete all applicable information
7. Provide the most recent (2-3 years) information from your CV in the spaces provided
8. Upload supplemental information
9. Submit your application
10. Reach out to the lab mentor and let them know that your application was submitted (only if you have been working with one)
SUMMER FACULTY RESEARCH PROGRAMS

AFOSR

- 8- to 12-week research residencies at participating Air Force research facilities for full-time science, math, and engineering faculty members
- Tips for applying (here); apply here (instructions here)
- Nov. 30, 2020 deadline
DOD UNIVERSITY RESEARCH INITIATIVES

- Defense Established Program to Stimulate Competitive Research (DEPSCoR)
- Defense University Research Instrumentation Program (DURIP)
- Multidisciplinary University Research Initiative (MURI)
DEFENSE ESTABLISHED PROGRAM TO STIMULATE COMPETITIVE RESEARCH (DEPSCOR)

- Created by Congress in FY90 DoD appropriation and authorized in 1994
 - Reauthorized in 2017
- “States or territories that received <60% of 1/50th of the total DoD S&E research obligations to U.S. IHE are eligible...”
Objectives

- **Enhance the capabilities** of institutions of higher education in eligible jurisdictions to develop, plan, and execute science and engineering research that is relevant to the mission of DoD

- **Increase the number of university researchers** in eligible jurisdictions capable of performing S&E research responsive to the needs of DoD

- **Increase the probability of long-term growth** in the competitively awarded financial assistance that IHE eligible jurisdictions from the Federal Government for S&E research
FY20 DEPSCOR

Solicitation Information

- Tri-service program: AFOSR, ARO, ONR
- Collaborative research grants
 - Mentee : mentor relationship*
- One white paper per Applicant/PI
- Strongly encouraged to talk with PO before submitting
- Security clearance and U.S. citizenship are not required
- ~12 proposals will be funded
FY20 DEPSCOR

Solicitation Information

- Applicant and Collaborator must be tenured or tenure-track faculty members at an IHE in an eligible jurisdiction
- PI must be full-time faculty member who has never served as a PI on a prior DoD-funded award
- Collaborator has served as a PI on a DoD-funded research award since Oct. 2013
- Mentorship
Topics in FY20 FOA

<table>
<thead>
<tr>
<th>Topic Number</th>
<th>SERVICE</th>
<th>TOPIC AREA</th>
<th>PROGRAM OFFICER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AFOSR</td>
<td>Cognitive and Computational Neurosciences</td>
<td>Dr. Hal Greenwald</td>
</tr>
<tr>
<td>2</td>
<td>AFOSR</td>
<td>Space Science</td>
<td>Dr. Julie Moses</td>
</tr>
<tr>
<td>3</td>
<td>AFOSR</td>
<td>Agile Science of Test and Evaluation</td>
<td>Dr. Brett Pokines</td>
</tr>
<tr>
<td>4</td>
<td>AFOSR</td>
<td>Materials with Extreme Properties</td>
<td>Dr. Ali Sayir</td>
</tr>
<tr>
<td>5</td>
<td>ARO</td>
<td>Propulsion and Energetics</td>
<td>Dr. Ralph Anthenien</td>
</tr>
<tr>
<td>6</td>
<td>ARO</td>
<td>Computational Architectures and Visualization</td>
<td>Dr. Michael Coyle</td>
</tr>
<tr>
<td>7</td>
<td>ARO</td>
<td>Optoelectronics</td>
<td>Dr. Michal Gerhold</td>
</tr>
<tr>
<td>8</td>
<td>ARO</td>
<td>Probability and Statistics</td>
<td>Dr. Michael Lavine</td>
</tr>
<tr>
<td>9</td>
<td>ARO</td>
<td>Molecular Structure and Dynamics</td>
<td>Dr. James Parker</td>
</tr>
<tr>
<td>10</td>
<td>ARO</td>
<td>Social and Behavioral Science</td>
<td>Dr. Lisa Troyer</td>
</tr>
<tr>
<td>11</td>
<td>ARO</td>
<td>Bionics</td>
<td>Dr. Albena Ivanisevic</td>
</tr>
<tr>
<td>12</td>
<td>ONR</td>
<td>Aerospace Structures and Materials</td>
<td>Dr. Anisur Rahman</td>
</tr>
<tr>
<td>13</td>
<td>ONR</td>
<td>Ocean Acoustics</td>
<td>Dr. Kyle Becker</td>
</tr>
<tr>
<td>14</td>
<td>ONR</td>
<td>Machine Learning, Reasoning, and Intelligence</td>
<td>Dr. Behzad Kamgar-Parsi</td>
</tr>
<tr>
<td>15</td>
<td>ONR</td>
<td>Power Electronics, Electromagnetism, Adaptive & Machinery Controls and Advanced Machinery Systems</td>
<td>Mr. Lynn Petersen</td>
</tr>
</tbody>
</table>
Important Dates for FY20 Competition

