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EXECUTIVE SUMMARY 

The study develops energy consumption and emission models for multiple vehicle modes and 

rail transit trains in support of environmentally sustainable transportation systems, such as 

eco-routing, eco-driving, eco-transit, and eco-freight systems. Given that conventional 

gasoline-powered light duty vehicles ( LDVs) have been modeled by previous studies [1, 2], 

the proposed study mainly focuses on Heavy Duty Vehicles (HDVs), alternative fuel vehicles 

and rail trains. Specifically, electric LDVs and trains, conventional diesel, hybrid-electric and 

compressed natural gas (CNG) buses as well as heavy duty diesel trucks are thoroughly 

investigated.  

The models are developed based on Virginia Tech Comprehensive Power-based Fuel 

consumption Model (VT-CPFM) for fuel-powered vehicles and Virginia Tech 

Comprehensive Power-based electric vehicle Energy consumption Model (VT-CPEM) for 

electric energy vehicles and trains. The VT-CPFM modeling framework characterizes fuel 

consumption as a second-order polynomial function of vehicle power so that circumvent the 

bang-bang control in the modeling practice. A bang-bang control suggests that a driver has to 

accelerate the vehicle at ‘‘full throttle” or decelerate at ‘‘full braking” to achieve the 

minimum fuel consumption level, which is not realistic. The VT-CPEM modeling framework 

models the electric energy consumption as a polynomial function of vehicle speed and 

acceleration, and also instantaneously captures the energy regeneration resulting from 

braking by characterizing the regenerative efficiency as an exponential function of 

deceleration level. The models are validated by comparing estimated fuel/energy 

consumption and emissions against field observations and/or the estimates of other state-of-

the-art models. The results demonstrate that the proposed models can accurately predict 

energy/fuel consumption and emissions consistent with field measurements. The resulting 

models will be used to develop eco-friendly strategies for multimodal transportation systems.  

This research effort resulted in the following peer-reviewed publications: 

1. Wang, J. and Rakha, H.A., 2016. Fuel consumption model for conventional diesel 

buses. Applied Energy, 170, pp.394-402. 

2. Fiori, C., Ahn, K. and Rakha, H.A., 2016. Power-based electric vehicle energy 

consumption model: Model development and validation. Applied Energy, 168, 

pp.257-268. 

3. Wang, J. and Rakha, H.A., 2016. Modeling Fuel Consumption of Hybrid Electric 

Buses: Model Development and Comparison with Conventional 

Buses. Transportation Research Record: Journal of the Transportation Research 

Board, (2539), pp.94-102. 

4. Wang, J. and Rakha, H.A., 2016. Heavy-Duty Diesel Truck Fuel Consumption 

Modeling. In Transportation Research Board 95th Annual Meeting (No. 16-2147). 

5. Abdelmegeed, M., Rakha, H.and Ahn., K. 2016. Modeling Light Duty Vehicle 

Emissions Exploiting VT-CPFM Fuel Estimates. Presented at Transportation 

Research Board 95th Annual Meeting. 

6. Abdelmegeed, M. and Rakha, H. K. 2016. Heavy-Duty Diesel Truck Emission 

ModelingModeling Light Duty Vehicle Emissions Exploiting VT-CPFM Fuel 

Estimates. Presented at Transportation Research Board 96th Annual Meeting. 
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PROBLEM OVERVIEW 

Transportation has become one of the major contributors to energy consumption and 

emissions production. As demonstrated by [3, 4], transportation activities account for 28% of 

the total U.S. energy  use and 33.4% of carbon dioxide (CO2, the major component of GHG 

emissions) production. Furthermore, the energy use also results in severe air pollution (e.g. 

HC, CO, NOx), significantly deteriorating air quality and dwelling environment. The 

intensification of global energy security, climate change and air pollution stimulates the 

development of innovative strategies to reduce energy consumption and emissions from the 

transportation sector.  Towards this motivation, accurate, efficient and simple models are 

needed to provide robust estimates in support of quantifying potential reductions in 

energy/fuel consumption and emission levels induced by implementing eco-friendly 

strategies.  

Among the existing modeling efforts for conventional fuel-powered vehicles, most 

are operated at a macroscopic or microscopic level. The macroscopic models, such as 

MOBILE 6.2 [5], were demonstrated to produce unreliable estimates due to their inability of 

capturing transient vehicle activities [6]. Consequently, they are incapable of being utilized 

for the energy and environmental assessment of traffic operational projects. Microscopic 

models were introduced in order to better capture the variability associated with vehicle 

dynamics. A wide range of instantaneous models have been developed using in-laboratory or 

field data, such as MOVES, VT-Micro [7], the Passenger Car and Heavy Duty Emission 

Model (PHEM) [8], VERSIT [9], the Comprehensive Modal Emissions Model (CMEM) [10, 

11]. The majority of the aforementioned models, however, have limitations in use. For 

example, MOVES, which was developed as an inventory model based on a wide range of 

data sources, is capable of providing robust estimates. Nonetheless, it requires massive user 

inputs for each run, which significantly increases the time required to run multiple scenarios 

and large networks. CMEM generally underestimates fuel consumption levels for 

acceleration maneuvers; more importantly, it characterizes fuel consumption as a linear 

function of vehicle power, which produces a bang-bang type of control system. A bang-bang 

control may arise when the partial derivative of the response with respect to the control 

variable is not a function of the control variable, resulting in that drivers have to accelerate 

the vehicle at ‘‘full throttle” or decelerate at ‘‘full braking” to achieve the minimum fuel 

consumption level, which is not correct in reality. PHEM and VERSIT also produce a bang-

bang control. VT-Micro is capable of circumventing the bang-bang control; however, it 

requires a large amount of in-laboratory or field data to be calibrated, which is cost-

prohibitive and time-consuming. The existing fuel consumption models either produce a 

bang–bang type of control system or cannot be easily calibrated or efficiently used. 

Consequently, a simple, accurate and efficient model is needed. 

For electric-powered vehicles, they are expected to gain a significant market share in 

the near future to reduce fossil fuel use and GHG emissions and to mitigate air pollution. 

Extensive studies performed by the University of California, Berkeley predict that 

approximately 2.5 million Electric Vehicles (EVs) will be present on American roads by 

2020 [12]. The introduction of EVs will significantly reduce vehicle fuel consumption and 

emission levels. In order to quantify the network-wide impacts of EVs, there is a need to 

develop simple and accurate electric energy consumption models. This study partly attempts 

to address this need by developing the modeling framework applicable to both on-road 
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vehicles and rail trains that can be easily calibrated and implemented in transportation 

simulation software and in-vehicle and Smartphone eco-driving and eco-routing applications.  

A number of models have been developed to estimate EVs or Electric Trains (ETs) 

energy consumption levels. For EVs, Muratori et al. [13] proposed a model centered on the 

estimation of the total primary energy consumption associated with personal transportation in 

the U.S. including different vehicle types to evaluate the impact of plug-in electric vehicles 

on the electric power grid at the distribution level. In particular, three main modeling steps 

were introduced: modeling of the behavior of drivers, generating realistic driving profiles, 

and simulating energy consumption of different vehicle types. Wu et al. [14] in their study 

first present a system which can collect in-use EV data and vehicle driving data. 

Approximately 5 months of EV data were collected and these data were used to analyze both 

EV performance and driver behavior. The analysis showed that EVs are more efficient when 

driving on in-city routes than driving on freeway routes. Based on the analysis results, an 

analytical EV power estimation model is developed. Hayes et al. [15] developed simplified 

EV models to quantify the impact of battery degradation with time and vehicle HVAC loads 

on the total vehicle energy consumption. The models were compared with published 

manufacturer specifications under various route and driving conditions, and for various 

driving cycles.  Shibata et al. [16] and Abousleiman et al. [17] in their papers evaluate the 

energy consumption of an EV considering a constant regenerative braking efficiency. 

Halmeaho et al. [18] developed an analysis focused on an Electric City Bus Energy Flow 

Model but in this study the magnitude of the regenerative braking is limited due to the 

effective powertrain capacity, traction and eventually the bus stability. For ETs, most widely 

available measures are those estimated on an annual gross average basis [19, 20], which are 

not capable of representing the discrepancy of energy efficiency associated with route and 

vehicle characteristics, passenger loading, speed profiles and weather and track conditions. 

Some of the researchers [21-25] developed the models sensitive to the aforementioned 

system characteristics; however, they failed to capture instantaneous energy regeneration.  

Though there have been numerous studies on the modeling of EVs or ETs energy 

consumption, these studies were of limited application. For example, they either focused on 

macro-project evaluations or simplified well-to-wheels analyses. None of these models were 

developed in a manner that would allow them to be applied without collecting vehicle-

specific data while at the same time accurately model vehicle transient behavior, model 

energy regeneration at a microscopic level, and are simple enough to be incorporated within 

traffic simulation software or Smartphone applications. The proposed EV and ET energy 

models were developed to address this urgent need. 

In a nutshell, the study is motivated to develop accurate, simple and efficient 

fuel/energy consumption and emission models which circumvent the bang-bang control and 

can be easily calibrated using readily available data and also can be efficiently implemented 

in traffic simulation software or Smartphone applications.  
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APPROACH AND METHODOLOGY 

Conventional diesel, hybrid-electric and compressed natural gas (CNG) buses as well as 

heavy duty diesel trucks were modeled using VT-CPFM modeling framework, and electric 

LDVs and trains were modeled using the VT-CPEM framework [26].  
 

VT-CPFM modeling framework 

As a power-based model, the VT-CPFM framework uses a bottom-up approach. Namely, the 

parameters, such as resistance force, used for power estimation are first computed by a 

resistance force module; and thereafter the vehicle power is estimated with an engine power 

module which characterizes the vehicle power as a function of the resistance forces. The fuel 

consumption is then estimated using a fuel rate module that models the fuel consumption as a 

polynomial function of the vehicle power. Finally, the emissions for HC, CO, NOx were 

mathematically characterized as a function of fuel consumption and speed. 

The resistance force is computed considering a combination of aerodynamic, rolling, 

and grade resistance forces, as expressed in Eq.(1): 

 𝐑(𝐭) =
𝝆

𝟐𝟓.𝟗𝟐
𝑪𝒅𝑪𝒉𝑨𝒇𝒗(𝒕)𝟐 + 𝟗. 𝟖𝟎𝟔𝟔𝒎

𝑪𝒓

𝟏𝟎𝟎𝟎
(𝒄𝟏𝒗(𝒕) + 𝒄𝟐) + 𝟗. 𝟖𝟎𝟔𝟔𝒎𝑮(𝒕)                           (𝟏) 

where R(t) is the vehicle resistance force (N); 𝜌 is the air density at sea level at a temperature 

of 15 ℃ (59 ℉) (equal to 1.2256 kg/m3); 𝐶𝑑 is the drag coefficient (unitless) which is 

determined by truck type, 0.78 is used for the tested trucks (no aerodynamic aids) in this 

study [27]; 𝐶ℎ is the correction factor for altitude (unitless), calculated by 1-0.085H (H is the 

altitude in km); 𝐴𝑓is the frontal area of trucks (m2), 10.7 m2 is used based on the truck type; 

v(t) is the velocity in km/h; m is the vehicle mass in kg; Cr, c1 and c2 are the rolling 

resistance parameters (unitless), which vary as a function of road surface type and conditions 

as well as vehicle tire type; their typical values could be obtained from [27, 28]. G(t) is the 

instantaneous road grade which is determined by elevation profiles. 

