

AFRL-RI-RS-TR-2009-99
Final Technical Report
April 2009

NETWORK AUTHENTICATION PROTOCOL
STUDIES

University of Idaho

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. N665/03

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB
Public Affairs Office and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2009-99 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

W. JOHN MAXEY WARREN H. DEBANY, Jr.
Work Unit Manager Technical Advisor, Information Grid Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

APR 09
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Jul 02 – Jun 08
4. TITLE AND SUBTITLE

NETWORK AUTHENTICATION PROTOCOL STUDIES

5a. CONTRACT NUMBER

5b. GRANT NUMBER
F30602-02-1-0178

5c. PROGRAM ELEMENT NUMBER
62301E

6. AUTHOR(S)

Jim Alves-Foss and Paul Oman

5d. PROJECT NUMBER
N665

5e. TASK NUMBER
A6

5f. WORK UNIT NUMBER
10

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Idaho
Admin Annex Financial Affairs
Moscow ID 83844-0001

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/RIGB
3701 North Fairfax Drive 525 Brooks Rd.
Arlington VA 22203-1714 Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2009-99

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# AFMC 2008-0701

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The original focus of this project was to investigate cryptographic protocols, and methods for formal design and analysis of those
protocols. As time progressed, we found a need to broaden the scope of this work to include the foundational system architecture
support needed for these protocols. In this report we provide a summary of the work we conducted during this study, the findings and
a proposed path forward.

