# **A Novel Nano Fischer-Tropsch Catalyst for the Production of Hydrocarbons**

Guanqun Luo<sup>1</sup>, <u>Armando G. McDonald<sup>1</sup></u>, Blaise-Alexis Fouetio Kengne<sup>2</sup>, and David N. McIlroy<sup>2</sup> <sup>1</sup>Dept of Forest, Rangeland & Fire Sciences, <sup>2</sup>Dept of Physics, University of Idaho, Moscow ID 83844-1132

### Introduction

Due to the serious environmental issues caused by utilization of fossil fuels and finite oil reserves, alternative sources of sustainable fuels and chemicals are required. FTS provides a method with which to convert carboncontaining feedstock, like biomass, into clean fuels and valuable chemicals via synthesis gas (syn-gas).

A catalyst support not only works as a carrier, but also contributes to the performance of the catalyst. An optimal support should be chemically inert, mechanically and thermally stable, with a high solvent-accessible surface area, and balanced metal-support interaction. Within this scenario, a novel material, silica nanosprings (NS) meets all of the above criteria for FTS catalyst. In the present study, Co decorated silica NS-FTS catalyst (Co/SiO<sub>2</sub>-NS) were evaluated. The physico-chemical properties of the catalyst were characterized and the catalytic performance was evaluated in a micro-reactor. The results are compared with a conventional silica gelsupported Co catalyst (Co/SiO<sub>2</sub>-gel).

### **Experimental**

### > Materials

• Co/SiO<sub>2</sub>-gel precursor Co(NO<sub>3</sub>)<sub>2</sub> dissolved in water and vacuum impregnated into gel and calcined at 400°C. • Co/SiO<sub>2</sub>-NS precursor Co( $C_5H_7O_2$ )<sub>2</sub> dissolved in ethanol and added to NS coated quartz frit (10 mm) support and heated to 500°C in  $Ar/H_2$ .

### > Catalyst characterization

• SEM (Leo Supra 35) and TEM (Jeol JEM-2010) analysis • X-Ray diffraction (XRD, Siemens D5000) (TPR) • H<sub>2</sub> Temperature programmed reduction Micromereritcis AutoChem II 2920

• X-ray photoelectron spectroscopy

### Catalyst evaluation

• FTS was performed using a quartz fix-bed micro-reactor (1/2" x 14") (Fig. 1). The catalyst (200 mg Gel and 5 mg NS) and reduced in H<sub>2</sub> at 400°C for 12 h. The FTS reactions were carried out at 230°C with a H<sub>2</sub>/CO (2:1) at 60 mL/min and 10 mL/min N<sub>2</sub>. Products were collected in 3-stage impinger trap in liquid N<sub>2</sub>.

 Collected hydrocarbons were analyzed by GC-MS (Focus-ISQ) on a RTx-5ms (0.25 mm x 30 m) column (40-250°C at 5°C/min).

• Gas samples were analyzed by GC-TCD (Gow-Mac 350) using a HaySep DB column (3 mm x 9.1 m) at 30°C.



Fig. 1. Reactor set-up (1) CO; (2)  $H_2$ ; (3)  $N_2$ ; (4) mass flow controllers; (5) quartz tube reactor; (6) furnace; (7) thermometer; (8) J-thermocouple; (9) temperature controller; (10) 3-stage condenser; (11) liquid N<sub>2</sub> bath; (12) gas sampling bag.





| BET            | pore             | $Co_3O_4$ size | Co <sub>3</sub> O <sub>4</sub> size |
|----------------|------------------|----------------|-------------------------------------|
| area           | volume           | by TEM         | by XRD                              |
| $n^2 g^{-1}$ ) | $(cm^{3}g^{-1})$ | (nm)           | (nm)                                |
| 478            | 0.82             |                |                                     |
| 329            | 0.42             |                |                                     |
| 370            | 0.62             | 14.7           | 13.1                                |
| 208            | 0.29             | 4.5            | 12.7                                |
|                |                  |                |                                     |





**Fig. 7. H<sub>2</sub>-TPR** of Co/SiO<sub>2</sub>-gel and Co/SiO<sub>2</sub>-NS catalysts

## Conclusions

# Acknowledgements

- 20938
- (NIATT) grant DTRT07-G-0056



**Fig. 8. XPS spectrum** of Co/SiO<sub>2</sub>-NS catalyst

• Novel silica Co-NS FTS catalyst was successfully prepared. • The Co/SiO<sub>2</sub>-NS unique morphology of highly accessible surface had good FTS activity even though not fully reduced. • Ongoing work is focused on (i) optimizing the preparation of the NS based catalysts, (ii) Co reduction, (iii) catalyst surface characterization, and (iv) other active metals.

• USDA-AFRI Wood Utilization Research grant 2010-34158-

National Institute for Advanced Transportation Technology