The power exerted at any instant t is formulated by [29] as expressed in Eq.(2):  

𝐏(𝐭) =
𝑹(𝒕) + (𝟏 + 𝝀 + 𝟎. 𝟎𝟎𝟐𝟓𝝃𝒗(𝒕)𝟐)𝒎𝒂(𝒕)

𝟑𝟔𝟎𝟎𝜼
𝒗(𝒕)                                                                        (𝟐) 

where P(t) is the vehicle power in kW; 𝜆 is the mass factor accounting for rotational masses, a 

value of 0.1 is used for heavy duty vehicles (HDVs) [30, 31]; 𝜉 is the gear ratio and assumed 

to be zero in this paper due to the lack of engine gear data. a(t) is the instantaneous 

acceleration (m/s2); η is the driveline efficiency. 

The general structure of the fuel consumption model was specified as a two-regime 

mechanism. Rakha et al. [2] developed two VT-CPFM frameworks (VT-CPFM-1 and VT-

CPFM-2) each of which is a two-regime model and characterizes fuel consumption as a 

second-order polynomial function of vehicle power. The use of a second order model ensures 

that a bang-bang control does not result from the application of the model. Furthermore, the 

model higher than second-order may not be calibrated using standard drive cycles given the 

complexity of the higher order model. Consequently, a second-order model achieves a good 

trade-off between model accuracy and applicability. Only VT-CPFM-1 is utilized to develop 
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the model in this study given that VT-CPFM-2 requires additional gear data which is typically 

not available. The VT-CPFM-1 framework is expressed in Eq.(3):  

𝐅𝐂 = {
𝜶𝟎 + 𝜶𝟏𝑷(𝒕) + 𝜶𝟐𝑷(𝒕)𝟐,         ∀𝑷(𝒕) ≥ 𝟎   

𝜶𝟎 ,                                                ∀𝑷(𝒕) < 𝟎   
                                                                              (𝟑) 

Here FC(t) is the fuel consumption rate at instant t [l/s]; 𝜶𝟎, 𝜶𝟏 and 𝜶𝟐 are the vehicle specific 

model coefficients that remain to be calibrated, as demonstrated by Eq. (4, 5, 6). 

𝛂𝟎 =
𝑷𝒇𝒎𝒑𝝎𝒊𝒅𝒍𝒆𝒅

𝟐𝟐𝟏𝟔𝟒(𝑯𝑽)𝑵
                                                                                                                                    (𝟒) 

α2 =
(𝐹𝑐𝑖𝑡𝑦−𝐹ℎ𝑤𝑦

𝑃𝑐𝑖𝑡𝑦

𝑃ℎ𝑤𝑦
)−(𝑇𝑐𝑖𝑡𝑦−𝑇ℎ𝑤𝑦

𝑃𝑐𝑖𝑡𝑦

𝑃ℎ𝑤𝑦
)𝛼0

𝑃𝑐𝑖𝑡𝑦
2 −𝑃ℎ𝑤𝑦

2
𝑃𝑐𝑖𝑡𝑦

𝑃ℎ𝑤𝑦

                                                                                               (5) 

𝛂𝟏

=
𝑭𝒉𝒘𝒚 − 𝑻𝒉𝒘𝒚𝜶𝟎 − 𝑷𝒉𝒘𝒚

𝟐 𝜶𝟐

𝑷𝒉𝒘𝒚

                                                                                                                (𝟔) 

Here 𝑃𝑓𝑚𝑝 is the idling fuel mean pressure (400,000 Pa); d is the engine displacement (l); 

HV is the fuel lower heating value (43,200,000 J/kg for diesel fuel and 43,000,000 J/kg for 

gasoline fuel); N is the number of engine cylinders; 𝜔𝑖𝑑𝑙𝑒 is the engine idling speed (rpm); 

Fcity and Fhwy (l) are the fuel consumed for the EPA city and highway drive cycles; Pcity, 𝑃𝑐𝑖𝑡𝑦
2 , 

Phwy, 𝑃ℎ𝑤𝑦
2  are the sum of the power and power squared over the EPA city- and highway 

cycle respectively; Tcity and Thwy are the duration of EPA city and highway drive cycles (s). 

Most of the parameters typically correspond to either physical characteristics of the vehicles 

or fuel type, so that they are stated as specifications by the vehicle manufacturers and readily 

available. 

Nonetheless, the fuel economy, used to estimate Fcity and Fhwy, cannot be obtained in 

this study given that HDVs do not report their fuel economy for standard drive cycles (e.g. 

the EPA highway and city drive cycles). Consequently, the HDVs model, unlike LDVs, 

currently cannot be developed using publicly available data; instead, real-world data were 

gathered. 

The VT-CPFM model was extended to modeling HC, CO, NOx emissions based on the 

estimated fuel consumption levels. Different model specifications were tested to determine 

which parameters would be used in the emission model. Stepwise regression analysis was used 

to determine the mathematical functionality. The final emission modeling framework is 

illustrated in Eq. (7), in which the square root of the emission is characterized as a polynomial 

function of speed and fuel consumption, and 𝒂, 𝒃, 𝒄, 𝒅, 𝒆, 𝒇, 𝒈, 𝒉 are model parameters to be 

calibrated. The square root model guarantees that the emission results will always be positive. 

√𝑬(𝒕) = 𝒂 + 𝒃. 𝒗(𝒕) + 𝒄. 𝑭(𝒕) + 𝒅. 𝒗(𝒕). 𝑭(𝒕) + 𝒆. 𝑭(𝒕)𝟐 + 𝒇. 𝑭(𝒕)𝟑 + 𝒈. 𝒗(𝒕). 𝑭(𝒕)𝟐

+ 𝒉. 𝒗(𝒕). 𝑭(𝒕)𝟑                                                                                                          (𝟕) 

The conventional LDVs emission model had similar formula but more simplified 

after excluding the speed parameter. Also, future model generalization will be easier by 

depending on fuel parameter solely. A variety of proposed models underwent calibration and 

validation procedures before choosing the final model. The models varied between linear, 
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quadratic, cubic, logarithm and exponential functions. The main intention was to develop an 

accurate model that does not generate negative emissions. The square root model which is 

expressed in Eq. (8) was ultimately chosen as the best option to satisfy the criteria and the 

main objective. 

 

√𝐸(𝑡) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝑎. 𝐹(𝑡) + 𝑏. 𝐹(𝑡)2 + 𝐹(𝑡)3                                                                 (8) 

 

Where 𝐹(𝑡) is the estimated fuel from VT-CPFM model at time t, 𝐸(𝑡) is the CO or HC or 

NOx at time t and 𝑎, 𝑏 𝑎𝑛𝑑 𝑐 are the model regression coefficients. 

 

VT-CPEM modeling framework 

The VT-CPEM model is a quasi-steady backward highly-resolved power-based model. 

Specifically, the inputs required by the model are the following: the instantaneous speed and 

the vehicle or train characteristics. The outputs of the model are the following: the energy 

consumption (EC) [kW h/km] by the vehicle for a specific drive cycle, the instantaneous 

power consumed [kW], and the state of charge (SOC) of the electric battery [%] (for EVs). 

The modeling approach is illustrated for EVs and ETs respectively.  

 

Electric Vehicle Modeling Approach  

The following formulation is used to develop the model for EVs. As this is a backward model, 

initially, the power at the wheels is computed using Eq. (2). The power at the electric motor 

(𝐏𝐄𝐥𝐞𝐜𝐭𝐫𝐢𝐜 𝐦𝐨𝐭𝐨𝐫) is then computed, given the power at the wheels, considering the driveline 

efficiency (𝛈𝐃𝐫𝐢𝐯𝐞𝐥𝐢𝐧𝐞 = 𝟎. 𝟗𝟐) [2] and, assuming that the efficiency of the electric motor is 

𝛈𝐄𝐥𝐞𝐜𝐭𝐫𝐢𝐜 𝐦𝐨𝐭𝐨𝐫 = 𝟎. 𝟗𝟏. This is a reasonable assumption according to [26]. Also, in this range, 

91% is the value that minimizes the average error between the empirical data and the estimated 

energy consumption values. While the vehicle is in traction mode the energy flows from the 

motor to the wheels. In this case the power at the electric motor is higher than the power at the 

wheels and the power at the wheels is assumed to be positive. Alternatively, in the regenerative 

braking mode, energy flows from the wheels to the motor. In this case, the power at the electric 

motor is lower than the power at the wheels and the power is assumed to be negative. While 

decelerating the electric power is negative and the regenerative braking energy efficiency (𝛈𝐫𝐛) 

is computed when 𝐏𝐄𝐥𝐞𝐜𝐭𝐫𝐢𝐜 𝐦𝐨𝐭𝐨𝐫 < 𝟎 using Eq. (9). 

PElectric motor < 0 → PElectric motor net(𝑡) = PElectric motor(𝑡) ∙ 𝜂𝑟𝑏(𝑡)                                     (9) 

Using this model it is possible also to estimate the final battery state-of-charge (SOC) 

[%] using Eq. (10) and (11): 

SOCFinal(𝑡) = 𝑆𝑂𝐶0 − ∑Δ𝑆𝑂𝐶𝑖(𝑡)                                                                                                  (10) 

𝚫𝑺𝑶𝑪𝒊(𝒕) = 𝑺𝑶𝑪𝒊−𝟏(𝒕)

−
𝐏𝐄𝐥𝐞𝐜𝐭𝐫𝐢𝐜 𝐦𝐨𝐭𝐨𝐫 𝐧𝐞𝐭(𝒕)

𝟑𝟔𝟎𝟎 ∙ 𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚𝑩𝒂𝒕𝒕𝒆𝒓𝒚
                                                                   (𝟏𝟏) 

Where 𝐏𝐄𝐥𝐞𝐜𝐭𝐫𝐢𝐜 𝐦𝐨𝐭𝐨𝐫 𝐧𝐞𝐭(𝒕) is the electric power consumed considering a battery efficiency of 

𝛈𝐁𝐚𝐭𝐭𝐞𝐫𝐲 = 𝟎. 𝟗𝟎 . 𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚𝑩𝒂𝒕𝒕𝒆𝒓𝒚 is the capacity of the battery in [Wh]. In particular, the 
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initial SOC is assumed to be 𝑺𝑶𝑪𝟎 = 𝟎. 𝟗𝟓. Given the SOC it is possible to compute the 

energy consumption (EC) in [kW h/km] using Eq.(12), here d is the distance in [km].  

EC [
𝑘𝑊ℎ

𝑘𝑚
] =

1

3,600,000
∫ PElectric motor net(𝑡)𝑑𝑡 ∙

1

𝑑
                                                               (12)

𝑡

0

 

The instantaneous regenerative efficiency (𝛈𝐫𝐛) in Eq. (9) can be computed using Eq. 

(13). 

ηrb(t) = {[𝑒
𝛼

|𝑎(𝑡)
−

|]
−1

,         ∀𝑎(𝑡) < 0   

0 ,                       ∀𝑎(𝑡) ≥ 0   

                                                                                    (13) 

Electric Train Modeling Approach 

The ETs energy modeling approach is similar to EVs in terms of energy regeneration. Namely, 

energy is only recovered during braking and the regenerated energy can be estimated using Eq. 

(13). However, rail trains are powered by either rail power system or catenary instead of in-

train battery. Consequently, there is no need to model SOC like EVs. Also, the power function 

has different model specification compared to EVs, as illustrated in Eq. (14). 

