Tight Oil & Gas Development – A Geologist’s View of Hydraulic Fracturing

Legal Aspects of Hydraulic Fracturing
Idaho Law Review
Boise, ID
March 29, 2013
Today’s Presenter:

John P. Imse, RG – Geologist with over 30 years of experience in consulting.

jimse@norwestcorp.com
www.norwestcorp.com
The Technology

• Hydraulic Fracturing is a proven technology with a long history:
 – 1903 - First industrial use in Mt. Airy, NC for separation of granite blocks in quarry operations.
 – 1947 - First oil and gas applications in US.
 – 1949 - Commercial Applications by Halliburton.
• Pairing Directional Drilling with Hydraulic Fracturing allows for tapping the source rock, breaking the trap, while creating the reservoir interval.
• Directional and horizontal drilling techniques enable tapping relatively thin units along a horizontal well bore that may exceed 5000 feet.
• Directional and Horizontal Drilling enable multiple horizontal wells drilled/developed from a single pad location – 4 to 8 wells from a single drilling pad not uncommon.
• Each well may have from a few as 4 to as many as 20 fracturing intervals.
Example Horizontal Well

- Treatable Groundwater Aquifers
- Private Well
- Municipal Water Well: < 1,000 ft.
- Additional steel casing and cement to protect groundwater
- Protective Steel Casing

EXPLORER the Depths of our Experience
Multi-Well Pad Coverage

EXPLORE the Depths of our Experience
• When evaluating historical heavy industry practices – e.g. solvent use/handling – we were accustomed to generational or decade-scale change and advances.
• Historically we relied on Federal rules/regulation that were years in development and implementation when looking for benchmarks in industrial practices.
• This is an industry that started, grew, and matured under State regulation. States are more nimble and quick to respond, change, and enact rules/regulations.
Barnett Shale - 2004

Black = vertical wells
Red = horizontal wells

Source: EIA
Black = vertical wells
Red = horizontal wells

Source: EIA
The Sources of Regulations are Changing/Evolving

- Historically, industry regulated on State basis by the “Oil & Gas Commission”
- Now the Industry must satisfy a greater number of agencies, including *inter alia*:
 - State oil & gas commission
 - State environmental agency
 - State department of natural resources
 - State department of water resources
 - State engineers office
 - USEPA
- All data and reports submitted to State agencies now available on open web sites.
Potential for Exposures

Drilling

Development

Production
Site Preparation

- Drilling Pad Construction
 - Engineered sites
 - Liners and berms for spill control
 - Structural panels for the work surface

- Materials Management
 - Chemicals handled in large volume containers
 - On-site spill response teams
Water Needs

• Large volumes of water required for drilling as well as hydraulic fracturing.
 – Dependent on basin – 80,000 to 500,000 gals to drill the well
 – 4 million to 6 million gallons per well for the hydraulic fracturing process
 – Sources vary widely – surface water and groundwater – potable and non-potable
 – Water availability an issue in the arid West – Spring 2012 auction of CO River Basin “excess” to energy producers rather than agriculture
Drilling and Casing Schedule
Site Specific Design
Fracture Prediction and Mapping

- Detailed design task:
 - \textit{In situ} stresses
 - Texture of rock that may control fracture propagation
 - Nearby geologic structures – e.g. faults
 - Desired extent (horizontal and vertical) of fractures
 - Number of fracture intervals
- Goal is to maximize fracturing in desired interval
- Fractures extending beyond area of interest are potential problem:
 - Potential for fracture fluids to migrate from production unit
 - Potential for loss of hydrocarbons – adverse effect on well economics
- Real-time fracture mapping
Real-Time Fracture Mapping