15. SUBJECT TERMS
Network Authentication Protocols, Multi-Level Security, Security Policy

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

216

19a. NAME OF RESPONSIBLE PERSON
William J. Maxey

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Contents

Executive Summary ii

I Network Authentication Protocols 1

1 Introduction 3

1.1 Security Protocols . 3

1.2 Security Properties . 4

1.3 Cryptography . 6

1.4 Examples of Security Protocols . 11

1.5 Attacks . 13

1.6 Analysis Approaches . 22

2 Background 28

2.1 Taxonomy of Replay attacks . 28

2.2 Strategies against replay attacks . 33

3 Strand spaces 41

3.1 Introduction . 41

3.2 Basic Notions . 42

3.3 Bundles and Causal Precedence . 44

3.4 Terms and Encryption . 44

3.5 Freeness Assumptions . 45

3.6 The Penetrator . 45

i

3.7 Correctness Properties . 46

4 Modelling Protocols 49

4.1 Tags . 49

4.2 Facts . 50

4.3 Subfacts . 50

4.4 Adapting strand space model with tagged facts . 51

4.5 Security properties and attacks . 57

5 Transforming Bundles 59

5.1 Overview . 59

5.2 The transformation function, ψ . 59

5.3 Regular strands . 61

5.4 Penetrator strands . 62

5.5 Preserving unique origination in bundles . 63

6 Proof 66

6.1 Overview . 66

6.2 Secrecy . 67

6.3 Authentication . 68

6.4 An example . 69

7 A Communication-Computation Efficient Group Key Algorithm for Large and
Dynamic Groups 71

7.1 Introduction . 71

7.2 Background . 72

7.3 Group Key Exchange and Management Background 73

7.4 CCEGK Protocol . 77

7.5 Rebalance Scheme . 86

7.6 Authentication . 89

7.7 Theoretical Comparison of Four Protocols . 90

ii

II Multiple Independent Levels of Security Architecture 92

8 Multiple Independent Levels of Security Overview 94

8.1 Introduction . 94

8.2 MILS Architecture . 95

8.3 MILS Separation Kernel (SK) . 98

8.4 MILS Hardware Support . 99

8.5 MILS Device Drivers . 100

8.6 Distributed MILS . 101

8.7 Middleware Services Layer . 101

8.8 Application Layer . 103

8.9 A Secure System Using MILS . 105

8.10 Example MILS System . 105

8.11 MILS Research . 106

8.12 Conclusion . 106

9 Hidden Implementation Dependencies in High Assurance and Critical Comput-
ing Systems 108

9.1 Introduction . 108

9.2 Errors in High Assurance and Critical Computing Systems 110

9.3 A Framework for Effective Traceability . 112

9.4 Formal Traceability . 114

9.5 The Implementation Relation and Levels of Abstraction 118

9.6 The Conceptual Completeness Principle . 122

9.7 Case Study One: The Minimum Safe Altitude Warning System and the Guam In-
ternational Airport Accident in 1997. 124

9.8 Case Study Two: The Guidance and Control System 127

9.9 Related Work . 133

9.10 Conclusions and Scope . 139

10 Security Policy Refinement and Enforcement for

iii

the Design of Multi-level Secure Systems 141

10.1 Introduction . 141

10.2 Background . 142

10.3 Policy Refinement Language and Refinement Patterns 144

10.4 Hierarchy of Refinement Patterns . 153

10.5 A MILS Application Design Example . 154

10.6 Conclusions and Future Work . 159

III Bibliography of cited work and Abstracts of Publications 160

Bibliography 161

Abstracts of Publications 180

iv

LIST OF FIGURES

Figure 1.1: A Cryptosystem………………………………………………………………… 7

Figure 3.1: A Bundle……………………………………………………………………….. 43

Figure 5.1: Penetrator strands combining a) F,R strands; b) D,E strands…………………. 64

Figure 5.2: Replacing strands in Fig 5.1………………………………………………….... 64

Figure 7.1: Tree updates from the join operation………………………………………….. 80

Figure 7.2: Tree updates from the merge operation……………………………………….. 81

Figure 7.3: Tree updates from the leave operation………………………………………… 83

Figure 7.4: Tree updates from the mass leave operation………………………………….. 84

Figure 7.5: Tree updates for subgroup G in the partition operation………………………. 86

Figure 7.6: Tree operations from the rebalance scheme………………………………….. 89

Figure 8.1: MILS refinement of an MLS system…………………………………………. 97

Figure 8.2: Whitebox Representation of Secure MultiLevel FileServer DataBase………. 98

Figure 8.3: Enclaves distributed over separate processors……………………………….. 101

Figure 8.4: System of 4 independent secure enclaves……………………………………. 102

Figure 8.5: System of communicating independent secure enclaves…………………….. 103

Figure 8.6: System Graph for Shared Memory Architecture…………………………….. 106

Figure 9.1: The partial implementation relation formalized as a strict partial order…….. 119

Figure 9.2: Example of levels of abstraction and of dependencies uncovered………….. 120

Figure 9.3: The conceptual completeness principle……………………………………... 123

Figure 9.4: Formal implementation model of the GuamAirportEnvCons………………. 125

Figure 9.5: Formal implementation model of the GuamAirportEnvCons after enforcing

 strict partial order properties…………………………………………………….. 126

Figure 9.6: Formal implementation model of the GuamAirportEnvCons after enforcing

 Partial order and conceptual completeness properties………………………….. 127

Figure 9.7: Partial order of the levels of abstraction…………………………………… 129

Figure 9.8: Formal implementation model of the Guidance and Control System…….. 130

Figure 9.9: Dependencies to and from the TSPSpec wps……………………………… 132

v

Figure 10.1: Policy Refinement Language BNF…………………………………………. 145

Figure 10.2: Component Decomposition Patterns a) Product b) Cascade c) Feedback…. 147

Figure 10.3: Component Decomposition ConnDec Pattern……………………………… 149

Figure 10.4: Connector Decomposition ConnDec Pattern……………………………….. 149

Figure 10.5: Port Decomposition Patterns……………….………………………………. 150

Figure 10.6: Component/Connector Aggregation Patterns………………………………. 150

Figure 10.7: Port Aggregation Patterns………………………………………………….. 152

Figure 10.8: Cascade Level1 Pattern (MSLS-SLS+MSLS)……………………………… 154

Figure 10.9: Achieved through Applying a Set of Level0 Refinements…………………. 154

Figure 10.10: Abstract Architecture of the Application Example……………………….. 155

Figure 10.11: Architecture of the Example System after Step 1………………………… 155

Figure 10.12: Architecture of the Example System after Step 2………………………... 157

Figure 10.13: Architecture of the Example System after a) Step 3; b) Step 4………….. 157

Figure 10.14: Part of Architecture of the Example System after a) Step 5; b) Step 6…... 157