Pt =

[0.6 +
20
𝑤𝑝

+ 0.01𝑢2 +
𝐾𝑢2

2

𝑤𝑝𝑛𝑝
+ 20𝜃 + 70

𝑢2
2 − 𝑢1

2

𝐿 ] 𝑀𝑢2

375
× 0.746                                (14) 

Where Pt is the tractive power in [kW], 𝑤𝑝 is the weight per railcar axle [tons] consisting of 

empty railcar weight and total passenger weight (an average of 150 lbs is assumed for each 

passenger in this study), u1and u2 are the instantaneous speed of train [mph], K is train drag 

coefficient (0.07 as suggested by [32] for the test train in this study), np is the number of 

axles per rail car, L is distance moved in one second [ft], and 𝜃 is the positive track gradient 

(%). As demonstrated by [32], only positive gradient contributes to the grade resistance with 

an increase of 20 lbs/ton per percentage grade. The term 70
𝑢2

2−𝑢1
2

𝐿
 is the force exerted for 

acceleration or braking. M is the average weight of the moving train [tons], including the 

train curb weight and passenger weight.  

It should be noted that, in addition to tractive power, the head end power (HEP) 

should also be included in the total power consumption. Head end power (HEP) is used for 

train heating, ventilating and air conditioning (HVAC, idling energy consumption (kW)), 

computed by (maximum HEP per rail car × HVAC operating level × number of rail cars). 

The HVAC operating level could be assumed to be “normal” level which equals to one-third 

of maximum HEP. 

 

Data Collection and Preparation 

Diesel and Hybrid-Electric Buses 

The field data were collected by test driving the buses around the town of Blacksburg, 

Virginia. The test was conducted on two types of roads: US 460 (highway with a speed limit 

of 65 mi/h [104 km/h]) and local streets with speed limits ranging between 25 mi/h and 45 

mi/h (40–72 km/h) in order to cover a wide range of driving conditions. The test route 
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comprised a variety of uphill and downhill sections, and thus provided a suitable 

environment to test different engine load conditions.  

A total of 22 transit buses (14 diesel buses and 8 hybrid buses) were tested under 

similar ambient temperature conditions to minimize the impact of other external factors on 

the data. Specifically, the diesel buses were classified into four series (19XX, 62XX, 630X, 

and 632X). The hybrid buses were categorized into two series (601X and 602X). Within the 

same series, buses have identical vehicle properties, as illustrated in Error! Reference 

source not found. in which the vehicle specification information was provided by 

Blacksburg Transit. 

Table 1: Diesel and Hybrid Bus Information 

Bus 

series 

number 

Model 

year 

Make and model Length 

(ft) 

Engine 

model 

Horsepower 

(hp) 

Empty 

weight 

(lbs.) 

Fuel 

type 

19XX 2009 New Flyer SR-

1360 D40LFR 

40 ISL-07 250-330 28,300 Diesel 

62XX 2012 New Flyer SR-

1614 XD35 

35 ISL-

2010 

280-330 26,750 Diesel 

630X 2013 New Flyer SR-

1733 XD35 

35 ISL-

2010 

280-330 26,750 Diesel 

632X 2013 New Flyer SR-

1734 XD60 

60 ISL-

2010 

280-330 39,675 Diesel 

601X 2010 New Flyer 

Hybrid SR-1439 

DE40LFR 

40 ISL-07 280 31,140 Hybrid 

602X 2010 New Flyer 

Hybrid SR-

1440DE60LFR 

60 ISL-07 330 45,860 Hybrid 

The Hydraulics + Electrical + Mechanical (HEM) logger was used for data 

acquisition given its portability and capability of collecting data autonomously without any 

maintenance. The data were collected from ignition-on to ignition-off, and saved on a 

microSD card to be uploaded to a server via Wi-Fi. Up to 46 parameters were collected, six 

of which were employed for the proposed study: time stamp, vehicle speed, fuel consumption 

rate, latitude, longitude, and altitude. The data were recorded at a frequency of 2 Hz or 5 Hz 

and converted to a second-by-second basis. Seventy-five percent of the data set of each bus 

was taken for calibration and 25% for validation. 

The model was calibrated using general linear regression (GLR). Each bus was 

individually modeled, resulting in an individual parameter set. The parameter sets for all 

buses in the same series were then averaged to generate a composite (series) model. 

Error! Reference source not found. summarizes the parameters needed for model 

development. Some of the parameters, such as rolling resistance coefficient and driveline 

efficiency, were obtained from the literature; others were estimated based on the field data. It 

should be noted that the total mass of the bus is the sum of the vehicle curb weight and 

passenger load, which is computed as the product of the ridership and the average weight of 
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an individual passenger. In this study, 179 lb (81.5 kg) was assumed to be the average 

passenger weight. 

Table 2: Parameters Required for Diesel and Hybrid Bus Model Calibration 

Parameters Value Data source 

Drag coefficient (CD) 0.78 [27] 

Rolling coefficient (Cr) 1.25 [27] 

c1 0.0328 [27] 

c2 4.575 [27] 

Driveline efficiency (η) 0.94 [33] 

Frontal area (Af) 6.824 m2 Blacksburg Transit 

Altitude correction factor 

(Ch) 

N/A Estimated from field data 

Vehicle mass (m) N/A Estimated from field data 

Road grade (G) N/A Estimated from field data 

Acceleration (a) N/A Estimated from field data 

Ridership N/A Field collection 

Speed (v) N/A Field collection 

 

CNG Buses 

The majority of Los Angeles CNG bus fleet was modeled, as illustrated in Table 3. A total of 

nine bus series were investigated to cover a wide range of bus characteristics, each of which 

has the identical vehicle properties.  

Table 3: CNG Bus Information 

Bus Series 

Number 

Model 

Year 
Engine Make and Model 

Bus 

Empty 

Weight 

(lb) 

Seating 

Capacity 

Frontal 

Area 

(m2) 

3100-3149 2010 Cummins ISL G 29550 25 7.55 

5300-5522 2001 
DDC Series 50G & Cummins 

ISL G 
28000 40 7.38 

5600-6149 2013 Cummins ISL G 30916 38 7.44 

7000-7949 2000-2003 
DDC Series 50G, Doosan & 

Cummins ISLG 280 
31750 40 7.49 

7525-7599 2005 DDC Series 50G 31750 40 7.49 

7980-7999 2003 DDC Series 50G 29980 40 7.49 

8000-8099 2004-2005 Cummins ISL G 32500 46 7.38 

8100-8400 2008-2010 Cummins ISL G 32840 46 9.16 

9200-9594 2005-2008 Cummins L Gas Plus and ISLG 47970 57 9.5 

 

MOVES fuel consumption data were used for the VT-CPFM model calibration given 

a lack of in-field fuel consumption measurements for specific CNG bus models. The fuel 

consumption data were refined based on fuel type, engine categorization, vehicle classification 
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and vehicle model year for each bus series. Coupling with the trajectory data collected in 

Blacksburg, VA (collection procedure see “Diesel and Hybrid-Electric Buses”), the model was 

individually calibrated for each series.  

Table 4 summarizes the parameters needed for model development. Some of the 

parameters, such as rolling resistance coefficient and driveline efficiency, were obtained 

from the literature; others were either estimated based on the field data or provided by transit 

agency. 

Table 4: Parameters Required for CNG Bus Model Calibration 

Parameter Value Source 

Drag coefficient (Cd) 0.78 [27] 

Altitude correction factor (Ch) N/Aa Computed from field data 

Vehicle frontal area (Af) N/Aa Los Angeles Transit agency 

Vehicle speed (v) N/Aa Measured in field 

Mass (m) N/Aa Los Angeles Transit agency 

Rolling coefficient (Cr) 1.25 [27] 

c1 0.0328 [27] 

c2 4.575 [27] 

Road grade(G) N/Aa Computed from field data 

Acceleration (a) N/Aa Computed from field data 

Driveline efficiency (η) 0.94 [27] 

 

Heavy Duty Diesel Trucks (HDDTs) 

The data used for model development was collected and provided by the University of 

California (UC) at Riverside. The modeling effort is aimed to test the applicability of the VT-

CPFM framework to modeling the HDDTs within diverse vehicle-technology categories. 

Consequently, the recruited trucks should differ in a wide range of vehicle-specific 

parameters. To this end, a total of eight trucks were randomly recruited from used vehicle 

fleets in Southern California within test categories by vehicle model year and engine 

model/displacement, and a balance between horse power and manufacturers was attempted. 

The detailed vehicle information is presented in Table 5. For simplicity, the eight vehicles, 

from the top to the bottom of Table 5 are labeled as HDDT1, HDDT2, HDDT3, HDDT4, 

HDDT5, HDDT6, HDDT7, HDDT8 in the following sections. 

To measure real-world fuel consumption and emission levels more realistically, UC 

Riverside developed a mobile emissions research laboratory (MERL) that contains all 

instrumentation that is normally found in a regular vehicle emission laboratory. MERL 

weighs approximately 45,000 lbs and could serve as a truck load, so that it is capable of 

capturing the transient fuel consumption and emissions of a truck pulling it when the truck is 

being tested. Further details of MERL can be found in [11, 34] 

The HDDT test was conducted, by the Center for Environmental Research and 

Technology at UC Riverside, on the roadways in California’s Coachella Valley involving 

long, uninterrupted stretches of road, approximately at sea level. All trucks were tested using 

standard fuel from the same source. The data were recorded at a frequency of 1 Hz and a total 
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of 238,893 seconds of data were gathered with a collection of 8 parameters for each truck, 

including CO2, Carbon Monoxide (CO), Hydro Carbon (HC), Oxides of Nitrogen 

(NOx), velocity, fuel rate, engine speed and elevation. For more details on data collection 

procedure, the reader is encouraged to read [11].  

 

 

 

 

Table 6 presents the model inputs for calibration work.  

The raw fuel consumption rates were in g/s and then converted to l/s in order to use 

the VT-CPFM framework to develop the proposed model. Simultaneously, the unit of 

velocity was converted from mi/h to km/h for modeling purposes. Through comparing the 

second-by-second CO2 emissions with engine control unit (ECU) data (i.e. velocity, fuel rate 

and engine speed), a time delay was found to exist. Consequently, a time alignment was 

needed to synchronize the raw data. Since fuel rates have a strong relationship with 

emissions, they were utilized to determine the value of the required time shift. The proper 

time shift was determined through a cross-correlation analysis by which the correlation 

coefficients between CO2 and fuel data were estimated by a correlation function for a range 

of lag times. The lag times with the highest correlations were selected as the optimal events. 

It should be noted that the CO2 emission data collected for two of the trucks (HDDT 4 and 

HDDT 5) were invalid due to an error in the emission sensors of MERL during the collection 

process, and thus the model does not covered these vehicles. The aligned data was smoothed 

by a moving average filter, and outliers were identified using a cook’s distance procedure. 