Source: ESG Solutions
Hydraulic Fracturing Fluid

• Typical for >98% of fluid to be water and sand/proppant
• Chemicals required to:
 – condition formation
 – corrosion inhibitors to protect casing materials
 – friction reducers to enhance pressure transmission to fractures
 – biocides to prevent bacterial fouling
 – See www.fracfocus.org
• Formulation will be vendor and basin dependent.
• No longer valid to state that additives are unknown or unregulated
 – During the past 2.5 years, states have adopted disclosure requirements
 – Those states account for approximately 90% of the current drilling in the US
 – When in doubt, you can even obtain this information from company web sites
Components of Additives

- Historically the additives used for fracturing included hazardous components:
 - Diesel was used historically as a carrier solvent for components such as linear gels (e.g. guar) (USEPA, 2004, 816-R-04-003).
 - Components included use of compounds such as pentachlorophenol as biocide (see USEPA and API studies in 1986 regarding RCRA Subtitle C exemption).
- The result: Additives now comprised of greener and more benign components
 - guar-based gels using food grade mineral oil carriers
 - Use of compounds such as glutaraldehyde as a biocide – also used as disinfectant for sterilizing medical equipment
- Evolution of additives driven both by public/marketplace perception as well as focus on recycling and re-usability of wastewater
Fluid Management

- Flow Back and Produced fluids may contain the above as well as constituents characteristic of formation – elevated Total Dissolved Solids, Naturally Occurring Radioactive Materials, metals, and organics
- Historically water managed as direct discharge or trucked to POTW
- Dramatic changes and evolution of management over last 24 months
 - POTW not an option in most cases
 - Reclamation of brine or deep well injection most common alternatives
- Industry is recycling and re-using flowback water – both onsite and trucking to subsequent drill site
On-Site Waste Management

- Historically - On-site storage in open lagoons

- More common now to see closed storage vessels with vapor capture and control
Off-Site Waste Management

- Class II UIC wells permitted, regulated, and operated for disposal of oil & gas derived waste fluids.
- Many of these wells (and there are tens of thousands across the US), may have been installed for enhanced recovery operations – not all are operated for receipt of waste as commercial disposal wells.
- Recent concerns (e.g. - volumes of waste and induced seismicity) resulting in significant changes to the State permitting processes, for example:
 - Ohio - added studies may include seismic surveys for fault identification, monitoring of seismic activity, and “Any such other tests that the [division] chief deems necessary.”
Baseline Sampling

- Only a few years ago – Baseline groundwater and surface water sampling were not required and were non-routine
- State-specific requirements now in place for surface water and groundwater – incl. residential wells – sampling prior to and after well development
- Some operators this is SOP
- During recent CO rulemaking the proposal developed and sponsored by Shell and the Environmental Defense Fund provided the basis for the final rules.
- USEPA study for retrospective and prospective sites ongoing – likely 2014 before we see results.
Growing Concern Over Air Emissions:

- Fugitive emissions from operations in addition to wells are believed to be causing increased concentrations of ground level ozone
 - Pinedale, WY
 - Uintah County, UT
 - Dallas-Ft. Worth
 - Haynesville Basin in East Texas

- Study of the Denver-Julesburg Basin in CO conducted under the direction of NOAA (Petron, et al., 2012):
 - Samples collected both fixed and mobile platforms.
 - Study concluded that 2.3-7.7% of methane produced in core of production area lost to venting.
 - Previous, bottom-up studies had estimated a lower loss rate – 1.7% of production.

- World Bank study information (*Energy & Environment* EnergyWire 7/10/2012) identifies US as #5 Flaring Country in the world largely as a result of the flaring of methane in the Bakken Field in MT/ND
Airborne Emissions Controls

- Traditional completions posed potential source of fugitive emissions
- CO and WY have had regulations in place to control fugitive emissions during drilling, development and production (Green Completions)
- See also PA requirements for emission inventory/reporting (December 2012) and new rules on gas compressor stations (February 2013)
- Final CAA NSPS MACT (April, 2012) addresses Upstream and Midstream emissions – this will become standard nationwide
• Then and now.....
EXPLORE the Depths of our Experience

Bakken Drill Site
Marcellus Drill Site
Barnett Drill Site
D-J Basin Wells – near Denver