Figure 10.15: Final Concrete Architecture of the Example System…………………….. 158

Figure 10.16: Trace of Security Policies Refinement and Enforcement………………… 158

 vi

LIST OF TABLES

Table 7.1: Operation Comparison with CCEGK…………………………………………... 72

Table 7.2: Symbols used in metrics………………………………………………………... 76

Table 7.3: Costs of initialization operation………………………………………………... 78

Table 7.4: Costs of the Join Operation…………………………………………………….. 79

Table 7.5: Costs of Merge Operation……………………………………………………… 80

Table 7.6: Communication cost of Mass Join…………………………………………….. 82

Table 7.7: Computation Cost of Mass Join……………………………………………….. 82

Table 7.8: Costs of Leave Operation……………………………………………………… 82

Table 7.9: Communication Cost of Mass Leave………………………………………….. 84

Table 7.10: Computation Cost of Mass Leave…………………………………………….. 85

Table 7.11: Communication Cost of Partition…………………………………………….. 85

Table 7.12: Computation Cost of Partition………………………………………………. 86

Table 7.13: Costs of Key Refresh………………………………………………………... 86

Table 7.14: Table in Comparison of Communication……………………………………. 90

Table 7.15: Table in Comparison of Computation………………………………………. 91

Table 10.1: Component Decomposition Patterns for Designing MLS Systems………… 146

Table 10.2: Component Aggregation Patterns for Designing MLS Systems…………… 151

Table 10.3: Example Level1 Patterns……………………………………………………. 153

Table 10.4: Application Policies Enforcement Table…………………………………… 156

 vii

Executive Summary

The original focus of this project was to investigate cryptographic protocols, and methods for formal
design and analysis of those protocols. As time progressed, we found a need to broaden the scope
of this work to include the foundational system architecture support needed for these protocols. In
this report we provide a summary of the work we conducted during this study, the findings and a
proposed path forward.

Cryptographic protocols are network communication protocols developed for the exchange of
information between communicating parties to enable the establishment of one-way or mutual
authentication, shared encryption keys or establishment in trust of public keys. The strength of
these protocols is based in their use of cryptographic technologies, hence the term cryptographic
protocols.

Most cryptographic protocols are relatively simple, consisting of the exchange of a few simple
messages to no more than a few hundred. Compared to the complexity of the software using them,
often hundreds of thousands or millions of lines of code, they should be much easier to understand,
analyze and use. It is therefore somewhat surprising to find numerous examples of flaws in the
protocols in the literature.

In our work, presented here, we examined the basis of these flaws, as an extension of our early
work. We found that the flaws often manifest themselves in a misunderstanding of the full semantic
meaning of the protocols. This leads to numerous types of attacks, including type-based attacks,
guessing attacks and generation of new protocols to allow for tailored attacks. We developed a
new group-based key exchange protocol, CCEGK, built on top of simple two-party key exchange
protocols to examine a higher-level application of cryptographic protocols, in an attempt to see if
the hierarchy presented good performance and simpler verification and assurance.

We found that the flaws found in these protocols occur when an untrusted party is able to
violate some of the inherent assumptions of protocols designers. For example, an attacker can
replay portions of prior messages in place of new ones, can substitute values, can interleave messages
from concurrent protocols, or can attack simple passwords used to protect strong encryption keys.
In our design of CCEGK, we built a hierarchical protocol structure to attempt to utilize strong
lower levels of encryption and authentication to build a more complex higher level protocol. We also
began to examine the use of CORBA message passing in an attempt to understand application-level
communication that would utilize lower level security protocols.

From this examination of hierarchies and protocol layering, we found a need for a trusted
platform on which to build the cryptographic protocols. If the underlying cryptographic primitives
can not be trusted and protected, then our protocols will always be insecure. If a user could install

viii

new software to create tailored protocols attacks, our protocols will not be secure.

Based on this observation, we moved to the next, much larger phase of this project, the develop-
ment of the Multiple Independent Levels of Security Architecture (MILS). The intent of the MILS
architecture is to develop a solid foundation for the design and analysis of high assurance com-
puting systems. The initial application will be secure communication system. In a MILS system,
security relevant components are isolated in separate execution environments (partitions), where
we are guaranteed data isolation, controlled information flow between partitions, fault and attack
containment, and easier verification.

This report is organized into three main parts. Part I provides background and terminology
related to the concept of network protocols design and analysis and summarizes the main results of
this portion of the project, focusing on the network protocol analysis and the design of the CCEGK
protocol. Part II provides and overview of the MILS work. Part IV provides a bibliography of the
cited research and then the abstracts of the published worked generated from this project.

vi

 ix

Part I

Network Authentication Protocols

1

Overview of Part I

The first part of this report summarizes the concerns related to the design and analysis of network
authentication protocols, specifically types of attacks that can be launched against these protocols
and then the research we conducted in this area. Specifically we first address the formal analysis
of network authentication protocols. Then we address the design and analysis of a new group key
agreement protocol.