Table 5: Heavy Duty Diesel Truck Vehicle Information 

Make/Model Model 

Year 

Engine 

Make/Model 

Rated 

Power (hp) 

Engine 

Size (l) 

Vehicle 

Mass (kg) 

International/ 

9800 SBA 

1997 Cummins/M11-

330 

330 10.8 7182 

Freightliner/ 

D120 

1997 DDC/C-60 360/400 12.7 7758 

Freightliner/ 

D120 

1997 Cummins/N14 370/435 14 7029 

Freightliner/ C-

120 

1997 Cummins/N14 370/435 14 

 

7623 

Freightliner/ C-

120 

1998 DDC/C-60 370/430 12.7 8028 

Freightliner/ 

FDL 120 

1999 DDC/C-60 470 12.7 8118 

Freightliner/ 

FDL 120 

1999 DDC/C-60 360 12.7 8118 

Freightliner/FLD 

120 

2001 CAT/C-15 475 14.6 7092 
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Table 6: Parameters Required for HDDT Model Calibration 

Parameter Value Source 

Drag coefficient (Cd) 0.78 [27] 

Altitude correction factor (Ch) N/Aa Computed from field data 

Vehicle frontal area (Af) 10.0 m2 [27] 

Vehicle speed (v) N/Aa Measured in field 

Mass (m) N/Aa Measured in field 

Rolling coefficient (Cr) 1.25 [27] 

c1 0.0328 [27] 

c2 4.575 [27] 

Road grade(G) N/Aa Computed from field data 

Acceleration (a) N/Aa Computed from field data 

Driveline efficiency (η) 0.94 [27] 

 

Electric Vehicles 

The data used for VT-CPEM calibration was based on the regenerative braking energy 

efficiency (ηrb) computed by Gao et al. (2007) [35]. The VT-CPEM estimates were 

compared against the regenerative efficiency values reported by Gao for five drive cycles, as 

shown in the second column of Table 7. The model parameter (α) in Eq. (11) was optimized 

to minimize the square error between model estimates and Gao’s reported values.  

Table 7: Average empirical regenerative braking energy efficiencies [52], modeled 

average regenerative braking energy efficiencies and corresponding errors. 

 

For validation efforts, the Nissan Leaf EV was tested given that this vehicle has been 

tested by a few research centers and thus experimental data on the energy consumption of 

this vehicle are available. The validation effort used data collected by the Joint Research 

Centre (JRC) of the European Commission [36] and by the DOE’s Advanced Vehicle 

Testing Activity (AVTA) of the Idaho Nation Laboratory (INL). The JRC data are related to 

the following driving cycles: the New European Driving Cycle (NEDC), the World-wide 

harmonized Light-duty Test Cycle (WLTC) and the World-wide harmonized Motorcycle 
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emission Test Cycle (WLMC). The New European Driving Cycle (NEDC) for passenger cars 

is the current legislative cycle used to determine whether a new Light Duty Vehicle (LDV) 

model meets EU environmental regulations. The United Nations Economic Commission for 

Europe (UNECE), in an attempt to develop a global test procedure, developed two test 

cycles, namely: the WLTC for LDVs and the WLMC for two wheelers.   

 

Figure 1: Driving cycles used for model validation 

 

Electric Trains 

The data required for calibration were classified into four categories: train information, travel 

activity data, route characteristics, and the information required to estimate the starting 

tractive effort. The data were provided by researchers at Georgia Tech who requested the 

data from the Tri-County Metropolitan Transportation District of Oregon (TriMet), the public 

agency that operates mass transit in the Portland Metropolitan area. TriMet responded with 

the information for the Metropolitan Area Express (MAX) Blue Line in Portland. The rolling 

stock characteristics are illustrated in  

 

 

Table 8, including the empty weight per rail car, number of axles per rail car, drag 

coefficient, seating capacity, passenger loading, number of cars per train, and HEP. It should 

be noted that the trains of the Chicago Brown Line in the table were tested for the model 

validation purpose. The driving cycle for MAX Blue Line, as illustrated in Figure 2, covers 

an entire trip of the MAX Blue Line from the starting station to the terminus with a total 

distance of 32.4 miles. Route characteristics were provided in terms of station name, milepost 

and elevation in order to generate the grade profile. Basically, the trains, either for MAX 

Blue Line or Chicago Brown Line, were tested on 115-lb good rails with good cross ties at 

normal temperature on sunny days. HEP, used for heating, ventilating and air conditioning, 
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was simplified to three operation levels: normal, high and maximum. Specifically, the normal 

level operates at a one-third of the maximum load (25 kW shown in  

 

 

Table 8), and the high level functions at two-thirds followed by the maximum level operates 

at full load. 

 

 

Table 8: Parameters Required for Electric Train Model Calibration 

Parameter Values 

MAX blue Chicago Brown 

Weight of empty car (tons) 54.5 27.15 

Number of axles per car 6 4 

Drag coefficient 0.07 0.07 

Seating capacity per car 64 49 

Percentage loading (peak period) N/A 87.5 

Percentage loading (off-peak period) N/A 25 

Daily percentage loading 43 45 

Number of cars per train (peak period) 2 6 

Number of cars per train (off-peak period) 2 4 

Maximum HEP per car 25 25 

HEP operating level Normal Normal 

 

The validation data was collected on Brown Line of Chicago rail system. A train on 

the Chicago subway system was tested by Georgia Tech researchers for the construction of a 

validation data set. Specifically, the test runs were conducted in the Brown Line to collect 

second-by-second GPS and position data, resulting in the driving cycle illustrated in Figure 

3. The line covers a section of 11.4 mi from the starting station to the terminus. The valid 

data were gathered on an 8.2 mile section of this route. Likewise, the test was also completed 

under the same weather and rail conditions as the MAX Blue Line, resulting in the identical 

bearing, track and weather resistance. The characteristics of the test train are illustrated in 

Table 8. Compared to the train running on the MAX Blue Line, they have lower railcar 

weight, seating capacity and the number of axles per car, while higher number of cars per 

train. It is worth noting that the number of cars per train and passenger load differ between 

peak and off-peak period, which results in different passenger weights and total train weights 

at different periods. 

The empirical energy used to validate the model was also obtained from the NTD 

2011 database, which is the average energy consumption of the Chicago subway system. 
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The resulting trip-based energy consumption was 36.44 kWh/VM and 0.13 kWh/SM. 

 Noticeably, the validation effort was made at both levels of kWh/VM and kWh/SM. Given the 

different passenger loads and the number of railcars between peak and off-peak periods, the 

energy consumption was estimated for each period respectively, and the average of the two 

periods was compared against the empirical measurements. It should be noted that the 

passenger loads during peak and off-peak periods were computed based on the daily 

passenger load which can be obtain from NTD database, see [22]. 

 

Figure 2: MAX Blue Line Driving Cycle 

 

Figure 3: Chicago Brown Line Driving Cycle 

 

Light Duty Vehicles (LDVs) 

The emission models were generated from the regression analysis of data from nine normally 

emitting vehicles. Data were collected at Oak Ridge National Laboratory (ORNL) from six 

LDVs and three LDTs. Table 9 represents these vehicles in terms of engine displacement, 

vehicle curb weight, and vehicle type [34]. In addition, the average engine size was 3.1 l, the 

average number of cylinders was 5.6, and the average curb weight was 3,219 lbs (1,460 kg) 

[34]. 

The data were gathered from the tested vehicles driven in the field in two opposite 

directions on the same road, in order to verify their maximum operating boundaries and 

minimize the grade and wind effects if they were present. Moreover, the testing was never 

performed under windy, rainy, or snowy conditions [34]. 

A chassis dynamometer was used to model the vehicle loadings for the measurement 

of vehicle emission rates for each vehicle in the laboratory within the attainable speed and 

acceleration range of each vehicle [34]. The gathered emission data were hydrocarbon (HC), 
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carbon monoxide (CO) and oxides of nitrogen (NOx). Data sets of speed, acceleration, 

emission rates, and fuel consumption were generated. 

For each vehicle there were between 1,300 and 1,600 individual measurements, 

where vehicle speeds ranged from 0-121 km/h (0 to 110 ft/s) at increments of 1 km/h, and 

vehicle acceleration measurements ranged from -1.5 to 3.7 m/s2 (-5 to 12 ft/s2) at increments 

of 0.3 m/s2. Emissions g/s (mg/s) and fuel consumption l/s (gal/h) for each acceleration and 

speed measurement were also collected [35]. 

Table 9: ORNL Test Vehicle Characteristics 

Year Make/Model 

Engine PFI= Port Fuel 

Injection  TBI= 

Throttle Body Injection 

Transmission M= 

Manual, L= 

Automatic with 

Lockup 

Curb Weight 

kg 

1988 Chevrolet Corsica 2.8 L pushrod V6, PFI M5 1209 

1994 Oldsmobile Cutlass Supreme 3.4 L DOHC V6, PFI L4 1492 

1994 Oldsmobile Eighty Eight 3.8 L pushrod V6, PFI L4 1524 

1995 Geo Prizm 1.6 L OHC 14, PFI L3 1116 

1993 Subaru Legacy 2.2 L DOHC flat 4, PFI L4 1270 

1997 Toyota Celica 1.8 L DOHC 14, PFI L4 1143 

1994 Mercury Villager Van 3.0 L pushrod V6, PFI L4 1823 

1994 Jeep Grand Cherokee 4.0 L pushrod 16, PFI L4 1733 

1994 Chevrolet Silverado 5.7 L pushrod V8, TBI L4 1823 

 

The ORNL data underwent calibration and validation procedures via the k-fold cross 

validation method. The k-fold cross validation method divides the dataset into k subsets. At 

each iteration, one of the k subsets serves as the test set and the rest of the subsets execute the 

training procedure. This method was applied to CO, HC and NOx data for each vehicle where 

the average coefficients and coefficient of determination were calculated. 

The estimated fuel consumption results from VT-CPFM were first tested against the 

measured fuel to find the coefficient of determination. Subsequently, the instantaneous 

estimated fuel consumption result was introduced in each model as the main parameter. 

The resulting slope and R2 for each vehicle were generated from linear regression 

between measured fuel and estimated fuel, as illustrated in Table 10. All the vehicles had 

very good fit, with R2 above 0.9. The predicted emission levels were processed by utilizing 

the estimated fuel from the VT-CPFM model after the calibration for each vehicle. 

Table 10: Results of Estimated Fuel from VT-CPFM 

Make/Model Slope R2 
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Chevrolet Corsica 1.2 0.95 

Oldsmobile Cutlass Supreme 0.92 0.93 

Oldsmobile Eighty Eight 1.2 0.91 

Geo Prizm 1.4 0.89 

Subaru Legacy 1.32 0.9 

Toyota Celica 1.2 0.95 

Mercury Villager Van 1.29 0.9 

Jeep Grand Cherokee 1.5 0.94 

Chevrolet Silverado 1.6 0.95 

 

 

RESEARCH FINDINGS 

Diesel and Hybrid Buses 

The resulting models are illustrated in Table 11Table 11. The impact of road grade and 

vehicle load on the estimated fuel consumption as it varies with cruise speed, has been 

analyzed. As demonstrated by Error! Reference source not found., the model, in general, 

represents fuel consumption as a bowl-shaped function of vehicle speed at non-negative 

grade levels, suggesting that optimum cruise speeds are achieved within the lower bound and 

upper bound of the speed range. Specifically, Error! Reference source not found. 

characterizes the optimum cruise speed as it varies with road grade, demonstrating that 

higher uphill grades result in a lower optimum cruise speed, whereas steeper downhill roads 

require a higher cruise speed to minimize fuel consumption level (which is not recommended 

for safety purposes). Error! Reference source not found. summarizes the impact of vehicle 

load on the optimum cruise speed. Basically, heavier vehicles accrue lower optimum speeds 

when moving uphill and higher when moving downhill. It is worth noting that, as 

demonstrated by Error! Reference source not found.b, the optimum speeds remain 

constant with an increase in vehicle weight when the road grade is −4%, −6% and −8%. This 

is attributed to the fact that the analysis is performed only for the speed range of 0–100 km/h, 

and, at these grade levels, the optimum speeds reach the maximum level at a low vehicle 

load. In addition, the optimum speeds are demonstrated by Error! Reference source not 

found.a (uphill) to be more sensitive to vehicle load at higher grade levels.  