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
<th>Eastern Standard Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcquTrak website open for registration and submission</td>
<td>15 June 2020</td>
<td>NLT 11:59PM</td>
</tr>
<tr>
<td>(https://acqupass.noblis.org/ApplyDEPSCoR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Questions Regarding White Paper and Supporting Documentation (submitted by)</td>
<td>29 June 2020</td>
<td>NLT 11:59PM</td>
</tr>
<tr>
<td>AcquTrak Registration (required by)</td>
<td>14 September 2020</td>
<td>NLT 11:59PM</td>
</tr>
<tr>
<td>White Paper and Supporting Documentation submission on AcquTrak website (required by)</td>
<td>21 September 2020</td>
<td>NLT 11:59PM</td>
</tr>
<tr>
<td>(https://acqupass.noblis.org/ApplyDEPSCoR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notification of White Paper Selection</td>
<td>20 November 2020</td>
<td>NLT 11:59PM</td>
</tr>
<tr>
<td>Request for written feedback on your white paper submission (required by) (Email request to: DEPSCoR-feedback@noblis.org)</td>
<td>27 November 2020</td>
<td>NLT 11:59PM</td>
</tr>
<tr>
<td>Full Proposal Submission (by invitation only) electronically on Grants.gov website (submitted by)</td>
<td>15 February 2021</td>
<td>NLT 11:59PM</td>
</tr>
<tr>
<td>Notification of Selection for Award</td>
<td>12 April 2021</td>
<td>NLT 11:59PM</td>
</tr>
</tbody>
</table>
DEFENSE UNIVERSITY RESEARCH INSTRUMENTATION PROGRAM (DURIP)

Administered through the AFOSR, ARO, and ONR

- Choose agency based on a match with their research interests

Acquisition of major equipment to augment current or develop new research capabilities in support of DoD-relevant research

- $50K - $1.5M (no cost share)
- Purely instructional equipment are not eligible
- General use computing equipment and construction costs are not allowable

Expired FY21 RFP available [here](#) (goal to publish FY22 FOA in Feb; deadline in May)
DEFENSE UNIVERSITY RESEARCH INSTRUMENTATION PROGRAM (DURIP)

Review Criteria (of equal importance)

- **Impact** of the proposed equipment on research DoD funds, plans to fund and/or the likelihood your proposed equipment will enhance current research capabilities or establish new research capabilities relevant to DoD.

- Importance and priority to DoD missions of research the proposed equipment will support.

- Potential of the proposed equipment to enhance institution’s ability to educate future scientists and engineers through research conducted with the proposed equipment in disciplines important to DoD.
MULTIDISCIPLINARY UNIVERSITY RESEARCH INITIATIVE (MURI)

Administered through the AFOSR, ARO, and ONR

- Choose agency based on a match with their research interests

Supports research teams who research efforts intersect more than one science and engineering discipline.

- $1.25M/year for up to 5 years
- Research topics described in the MURI announcement
- Typically underpin dual use defense technologies that are critical to national defense and also good potential for commercial application
- Expired FY21 BAA available here (goal to publish FY22 FOA in Mar.; white papers due in May; proposal due in Sep.)
INTERESTED? NEXT STEPS

- Explore websites, BAAs, talk with others
- Contact Program Officer
- RFD can assist you!
 - Email: ored-rfdteam@uidaho.edu
 - Url: https://www.uidaho.edu/research/about/orfd

REQUEST RFD SERVICES
Q&A: ASK THE EXPERT: JOHN RUSSELL

- How do DoD agencies differ from NSF?
- Advice for someone new to applying to DoD funding opportunities?
- Benefits from participating in a Summer Research Program?
Thank you for attending!

See you next time!

FALL 2020

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept. 9</td>
<td>NSF Research Traineeship (NRT) Program: Tips for Writing a Competitive Proposal</td>
</tr>
<tr>
<td>Sept. 23</td>
<td>NSF CAREER All Year: Getting Ready to Apply</td>
</tr>
<tr>
<td>Sept. 30</td>
<td>NSF EPSCoR II Track-2: Tips for Writing a Competitive Proposal</td>
</tr>
<tr>
<td>Oct. 7</td>
<td>Find Funding Opportunities: Introduction to Pivot</td>
</tr>
<tr>
<td>Oct. 21</td>
<td>NSF CAREER All Year: Getting Started on Your Proposal</td>
</tr>
<tr>
<td>Nov. 4</td>
<td>UPDATE: Mountain West Clinical and Translational Research-Infrastructure Network (MW CTR-IN) Funding Opportunities</td>
</tr>
<tr>
<td>Nov. 18</td>
<td>Myth-busting Department of Defense Funding Opportunities</td>
</tr>
<tr>
<td>Dec. 2</td>
<td>M. J. Murdock Trust’s Commercialization Initiation Program: Tips for Writing a Competitive Proposal</td>
</tr>
</tbody>
</table>

SPRING 2021

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan. 13</td>
<td>Find Funding Opportunities: Introduction to Pivot</td>
</tr>
<tr>
<td>Jan. 27</td>
<td>Funding Research and Scholarly Work in the Humanities</td>
</tr>
<tr>
<td>Feb. 3</td>
<td>Idaho is an EPSCoR State - What This Means for Supporting Your Research</td>
</tr>
<tr>
<td>Feb. 17</td>
<td>How to Develop and Deliver an Effective Pitch</td>
</tr>
<tr>
<td>Mar. 3</td>
<td>Assessing Your Grant Readiness</td>
</tr>
<tr>
<td>Mar. 24</td>
<td>Early Career Faculty Research - Grant Programs</td>
</tr>
<tr>
<td>Apr. 7</td>
<td>USDA NIFA AFRI: Tips for Getting Started with Your Next Proposal</td>
</tr>
<tr>
<td>Apr. 14</td>
<td>Developing Data Management Plans - Best Practices and Resources</td>
</tr>
<tr>
<td>Apr. 28</td>
<td>Equipment Grant Programs: An Overview</td>
</tr>
</tbody>
</table>

WE GUIDE THE DEVELOPMENT OF COMPETITIVE EXTERNAL GRANT PROPOSALS

Office of Research and Faculty Development

Email:ORED-RD@uidaho.edu
Website: uidaho.edu/orfd

ZOOM ID
uidaho.zoom.us/j/95865360877

Scan this to zoom in on us.