The work highlighted in this section has been published in several papers, and results in masters
thesis and dissertations. The abstracts for these publications can be found in final section of this
report. Publications related to the analysis of network authentication protocols are filed under
the following keys: Corin03a [86], Malladi02a [174], Malladi02b [172], Malladi02c [173], Malladi02d
[169], Malladi03a [171], and Malladi04a [170]. Publications related to the generation of the new
group key agreement protocol are filed under the following keys: Manz05a [176], Manz07a [177],
Zheng05a [284], Zheng06a [280], Zheng06b [283], Zheng06c [281], Zheng07a [282].

In addition, we did development and experiments with some other security protocols for secure
distributed firewalls, secure mobile agents, intrusion detection system message passing, remotely ac-
cessible MLS file server, and network filters/guards for protocols as reported in: Al-Muhaitheef02a
[24], Lee02a [150], Lee04a [151], Meyers07a [192], Robinson07a [221], Robinson07b [222], Robin-
son07c [223], Rossebo06a [227], and Yang05d [274].

2

Chapter 1

Introduction

1.1 Security Protocols

A protocol comprises of a prescribed sequence of interactions between entities designed to achieve
a certain end. A communications protocol is designed to establish communication between agents,
i.e setup a link, agree on syntax, etc. Simple things like banking transactions and email make
use of protocols. The goals of security protocols, (sometimes known as cryptographic protocols),
involve providing security services in a distributed system. Some of its goals are : to establish
a secret key between two entities; authentication of one entity to another; and ensuring secrecy,
integrity, anonymity, non-repudiation etc. Often, they involve the exchange of messages between
nodes, requiring a trusted third party (eg. a session server). They may use different cryptographic
mechanisms like symmetric or asymmetric encryption, public key cryptosystems, hashes, digital
signatures and digital certificates. Obviously, these protocols have to undergo a lot of design and
analysis. These tasks are not trivial, and many difficulties can arise:

• The environment in which security protocols operate is very complex. Each assumption about
the environment must be defined explicitly. However, not all vendors will follow these design
rules, and worse yet, malicious users likely will never follow these rules [28].

• The goals to be achieved and the properties that have to be ensured are very subtle. Simple
notions such as authentication and non-repudiation are beset with lot of subtleties. A hot
debate in this field revolves around attributing a precise meaning to these concepts.

• Listing all of the capabilities of the penetrator is very difficult. (We shall call a hostile agent
in the communication a penetrator. Spy, malicious netizen, eavesdropper, attacker etc. are
also common terms for penetrator in the literature. We shall also use intruder synonymously
with penetrator. Although it is impractical to list out all the capabilities of a penetrator, we
will try to make good approximations.

• Security protocols also involve a high degree of concurrency. This makes the analysis even
more challenging.

Given these factors, security protocols are candidates for rigorous design techniques and ex-
haustive analysis techniques. In the recent past, especially in the 90’s, a lot of effort was put into

3

the analysis of security protocols. These included approaches that made use of formal methods
(model checking and theorem proving) and some other approaches. We will later explain those
approaches in detail.

1.2 Security Properties

First, we shall list out the security properties usually required to be preserved by security protocols.
All security protocols do not attempt to provide all of these properties. Usually they are designed
to provide a subset of these properties. These properties are interpreted differently by different
sources. Therefore, it is important to explicitly define the properties in the context of a protocol. For
example, correctness of a protocol can mean many things in many contexts. If it is an authentication
protocol, correctness might mean both the participants being authenticated to each other properly.
But it would not mean establishing a secret key for communication between two participants
without a penetrator learning the secret. Literature is replete with attacks on security protocols
due to misinterpretation of security properties that the protocols provide and goals that they need
to achieve.