Table 11: Diesel and Hybrid Bus Fuel Consumption Models 

Bus series number α0 α1 α2 

19XX 1.66E-03 8.68 E-05 1.00E-08 

62XX 1.13E-03 5.69 E-05 1.00E-08 

630X 9.76E-04 6.44 E-05 1.00E-08 

632X 1.41E-03 8.21 E-05 1.00E-08 

601X 1.00E-03 5.18 E-05 1.00E-08 
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602X 1.38E-03 6.22 E-05 1.00E-08 

 

         Figure 4: Fuel consumption vs. cruise speed at different grades (diesel and hybrid 

buses) 
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(a) 

 

(b) 

Figure 5: Impact of vehicle weight on optimum fuel economy cruise speed at different 

grade levels (diesel and hybrid buses): (a) uphill; (b) downhill. 

The developed model’s estimates for each series were compared against the field 

measurements of a real bus in that series as well as the predictions from CMEM and 

MOVES. Furthermore, the variation of fuel consumption with cruise speed was tested and 

compared with that of CMEM. 

As summarized in Table 12Error! Reference source not found., VT-CPFM and 

CMEM can generate approximately accurate estimates by having proximate coefficient of 

determination (R2); however, CMEM produces a bang-bang type of control. MOVES 

produces the least accurate estimates given that it is designed for conformity use instead of 

instantaneous analysis. Furthermore, the slopes of the regression lines of model estimates 

versus field measurements demonstrate that VT-CPFM and CMEM, in general, 

underestimate fuel consumption levels, while VT-CPFM can provide better estimates by 

having higher slope values. MOVES generates an underestimate for some series while 

overestimating for others, which is explained by the fact that the buses employed by the 

MOVES database are a composite of numerous bus categories rather than the specific type 

used in this study.  

Table 12: Diesel and Hybrid Bus Model Validation 

Bus 

series 

No. 

Convex 

(VT- 

CPFM): 

R2  

Convex 

(VT- 

CPFM): 

Slope 

Concave 

(VT-

CPFM): 

R2 

Concave 

(VT-

CPFM): 

Slope 

CMEM: 

R2 

CMEM: 

Slope 

MOVES: 

R2 

MOVES: 

Slope 
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19XX 0.81 0.78 0.82 0.81 0.81 0.66 0.74 0.82 

62XX 0.78 0.77 0.80 0.88 0.80 0.76 0.74 1.20 

630X 0.75 0.83 0.76 0.75 0.72 0.73 0.68 1.06 

632X 0.79 0.80 0.80 0.85 0.80 0.69 0.70 0.60 

601X 0.63 0.79 0.63 0.75 0.63 0.67 0.57 1.13 

602X 0.69 0.90 0.69 0.90 0.70 0.82 0.67 0.76 

 

In validating the model, a comparison was made to CMEM, as demonstrated in 

Figure 6, which gives two example results. The proposed model generates an optimum cruise 

speed consistent with CMEM and produces the same bowl-shaped curve as a function of 

cruise speed. Specifically, the optimum cruise speed ranges between 39 and 47 km/h for all 

of the tested buses for grades varying from 0% to 8% (lower than LDVs: 60–80 km/h), and 

decreases with the rise of grade and vehicle load. 

 

(a) 

 

(b) 

Figure 6: Fuel consumption varying with cruise speed, VT-CPFM vs. CMEM: (a) diesel 

bus (632X); (b) hybrid bus (602X). 
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CNG Buses 

The resulting models are illustrated in Table 13. The sensitivity of model estimates to 

road grade and vehicle load has been analyzed. The example results were presented in 

Error! Reference source not found. and For the validation purpose, the trajectory data 

independent of calibration dataset was used. The model estimates were instantaneously 

compared against the MOVES fuel consumption. As illustrated in Figure 9, the VT-CPFM 

model can predict fuel consumption consistent with MOVES measurements by following the 

peaks and valleys of the data. Statistically, the models produce R2 values of 0.85 for most of 

the bus series, demonstrating a good model fit.  

 

Figure 9: Instantaneous CNG bus model validation 

Furthermore, fuel consumption varying with cruise speed was also tested and 

compared with MOVES. As demonstrated by Figure 10, the example result indicates that the 

proposed model produces the consistent bowl-shaped curve as a function of cruise speed. 

Specifically, the optimum cruise speed ranges between 39 and 46 km/h for all of the tested 

bus series varying grades from 0% to 8%, which is similar to conventional and hybrid buses. 

. Specifically, the model, similar to conventional and hybrid buses, represents fuel 

consumption as a bowl-shaped function of vehicle speed at non-negative grade levels, 

suggesting that optimum cruise speeds are achieved within the lower bound and upper bound 

of the speed range. For the validation purpose, the trajectory data independent of calibration 

dataset was used. The model estimates were instantaneously compared against the MOVES 

fuel consumption. As illustrated in Figure 9, the VT-CPFM model can predict fuel 

consumption consistent with MOVES measurements by following the peaks and valleys of 

the data. Statistically, the models produce R2 values of 0.85 for most of the bus series, 

demonstrating a good model fit.  
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Figure 9: Instantaneous CNG bus model validation 

Furthermore, fuel consumption varying with cruise speed was also tested and 

compared with MOVES. As demonstrated by Figure 10, the example result indicates that the 

proposed model produces the consistent bowl-shaped curve as a function of cruise speed. 

Specifically, the optimum cruise speed ranges between 39 and 46 km/h for all of the tested 

bus series varying grades from 0% to 8%, which is similar to conventional and hybrid buses. 

 summarizes the impact of vehicle load on the optimum cruise speed. Basically, heavier 

vehicles accrue lower optimum speeds when moving uphill and higher when moving 

downhill. Also, for a given vehicle load, steeper roads result in lower optimum cruise speed.  

Table 13: CNG Bus Fuel Consumption Model 

Bus Series Number α0 α1 α2 

3100-3149 1.729 1.08E-01 1.00E-05 

5300-5522 2.058 1.36E-01 1.00E-05 

5600-6149 1.718 1.04E-01 1.00E-05 

7000-7949 2.046 1.21E-01 1.00E-05 

7525-7599 1.716 1.01E-01 1.00E-05 

7980-7999 1.728 1.07E-01 1.00E-05 

8000-8099 1.724 9.86E-02 1.00E-05 

8100-8400 1.725 9.70E-02 1.00E-05 

9200-9594 1.728 6.71E-02 1.00E-05 
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Figure 7: Fuel consumption vs. cruise speed at different grades (CNG bus) 

 

 

Figure 8: Impact of vehicle weight on optimum fuel economy cruise speed at different 

grade levels (CNG bus) 

For the validation purpose, the trajectory data independent of calibration dataset was 

used. The model estimates were instantaneously compared against the MOVES fuel 

consumption. As illustrated in Figure 9, the VT-CPFM model can predict fuel consumption 

consistent with MOVES measurements by following the peaks and valleys of the data. 

Statistically, the models produce R2 values of 0.85 for most of the bus series, demonstrating a 

good model fit.  
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Figure 9: Instantaneous CNG bus model validation 

Furthermore, fuel consumption varying with cruise speed was also tested and 

compared with MOVES. As demonstrated by Figure 10, the example result indicates that the 

proposed model produces the consistent bowl-shaped curve as a function of cruise speed. 

Specifically, the optimum cruise speed ranges between 39 and 46 km/h for all of the tested 

bus series varying grades from 0% to 8%, which is similar to conventional and hybrid buses. 

 

Figure 10: Fuel consumption varying with cruise speed, VT-CPFM vs. MOVES. 

 

Heavy Duty Diesel Trucks (HDDTs) 

HDDT Fuel Consumption Modeling Results 

Each tested truck was individually modeled. The resulting models are illustrated in Table 14. 

The effects of road grade and vehicle weight on the optimum fuel economy cruise speed 

were evaluated. As illustrated in Figure 11, the model produces a bowl-shaped curve as a 

function of cruise speed and higher road grades result in higher fuel consumption levels, 

which is similar to LDVs and buses. 
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Heavier vehicles, as demonstrated in Figure 12, have higher optimum cruise speeds 

when moving downhill while lower when moving uphill. It should be noted that, in Figure 

12a, optimum cruise speeds remain constant with an increase in vehicle weight when the 

road grade is -8%, -6% and -4%. This is because the sensitivity analysis was performed only 

for the speed range of 0-100 km/h and the optimum cruise speeds already reached the 

maximum level when vehicle weights were at a low level (e.g. 17,000 kg). Furthermore, 

Figure 12b clearly indicates that the optimum cruise speeds are more sensitive to vehicle 

weight at higher grade levels.  

Table 14: HDDT Fuel Consumption Models 

 

 

Figure 11: HDDT Fuel consumption vs. cruise speed at different grades 



                                                                                                                        TranLIVE 

 Energy Consumption and Emission Modeling    26 

 

(a) 

(b) 

Figure 12: Impacts of vehicle weight on the optimum fuel economy cruise speed at 

different grade levels (HDDT) 

 



                                                                                                                        TranLIVE 

 Energy Consumption and Emission Modeling    27 

12 

 

(a) HDDT 1 

 

(b) HDDT 2 

Figure 13: HDDT model validation 

 

Table 15: HDDT Model Validation 

Truck 

Type 

VT-CPFM 

(concave) 

VT-CPFM 

(convex) 

CMEM MOVES 

R2 Slope R2 Slope R2 Slope R2 Slope 

HDDT1 0.82 0.93 0.8 0.87 0.87 0.78 0.72 0.42 

HDDT2 0.83 0.81 0.81 0.76 0.87 0.75 0.76 0.39 

HDDT3 0.84 0.92 0.83 0.81 0.9 0.78 0.77 0.42 

HDDT4 0.87 0.91 0.86 0.88 0.9 0.77 0.78 0.42 

HDDT5 0.66 0.75 0.64 0.69 0.71 0.65 0.57 0.39 

HDDT6 0.78 0.89 0.77 0.86 0.83 0.72 0.72 0.38 

HDDT7 0.81 0.82 0.81 0.78 0.85 0.64 0.74 0.35 

HDDT8 0.84 0.86 0.84 0.84 0.89 0.79 0.78 0.43 

In validating the proposed model, the variation of fuel predictions over cruise speed 

was compared against CMEM estimates, as illustrated in Figure 14 which gives one example 

result. The two models have highly consistent bowl shaped curves as a function of cruise 

speed, demonstrating that the proposed model can produce robust fuel estimates. 

Specifically, the optimum cruise speed ranges between 32-52 km/h (lower than LDVs: 60-80 

km/h) for all of the test trucks varying the grade level from 0% to 8%, and moves towards the 

negative direction with the increase of vehicle load and grade level as demonstrated by 

Figure 12a. 
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Figure 14: HDDT model impact of cruise speed on fuel consumption levels: VT-CPFM 

vs. CMEM 

 

CO2 can be estimated from the carbon balance equation using the fuel consumption, 

HC and CO estimates. Given that the magnitude of CO2 emissions is significantly higher 

than HC and CO emissions, the fuel consumption level is thus the primary factor that affects 

CO2 emissions. As demonstrated in [2], CO2 emission is linearly related to fuel consumption. 

Eq.(15) was used to capture the relationship between CO2 and fuel predictions. The model 

was firstly calibrated for each truck with CO2 in g/s and fuel consumption in l/s, and the 

values of θ were then averaged over individual models to generate the average model given 

that the relationship between CO2 and fuel consumption is only related to fuel type rather 

than vehicle type. The value of 2070 was used to compute CO2 emissions from fuel 

consumption estimates. It is found that model estimates are in general consistent with field 

measurements, as the example results illustrated in Figure 15. The results of other validation 

efforts are summarized in Table 16 which has an R2 values ranging between 0.74 and 0.85. In 

general, the model provides reliable CO2 predictions. Noticeably, the model cannot be 

validated for HDDT 4 and HDDT 5 due to a lack of valid CO2 field measurements, and the 

model performance is thus not discussed for these vehicles. 

𝛉 =
𝑪𝑶𝟐(𝒕)

𝑭𝑪(𝒕)
                                                                                                                                       (𝟏𝟓) 
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Figure 15: CO2 estimation using fuel consumption model (HDDT 1) 

Table 16: CO2 Emission Model Validation 

Truck Classification Coefficients of determination 

(R2) 

Slope 

HDDT 1 0.78 0.95 

HDDT 2 0.85 0.72 

HDDT 3 0.81 0.82 

HDDT 4 NA NA 

HDDT 5 NA NA 

HDDT 6 0.74 0.73 

HDDT 7 0.81 0.65 

HDDT 8 0.79 0.82 

 

HDDT Emission Modeling Results 

Like fuel consumption modeling, each testing truck was individually modeled for the three 

types of pollutant emissions HC, CO and NOx. The sample modeling coefficients are 

represented in Table 17.  

Table 17: HDDT Pollutant Emission Models 

Emission a B C d e f g h 

CO -0.023 0.003 58.967 -1.089 -3201.70 70.879 47595 -1209.50 

HC 0.035 0.001 11.219 -0.216 -796.41 16.847 22888 -456.31 

NOx 0.049 0.002 100.098 -1.017 -10536.00 161.680 339250 -5640.50 
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The models were tested using the dataset independent of the calibration data. Due to 

the space limitation, this report only presents the example results for one truck; namely, 

HDDT 1. The results are illustrated in Figure 16 to represent the behavior of emissions as a 

function of VT-CPFM fuel consumption and speed. It is found that emissions increase with 

the increasing fuel consumption, and the highest emission levels occur at the peak of fuel 

consumption. NOx has the highest level of emissions and is the most well-distributed 

emission compared with CO and HC. NOx makes up the largest portion of diesel emissions at 

more than 50% because diesel engines are lean combustion engines and the concentration of 

CO and HC is minimal [37]. 

The VT-CPFM emission model maintains consistency using the same model to 

predict emissions. The accuracy of the model was evaluated by estimating the coefficient of 

determination (R2) of CO, HC, and NOx for the eight trucks. Table 18 shows R2 values for 

each truck across the three emissions and the average values for each emission. NOx has the 

highest R2 values, followed by CO then HC, which has the lowest R2 values. Figure 16 

illustrates this by showing the well-distributed data for NOx, which were measured more 

easily and captured more accurately than CO and HC for some trucks. Diesel engines emit 

low levels of HC [37], making it more difficult to predict accurately compared with NOx. 

Consequently, NOx has the highest average R2 of 0.857, followed by CO then HC (0.749 and 

0.582, respectively). 
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Figure 16: Sample of the randomized emission data with speed and VT-CPFM fuel 

consumption (HDDT 1). 



                                                                                                                        TranLIVE 

 Energy Consumption and Emission Modeling    32 

Table 18: HDDT Pollutant Emission Model Validation 

Vehicle ID CO HC NOx 

HDDT 1 0.752 0.753 0.898 

HDDT 2 0.749 0.226 0.821 

HDDT 3 0.710 0.583 0.897 

HDDT 4 NA 0.651 0.915 

HDDT 5 0.721 0.440 0.676 

HDDT 6 0.752 0.796 0.858 

HDDT 7 0.739 NA 0.862 

HDDT 8 0.821 0.626 0.929 

Average 0.749 0.582 0.857 

 

The performance of the VT-CPFM emission model was further evaluated and 

validated by comparing it with CMEM’s results (Table 19). The predicted emission values 

were plotted against measured field data to fit the regression line to estimate R2 for each 

model (Figure 17, Figure 18, Figure 19; Table 19). Table 19 summarizes the individual and 

average R2 values, revealing the robustness of the model based on its goodness of fit. It is 

evident that the average R2 values of the VT-CPFM emission model are higher than those for 

the CMEM model, demonstrating the superior performance of the model. In general, the VT-

CPFM model has higher R2 values for almost all the vehicles compared to CMEM. 

Table 19: R2 Values for Emission Field Data vs. Estimates for CMEM and VT-CPFM 

Vehicle 

ID 

VT-CPFM 

(CO) 

CMEM 

(CO) 

VT-CPFM 

(HC) 

CMEM 

(HC) 

VT-CPFM 

(NOx) 

CMEM 

(NOx) 

HDDT 1 0.728 0.586 0.745 0.695 0.924 0.904 

HDDT 2 0.779 0.708 0.172 0.148 0.832 0.820 

HDDT 3 0.665 0.487 0.566 0.525 0.925 0.951 

HDDT 4 NA NA 0.658 0.512 0.934 0.938 

HDDT 5 0.707 0.594 0.423 0.404 0.700 0.661 

HDDT 6 0.789 0.645 0.162 0.107 0.880 0.866 

HDDT 7 0.743 0.510 NA NA 0.896 0.824 

HDDT 8 0.836 0.613 0.578 0.392 0.955 0.939 

Average 0.750 0.592 0.472 0.397 0.881 0.863 

 

The two models are similar in terms of the order of goodness of fit for NOx emissions. 

Table 19 shows that the average coefficient of determination (R2) NOx emission values for 

the two models are the highest. Alternatively, the coefficient of determination is the lowest 

for HC emission estimates. The values imply that NOx has the best fit. VT-CPFM has a 

slightly higher R2 value than CMEM (0.881 versus 0.863). On the other hand, the average R2 

values for HC demonstrate the relatively poor fit between the predicted and measured field 

data, which is due to the low HC emission levels as mentioned before. Nevertheless, VT-

CPFM has better HC estimates than CMEM as expressed in the average R2 values (0.472 

versus 0.397). Finally, the VT-CPFM model has a relatively average fit of R2 = 0.750 

compared to CMEM with a relatively poor fit of R2 = 0.592 for CO emissions. 
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The VT-CPFM model is simple, with only eight coefficients and two main 

parameters, speed and fuel. CMEM requires extensive and complicated data to estimate 

emissions. For instance, CMEM requires engine speed data, which would require installation 

of onboard diagnostics to measure. On the other hand, the data used by VT-CPFM are 

publicly available except for the speed data, which can be easily collected using a GPS 

device. 

 

(a) CMEM 

 

(b) VT-CPFM 

Figure 17: Comparison between (a) CMEM and (b) VT-CPFM of CO estimates 

 

 

(a) CMEM 
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(b) VT-CPFM 

Figure 18: Comparison between (a) CMEM and (b) VT-CPFM of HC estimates 

 

 

(a) CMEM 

 

(b) VT-CPFM 

Figure 19: Comparison between (a) CMEM and (b) VT-CPFM of NOx estimates 

Figure 17, Figure 18, Figure 19 illustrate the correlation of estimated emissions from 

CMEM and VT-CPFM with in-field measurements from HDDT 1. NOx, the key target 

emission and the main concern in HDDT emissions, is highly correlated compared with CO 

and HC emissions. Moreover, VT-CPFM had better estimates for NOx, CO, and HC 

compared to CMEM based on the R2 values. The VT-CPFM estimated emissions are 

uniformly scattered and have better distribution around the regression line than CMEM. This 

is additional evidence that VT-CPFM provides better fuel estimates than CMEM. 



                                                                                                                        TranLIVE 

 Energy Consumption and Emission Modeling    35 

Table 20: Average MAE and SMAPE for CMEM and VT-CPFM 

Emissions 
CMEM VT-CPFM 

MAE SMAPE MAE SMAPE 

CO 0.021786 0.54016 0.017014 0.455586 

HC 0.000888 0.21699 0.000732 0.193229 

NOx 0.023443 0.24979 0.022614 0.246200 

 

The performance of the model was further investigated and analyzed by estimating 

mean absolute error (MAE) and symmetric mean absolute percentage error (SMAPE) for CO, 

HC, and NOx estimates (Table 20Error! Reference source not found.). MAE and SMAPE 

were calculated for vehicle trips estimated by the VT-CPFM and CMEM model structure to 

compute the difference in estimates against in-field measured data. SMAPE can be used as an 

alternative to mean absolute percentage error (MAPE) when there are zero or near-zero values 

in the data, which could result in infinitely high error rates that will increase the average error 

rate and will not represent the correct value. SMAPE was used as benchmark for the two 

models since some of the emissions values were near-zero. SMAPE yields higher error rates 

than usual due to the near-zero values but it limits the error to 200% as shown in Eq. 

𝑺𝑴𝑨𝑷𝑬 = |
𝑨𝒕−𝑭𝒕
𝑨𝒕+𝑭𝒕

𝟐

|                                                                                                                        ( (16), 

Where 𝑨𝒕 is the actual value and 𝑭𝒕 is the forecast value at time 𝒕. 

𝑺𝑴𝑨𝑷𝑬 = |
𝑨𝒕 − 𝑭𝒕

𝑨𝒕 + 𝑭𝒕

𝟐

|                                                                                                                        (𝟏𝟔) 

NOx had an approximately similar SMAPE for both models, although SMAPE and 

MAE for CMEM were slightly higher than for VT-CPFM. The HC and CO error rates were 

higher for CMEM than for VT-CPFM, which corroborates the evident goodness of fit of VT-

CPFM over CMEM. 
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 Figure 20: Model validation and comparison with CMEM for CO. 

 

Figure 21: Model validation and comparison with CMEM for HC. 
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Figure 22: Model validation and comparison with CMEM for NOx. 

Figure 20, Figure 21Figure 22 show sample estimated instantaneous emissions of the 

two models along with in-field measured data. The figures illustrate the ability of the models 

to capture the transient behavior of the three pollutants. The high error rates, which 

correspond to near-zero values are interpreted by the figures showing the large drops in 

empirical data. For NOx, the two models were similar and fit the measured data well. The 

VT-CPFM model had better estimates for CO and HC, especially at lower values, where 

CMEM overestimates the emissions at these values. The VT-CPFM estimates were more 

consistent with in-field measured data for the three pollutants, specifically for HC and CO, 

which was expected from the demonstrated goodness of fit of the VT-CPFM model in 

previous tables and figures. 

 

Light Duty vehicles (LDVs) Emission Modeling Results 

Figure 23 illustrates the significant relationship between fuel consumption and emissions, 

showing that emissions follow the same behavior as fuel consumption. HC and CO emissions 

have a direct relationship with fuel consumption—as fuel consumption increases, emissions 

increase accordingly. This relationship is explained by the fact that HC and CO are the main 

components of gasoline, which consists of approximately 85% carbon and 15% hydrogen. 