1.2.1 Secrecy

Secrecy [136] can have different meanings in different contexts. For example, a certain application
might require that a penetrator should not be able to know anything from a communication between
honest agents. This can be regarded as the highest level of secrecy, so much that the penetrator
must not be able to do any traffic analysis. This obviously is hard to achieve except through some
designs in the physical communication layer that prevent anyone from doing traffic monitoring.
Usually security protocols do not need this level of secrecy. In this thesis, we will assume that it
is sufficient to prevent the penetrator from obtaining any information that is intended to remain
secret through an analysis of the traffic, as in [102]. We will not be concerned that a penetrator
is able to obtain encrypted information through traffic monitoring, as long as he doesn’t get the
corresponding decrypting key.

1.2.2 Authentication

We shall discuss two types of authentication here.

1. Authentication of origin

2. Entity Authentication.

Authentication of origin is satisfied if a message is thought of as being sent by a party, and it
was indeed sent by that party. It would sometimes require that we can be sure that the message
was not modified or tampered before it reached it’s destination. Informally, we can put it this way.
Authentication is maintained in a communication between Alice and Bob if in the communication
whenever Bob accepts a message as being sent by Alice, Alice indeed has sent it. A stronger form

4

of this would be to extend it further and require that Alice intended to send the message for Bob.
Gavin Lowe defines authentication in [163], as:

“Whenever an agent A completes a run in the protocol, apparently with B, then B has
recently been running the protocol, apparently with A, and the two agents agree upon
who initiated the run, and agree upon all data values used in run; further, there is a
one-to-one relationship between the runs of A and the runs of B.”

The distinction between entity authentication and authentication of origin is not clear in the
literature. In many places they are used synonymously. The confusion mainly originates from the
fact that some designers assume connection oriented communication and some assume connection
less. Intuitively, entity authentication means that the claimed identity of an entity to another party
in a communication is correct. Menezes et al. [191] define entity authentication as

“the process whereby one party is assured (through acquisition of corroborative evi-
dence) of the identity of a second party involved in a protocol, and that the second has
actually participated (i.e., is active at, or immediately prior to, the time the evidence
is acquired).”

1.2.3 Non-Repudiation

Non-repudiation is similar to authentication but it has stronger requirements for proof. The major
distinction in authentication arises from the fact that while authentication requires that a party
show proof of it’s identity to the other party in communication, non-repudiation requires that the
proof should also be demonstrated to a third party, validating the truth in the claim [286]. Non-
repudiation services provide protection to parties involved in a transaction against the other party
denying involvement in an action or event subsequent to the happening of the action or event. Two
international standards have been proposed to deal with non-repudiation. ISO/IEC 10181-4 [19]
and ISO/IEC 13888 [20, 22, 21]. While ISO/IEC 10181-4 provides a framework for developing and
employing these services, ISO/IEC 13888 consists of three parts. They propose a general model of
non-repudiation and a set of non-repudiation mechanisms based on cryptography (both symmetric
and asymmetric cryptographic techniques). Three security elements for non-repudiation have been
defined in CCITT X.400 series recommendation [273]. They are:

• Non-repudiation of Origin: The receiving party of a message in a communication is pro-
vided with evidence of message origination and is protected against subsequent denial by the
originator.

• Non-repudiation of Delivery : The sending party in a communication is provided with evidence
of message delivery to the other party and is protected against subsequent denial by the
receiving party.

• Non-repudiation of Submission (NRS): The sending party of a message in a communication is
provided with proof of submission that the delivery agent has indeed submitted the message to
the originally specified recipient(s) and is protected against subsequent denial by the delivery
agent.

5

1.2.4 Anonymity

Anonymity [234] is a property that has not been explored as much as other security properties from
a formal perspective. A system anonymous over a set of events E should have the property that
if an event occurs from the set E, an observer, though he might be able to deduce that the event
occurred, wouldn’t be able to identify the event. In a typical situation, the set E will be an indexing
set of users, so that an observer might be able to tell that an event from set E has occurred but he
will not able to judge which of the agents was responsible for the event’s occurrence. Anonymity
need not necessarily apply to each occurrence of events. In fact, they can be reshuffled upon each
occurrence of an event. We might not expect in some situations that the occurrence of events from
the set will be wholly independent. A good example would be voting. In this case, one would like
a particular vote to be associated with an individual. However, we might apply a restriction of no
double voting, so the events now are not independent but have the constraint on them that for a
given run, each event should occur at most once.