The proposed model strongly fits the dataset for CO, HC and NOx relatively. As expected, 

the highest levels of fuel consumption correspond to the highest levels of HC and CO 

emissions; this is a result of fuel enrichment at these high levels. Furthermore, NOx emissions 

follow a general trend of increasing as they move towards a stoichiometric ratio where they 

reach a peak level then decrease afterwards during fuel enrichment. The aforementioned 

results make it evident that vehicle emissions directly relate to fuel consumption levels. Also 

notable is the significant relation of the fitted model to the emissions data. In addition, the 

model is consistent with CO, HC and NOx since it maintains the same structure, using the 

same number of parameters and coefficients. 
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Figure 23: Fitting the Model to Oldsmobile Eighty Eight Emission Data 

Regression analysis was implemented on the nine vehicles in the study to determine 

the model’s accuracy in estimating emissions. Table 21 demonstrates the coefficient of 

determination (R2) for each vehicle’s emissions. The model showed a good fit for CO and 

HC, both when using the speed parameter and when excluding it. NOx also had a relatively 

good fit for the model both with and without the speed parameters (R2=0.802 and 0.828 

respectively), as shown in Table 22. Table 22 also summarizes the average R2 for CO and HC 

values, showing that including speed parameters (R2 = 0.923 and 0.921 respectively) resulted 

in a slightly better fit than not using the speed parameters (R2= 0.944 and 0.942 respectively). 

As these results show, there is only a slight increase in R2 between the simpler model, which 

does not use the speed parameter, and the model that includes the speed parameter, indicating 

the negligible effect of speed on the model. Table 23 and Table 24 summarize sample model 

coefficients for estimating CO, HC and NOx rates for the Oldsmobile Eighty-Eight. 
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Table 21: Coefficient of determination according to adding or excluding speed variable 

Make/Model 
Without Speed parameter With Speed parameter 

CO HC NOx CO HC NOx 

Toyota Celica 0.917 0.913 0.538 0.929 0.931 0.591 

Geo Prizm 0.936 0.933 0.886 0.960 0.961 0.890 

Subaru Legacy 0.939 0.939 0.837 0.957 0.960 0.841 

Chevrolet Corsica 0.924 0.904 0.627 0.957 0.935 0.677 

Oldsmobile Eighty Eight 0.950 0.922 0.895 0.958 0.936 0.902 

Oldsmobile Cutlass Supreme 0.941 0.949 0.808 0.956 0.955 0.863 

Mercury Villager Van 0.867 0.878 0.737 0.914 0.916 0.762 

Jeep Grand Cherokee 0.942 0.956 0.930 0.952 0.963 0.951 

Chevrolet Silverado 0.889 0.897 0.962 0.910 0.921 0.973 

 

Table 22: Regression Model Comparison 

Model CO HC NOx 

With Speed 0.923 0.921 0.802 

Without Speed 0.944 0.942 0.828 

 

The accuracy of the model was further evaluated by comparing the instantaneous 

emission estimates to in-field measurements to examine their relationship and behavior. 

Figure 24 illustrates the fitted regression to the scattered data points used to estimate R2. The 

predicted emission levels were highly correlated with the in-field measured data. Moreover, 

the R2 values were approximately the same when the speed parameter was added and when 

only the fuel parameter was used. The two models follow similar trends for each emission, 

which implies that introducing the speed parameter into the model will produce 

approximately the same emission estimates based on fuel consumption.  
 

Table 23: Sample Coefficients for Oldsmobile Eighty Eight Emissions (with speed 

parameters) 

Old Constant v F v.F F 2 v. F 2 F 3 v.F3 

CO 0.092 0.003 -70.712 -1.888 42790.00 141.752 -1.80E+06 -1727.70 

HC 0.014 0.001 4.008 -0.549 3505.80 74.384 -1.55E+05 -2205.30 

NOx -0.0505 2.20E-04 89.4688 -0.2207 -7661.00 21.5654 1.50E+05 -282.71 
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Table 24: Sample Coefficients for Oldsmobile Eighty Eight Emissions (without speed 

parameters) 

Old Constant F F 2 F 3 

CO 0.234 -150.551 45499.00 -1.65E+06 

HC 0.053 -25.599 7430.80 -2.56E+05 

NOx -0.040 80.696 -7237.90 1.77E+05 

 

 

   (a) Model without Speed variable.                                               (b) Model with Speed variable.                                                                                                                                                                     

 

(c) Model without Speed variable.                                               (d) Model with Speed variable. 
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(e) Model without Speed variable.                                               (f) Model with Speed variable. 

Figure 24: Correlation between Measured estimated emission rates (Oldsmobile Eighty 

Eight) 

 

 

Figure 25: VT-Micro Vs. VT-CPFM 
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The model’s performance was also evaluated by comparing its estimates to the VT-

Micro model. Figure 25 demonstrates the correlation between a sample of the Oldsmobile 

Eighty-Eight’s instantaneous in-field measurements and estimated emissions from VT-Micro 

and VT-CPFM models. As Figure 25 shows, the VT-CPFM emission model follows the 

same trend in predicting the emissions. The fitted regression lines for both models reveal the 

accuracy of the resulting estimates. VT-CPFM had a better fit for CO compared to VT-Micro 

for the Oldsmobile Eighty-Eight (R2 = 0.945 and 0.82 respectively) as well as better 

estimates for HC (R2 = 0.882 and 0.84 respectively). However, VT-Micro estimated NOx 

with a higher R2 of 0.922 compared to the VT-CPFM model’s R2 of 0.85. Note, though, that 

VT-Micro utilizes 32 coefficients incorporated within two boundary conditions to predict 

emission levels as compared to the VT-CPFM model, which uses only four calibrated 

coefficients at approximately the same level of accuracy. From these results, we can 

conclude that, overall, VT-CPFM returns good regression fit results for HC and CO over 

NOx, which affirms the applicability of the VT-CPFM model to estimate emissions alongside 

fuel consumption.  

The performance of the model was further investigated by calculating the mean 

absolute percentage error (MAPE) for the 9 vehicles for 16 driving cycles. Table 25 

illustrates the error in trip emissions across 16 driving cycles for CO, HC and NOx. 

Specifically, the error did not exceed 16.5% for the 16 driving cycles. 

Table 25: Error in Trip Emissions 

Driving Cycle 
Error( %) 

CO HC NOx 

The City Test (LA04) 9.80% 10.35% 10.76% 

Arterial LOS A (ARTA) 6.55% 8.90% 14.44% 

Arterial LOS C (ARTC) 10.28% 10.33% 12.70% 

Arterial LOS E (ARTE) 13.49% 11.35% 15.14% 

Freeway High Speed (FWYSP) 8.57% 8.51% 20.23% 

Freeway LOS A (FWYA) 9.15% 7.48% 16.50% 

Freeway LOS D (FWYD) 7.04% 6.27% 16.46% 

Freeway LOS E (FWYE) 5.17% 6.70% 11.20% 

Freeway LOS F (FWYF) 5.25% 9.54% 9.00% 

Freeway LOS G (FWYG) 13.73% 11.94% 10.26% 

Local (LOCL) 12.26% 10.10% 11.19% 

RAMP 5.17% 2.41% 8.68% 

ST01 6.42% 8.50% 10.95% 

AREA 7.54% 7.35% 11.49% 

LA92 4.23% 4.06% 8.19% 

New York Cycle (NYC) 5.55% 6.61% 15.65% 

Average 8.14% 8.15% 12.68% 
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Electric Vehicles 

After calibrating the model, the regenerative energy efficiency at any instant t (𝛈𝐫𝐛(𝒕)) is 

computed as a function of the instantaneous deceleration using Eq. (17); namely, the resulting 

model parameter 𝛂 = 𝟎. 𝟎𝟒𝟏𝟏, as illustrated in Figure 26.  

𝛈𝐫𝐛(𝐭) = {[𝒆
𝟎.𝟎𝟒𝟏𝟏
|𝒂(𝒕)−|]

−𝟏

,         ∀𝒂(𝒕) < 𝟎   

𝟎 ,                       ∀𝒂(𝒕) ≥ 𝟎   

                                                                                (𝟏𝟕) 

 

Figure 26: Electric LDV instantaneous regenerative efficiency vs. deceleration level 

In Figure 27 the speed, power and SOC profiles for the WMTC driving cycle are 

shown. As illustrated in Figure 27a, when the vehicle decelerates, the electric power is 

negative. In this mode of operation, the energy flows from the wheels to the motor and 

charges the batteries, thus in these phases the SOC increases.  

Moreover, in Figure 27a, the light blue area represents the energy consumed for the 

driving cycle. In particular, the portion of the area delimited by the blue line (positive quarter 

of the electric power graph) represents the case without energy regeneration during braking, 

while the red line (negative quarter of the electric power graph) shows the results considering 

the energy regeneration. As expected, the SOC increases while the vehicle is braking (red 

line) and produces a higher SOC compared to the no recovery case (blue line). The ability to 

recover energy during braking reduces the overall energy consumption, and thus the final 

SOC level is higher. 

Figure 27 b shows the results of an example introduced to highlight the advantage of 

the energy recovery during braking events. A segment of 12 s of the WMTC cycle is 

analyzed for this purpose. The final SOC level without considering the regeneration is 

94.91% while considering it is 94.84%. Consequently, when regeneration is considered, an 

increase of 0.07% in the final level of SOC is observed for these 12 s of the WTMC cycle. 

Moreover, if regeneration is not considered, net energy consumption is 39.4 [Wh] over 177.5 
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m, an energy efficiency of 222.1 [Wh/km]. When accounting for regenerative breaking, 17.5 

[Wh] of energy is recaptured, resulting in a net energy consumption of 21.9 [Wh] and an 

energy efficiency of 123.3 [Wh/km]. The total energy consumption is computed by 

subtracting the energy recovered due to the use of regenerative braking from the energy used 

during traction, as a result the total energy consumed decreases. 

 

(a) WMTC driving cycle: speed, electric power and state of charge profiles 

on the entire cycle. 

 

(b) WMTC driving cycle: speed, electric power and state of charge profiles 

on selected 12 seconds of the cycle. 

Figure 27: WMTC driving cycle: speed, electric power and state of charge profiles 
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Table 26 reports the energy consumption in [Wh/km] and [Wh/mile] available by the 

JRC and by DOE’s AVTA, and the energy consumption evaluated using the VT-CPEM 

model. In the last column of the table the error relative to the JRC and DOE’s AVTA values 

is reported. The results indicate that the proposed model accurately estimates the energy 

consumption with an average error of 5.86% compared to the field data. Moreover, the 

consumption for the low speed range (speed ≤60 km/h) in the following driving cycles is 

analyzed: NEDC, WLTC and WMTC. Table 27 provides the characteristics and the 

consumptions in [Wh/km] for the low and high speed range cycles. 

The average error, computed as the difference between the field data and the 

estimated consumption values, for the low speed range is 11.87%, while for the high speed 

range is 3.2%. The average error related to the low speed range results are higher than the 

error related to the high speed range. It is important to note, as shown in Table 27, that the 

traveled distance for the low speed range of every driving cycle analyzed are significantly 

lower when compared with the traveled distance for the high speed range. These distances 

are the “weights” in the evaluation of the error related to the average consumption on the 

entire driving cycle. For this reason the average error on the entire six driving cycles 

analyzed is 5.86%, thus lower than 11.87%. 

Table 26: Electric LDV Model Validation Results 

  AVTA/JRC data VT-CPEM model 
Error [%] 

  [Wh/miles] [Wh/km] [Wh/miles] [Wh/km] 

Nissan Leaf      

AVTA      

UDDS 201.4 125.1 233.8 145.3 16.11 

HWFET 240.8 149.6 241.7 150.2 0.38 

US06 321.6 199.8 347.9 216.2 8.19 

JRC      

NEDC 252.7 156.9 239.0 148.5 -5.35 

WLTC 287.3 178.4 273.3 169.8 -4.82 

WMTC 294.5 182.9 293.4 182.3 -0.33 

 

Table 27: Driving cycle characteristics and Nissan Leaf energy consumption levels 

  
Distance 

[km] 

Duration 

[s] 

Avg. 

speed 

[km/h] 

Max speed 

[km/h] 

AVTA/JRC 

[Wh/km] 

VT-CPEM 

[Wh/km] 

Error 

[%] 

WLTC 

low speed 
3.09 589 18.89 56.5 158 140.6 -11.01 

WMTC 

low speed 
4.06 600 24.4 60 169 142.4 -15.74 

NEDC 

low speed 
4.06 780 18.35 50 144.3 131.5 -8.87 

WLTC 

high speed 
20.17 1211 59.95 131.3 181.78 174.3 -4.11 
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WMTC 

high speed 
24.84 1200 74.55 125.3 185.31 188.9 1.94 

NEDC 

high speed 
6.95 400 62.44 120 164.1 158.3 -3.53 

WLTC 23.26 1800 46.5 131.3 178.4 169.8 -4.82 

WMTC 28.9 1800 57.83 125.3 182.9 182.3 -0.33 

NEDC 11.01 1180 33.21 120 156.9 148.5 -5.35 

 

To evaluate the advantages of using electric vehicles with respect to conventional 

ones, a comparison on 16 driving cycles between the results of energy consumption obtained 

using the VT-CPEM and those using the VT-CPFM, on a similar gasoline vehicle, is 

reported. The results evaluated for the Nissan Versa in the VT-CPFM are used for 

comparison and shown in Figure 28. The results show that the on-board consumption of EVs 

are significantly lower than the consumption of similar conventional vehicles. This result is 

attributed to a number of factors including the higher energy efficiency through the use of 

on-board electric devices and the ability of electric vehicles to recover energy while braking. 

This analysis, known in the literature as tank-to-wheels (TTW) analysis, considers only 

energy use and emissions associated with vehicle operation activities, neglecting the energy 

use and emissions associated with fuel production. In the general framework the TTW is part 

of a more global and complex analysis named the well-to-wheels (WTW) analysis. In the 

WTW analysis the energy use and emissions associated with fuel production activities are 

evaluated using an analysis named well-to-tank (WTT), while the energy use and emissions 

associated with the vehicle operation activities are evaluated using the TTW analysis [38]. 

The WTT component of the WTW analysis is significantly higher for electricity than for 

gasoline. For this reason, the WTW analysis shows different results and a lower gap between 

the energy consumption of an electric and a conventional vehicle. Generally, the WTW 

analysis is influenced by many factors such as the efficiency of the energy production, 

transportation and distribution processes in the specific country and the specific energy 

carrier (e.g. electricity, gasoline, etc.) considered.  

Figure 28 also shows that the EVs consume on average Electric vehicles, as with 

conventional ones, have a number of auxiliary systems. Some of them, such as the power 

steering and power brakes, have a minor impact on the vehicle energy consumption and 

range. However, the heating and air conditioning systems can have a dramatic impact on the 

energy consumption and range of electric vehicles. The impact of auxiliary systems on the 

energy consumption of a vehicle is a topic that is of significant interest in recent years. 

Moreover, the evaluation of this impact is very important in computing the EV range. 

Specifically, the higher the impact of the auxiliary system load has, the higher is the energy 

consumption [Wh/km] and the lower is the available distance that can be driven using the 

electric vehicle [39]. A study by the National Renewable Energy Laboratory (NREL) 

concluded that a reduction on the EV range of up to 38% was possible [40]. The study 

investigated the impact of the auxiliary systems on the Nissan Leaf using data collected from 

a previous study. Specifically, the data were collected on 7375 trips using Nissan Leaf 

vehicles with outside temperatures recorded. The total auxiliary system load considered 

includes: cabin heater and fan, component heaters (ie. battery heater), headlights, power 

steering, radio etc. A comfort temperature range between 15℃ and 24 ℃ in the cabin was set. 
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Figure 28: Comparison between the energy consumption estimated values of Nissan  

Leaf and Nissan Versa. 

In the VT-CPEM model, a base auxiliary system load of 700 [W] is considered. In 

this section, three different scenarios are analyzed and compared with the case of a base 

auxiliary load of 700 [W]. In particular, the outside temperatures of: 25 ℃, 35 ℃ and -5 ℃ 

are considered. On the basis of the data reported by [39], the total auxiliary system loads are 

850 [W], 1200 [W] and 2200 [W], respectively. Table 28 demonstrates the results of the 

impact of the auxiliary load on the energy consumption for 25 ℃, 35 ℃ and -5 ℃ ambient 

temperatures. 

The simulation results indicate that the UDDS is the most affected drive cycle by the 

auxiliary load on the energy consumption, with an energy consumption increase of 32% 

when the outside temperature is -5 ℃. On the contrary, the US06 cycle is the least affected 

driving cycle by the heating system usage with a 10% increase in the energy consumption. 

These two cycles are also those with the highest and the lowest energy consumption levels, 

respectively. This result demonstrates that generally the higher the energy consumption 

[Wh/km], the lower is the impact of the auxiliary systems. These systems, in fact, represent a 

constant additional load for the vehicle. Also the study demonstrated that the absolute 

temperature differences from the base condition, between 15℃ and 24 ℃, might correlate to 

the higher energy consumption of 35 ℃ and -5 ℃ ambient temperatures. The table 

demonstrates that a 20 ℃ difference (-5 ℃) consumes 20.3% more energy and a 10 ℃ 

difference utilizes 6.7% more energy. 

Table 28: Impact of auxiliary systems load on the consumption at: 25 ℃, 35 ℃ and 5 ℃. 

Consumption 700 W 850 W [25 oC] 1200 W [35 oC] 2200 W [-5 oC] 

  [Wh/km] [Wh/km] 
Increase from 

700 W [%] 
[Wh/km] 

Increase from 

700 W [%] 
[Wh/km] 

Increase from 

700 W [%] 

UDDS 145 150 3 161 11 192 32 

HWFET 150 153 2 158 5 175 16 

US06 216 218 1 223 3 238 10 

NEDC 149 153 3 163 9 190 28 

WLTC 170 173 2 181 7 204 20 

WMTC 182 185 2 192 5 211 16 
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Electric Trains 

The resulting model generates the regenerative efficiency model parameter of 0.65 (α =
0.65), as demonstrated by Figure 29 to present a decay with the decrease of deceleration 

level. In particular, the decay becomes dramatic when the deceleration is less than 2 m/s2. 

 

Figure 29: Electric train instantaneous regenerative efficiency vs. deceleration level 

The model was validated at an aggregated level by comparing trip-based model 

estimates against the NTD system averages. Table 29 presents the model validation results. 

Basically, the model can generate consistent results by incorporating the instantaneous 

regenerative efficiency, resulting in an estimate of 37.12 kWh/VM and 0.127 kWh/SM which 

produces a prediction error of only 1.87% and -2.31% respectively. Failing to capture energy 

recovery, as shown in the table (no regeneration) results in a significantly high bias of model 

estimates. Noteworthy here is that the presumption of the constant regenerative efficiency 

results in larger deviation of estimation than the proposed model, although it outperforms the 

“no regeneration” case. 

Table 29: Electric Train Model Validation 

  

Empirical 

energy 

Instantaneous 

regeneration Constant regeneration No regeneration 

   

Energy 

estimates 

Error 

(%) 

Energy 

estimates 

Error 

(%) 

Energy 

estimates 

Error 

(%) 

kWh/VM 36.44 37.12 1.87 42.31 16.11 46.42 27.39 

kWh/SM 0.13 0.127 -2.31 0.144 10.77 0.158 21.54 

        
Figure 30 illustrates the speed, instantaneous and cumulative energy consumption for 

the driving cycle. The light blue area represents the energy consumed for the entire cycle. 

The area delimited by the blue edge line refers to the energy consumed during acceleration 

which cannot be regenerated, and the red edge line represents the energy consumption 

resulted from braking. As expected, energy is recovered during braking, resulting in lower 



                                                                                                                        TranLIVE 

 Energy Consumption and Emission Modeling    49 

energy consumption levels compared to “no regeneration” case. The cumulative energy 

consumption demonstrates that the ability to recover braking energy significantly reduces the 

overall energy consumption for the entire trip. 

To quantify the energy saving, the trip-based model estimates were compared 

between the proposed model and the “no regeneration” case, resulting in Table 30. Basically, 

the proposed model produces the trip-based energy consumption significantly lower than that 

of “no regeneration” case, resulting in an average energy saving of 20.03%.  

 

Figure 30: Speed and electric power on the entire cycle 

Table 30: Energy Savings Resulted from Energy Regeneration 

Energy Consumption (instantaneous regeneration, kWh/VM) 37.12 

Energy Consumption (no regeneration, kWh/VM) 46.42 

Energy saving (%) 20.03 
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CONCLUSIONS AND RECOMMENDATIONS 

The study develops energy/fuel consumption and emission models for multiple vehicle 

modes and rail trains in support of environmentally sustainable transportation systems, such 

as eco-routing, eco-driving, eco-transit, and eco-freight programs. Given that conventional 

gasoline-powered LDVs have been modeled by previous studies, the proposed study mainly 

focuses on Heavy Duty Vehicles (HDVs) and new energy vehicles. Specifically, electric 

LDVs and trains, conventional diesel, hybrid-electric and compressed natural gas (CNG) 

buses as well as heavy duty diesel trucks are thoroughly investigated.  

The models are developed based on VT-CPFM for the fuel-powered vehicles and on 

VT-CPEM for the electric energy vehicles and trains. The VT-CPFM modeling framework 

characterizes fuel consumption as a second-order polynomial function of vehicle power so 

that circumvent the bang-bang control in the modeling practice. The VT-CPFM fuel 

consumption model has also been extended to predict pollutant emissions (HC, CO, NOx) for 

HDDTs and LDVs. The emission models are characterized as a polynomial function of fuel 

consumption and vehicle speed. The VT-CPEM modeling framework models the electric 

energy consumption as a polynomial function of vehicle speed and acceleration, and also 

instantaneously captures the energy regeneration resulting from braking by characterizing the 

recovered energy as a function of deceleration level. The models are validated by comparing 

estimated fuel/energy consumption and emissions against field observations and/or the 

estimates of other state-of-the-art models.  

The results demonstrate that the proposed models can accurately predict energy/fuel 

consumption and emissions consistent with field measurements, and outperform other state-

of-the-practice models in terms of circumventing bang-bang control and being calibrated 

using publicly available data. The resulting models will be used to develop eco-friendly 

strategies for multimodal transportation systems. 

It is recommended that EPA requires heavy duty vehicles to report their fuel economy 

in the future so that the model can be calibrated using publicly available data without mass 

in-field data collection, which can maximize the cost-effectiveness of model development. 
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