1.3 Cryptography

We shall treat cryptographic algorithms in a very abstract way in this thesis. Cryptographic al-
gorithms are a different direction of research in the field of security protocol analysis. Researchers
in these fields attend separate conferences and have separate journals etc. In this thesis, we will
assume that cryptographic algorithms that are used in the security protocols are safe. This as-
sumption forms one of the main assumptions that any protocol analyzer would generally make. As
in [28], we assume that:

1. It is computationally infeasible to break the underlying cryptographic algorithm. Otherwise,
the whole protocol would be deemed as insecure.

2. Also, we assume that there exist secure cryptographic modules that perform as specified and
do not contain any Trojan horses and there exist adequate operating system security measures
such that the stored copies of user’s keys can not be compromised; otherwise flaws in these
systems can be used to subvert the protocol.

Cryptographic algorithm analysis and protocol design and analysis are now made completely
independent by researchers. This is done partly to keep the analysis tractable. i.e., an analysis
that involves both the aspects become extremely difficult to complete and can become practically
intractable. These fields are separated into two different communities, the cryptologists and the
formal analysts. Although these communities have been largely disjoint, they are beginning to
collaborate with interchanging ideas and techniques of one field to the other. In this section, we shall
describe the general cryptographic techniques that are in use today, symmetric key cryptography
and public key cryptography. We shall also introduce some famous cryptographic algorithms and
key exchanging routines that are commonly used to create and exchange keys (RSA algorithm,
Diffie-Hellman key exchange etc.). Lastly, we shall define and describe a common term: nonces.

Cryptography is traditionally described in relation to messages. The original message is called
the plain-text. The message obtained after applying cryptography is called cipher-text. The process

6

Figure 1.1: A Cryptosystem

is called encipherment or encryption.1 The process that does the reverse of encryption, i.e. trans-
forming a cipher-text into plain-text is called deciphering or decryption. So, if M is a plain-text
message, E and D the transformations for encryption and decryption explained above, then,

D(E(M)) = M

The transformation E (for encryption) has usually some parameters called keys. Let K be the set
of keys. Then we say,

C = E(M,K)

if C is the cipher-text obtained by encrypting message M with key K ∈ K. A cryptosystem is the
entire set-up (the transformations E, D and keys K).

1.3.1 Symmetric Cryptography

Shannon first presented the theory of classical cryptosystems [240]. Classical (or conventional)
cryptosystems use symmetric key cryptography to encrypt and decrypt messages. They transform a
message so that a message that is encrypted with a secret key can only be read by a person possessing
the secret key for that transformation. If E andD represent the encryption and decryption functions
respectively, and K is the secret key for the transformation, then, the following must hold:

D(E(M)) = M.

Let C be the cipher-text created by encrypting message M by the transformation E using key
K. This is represented as,

C = EK(M).

Also, decryption of C using the same key K is represented as,

DK(C) = M

and this must be true for a classical cryptosystem. Below, we present some techniques used in
classical cryptosystem [250].

1Thus we will call cipher-text, encrypted text, encrypted message or encrypted component.

7

Substitution

These can be classified into monoalphabetic and polyalphabetic substitutions. A simple substitution
cipher replaces each letter in a message stream with a substitute. For example, consider the
following permutation of the alphabet:

WQYUIOPGFDSAHJKLVCXZBNMTRE

When a message is sent, each letter in the message is substituted with the corresponding sub-
stitute in the key. For example, the word “ATTACK” becomes “WZZWYS”. Simple substitutions
have been proven to be vulnerable to statistical analysis.

A polyalphabetic cipher uses several different permuted alphabets in the key, following in a
periodic way. With five alphabets, for example, the first alphabet would encipher 1, 5, 6, 7, and 8.
The second alphabet enciphers 2, 3, 9, 14, and 15 and so on. Polyalphabetic ciphers were solved
way back in the nineteenth century by a method for calculating the period. A cryptanalyst who
discovers this period can then decipher the message by splitting it into several monoalphabetic
ciphers.

Transposition

Transposition ciphers are obtained by splitting the original message into fixed length blocks and
arranging the letters inside each block according to some preset permutation.

For example, if the original message is

Secur|ity of | crypt|osyst|em too

For a block length of 5 and permutation (2, 5, 4, 1, 3), we get

Erusc|tfoiy|rotpcy|stsoy|mooet

as the cipher-text.

Transposition of messages hides the statistical properties of letter pairs such as “of, too” etc.
Transposition ciphers are attacked using frequency tables for the combinations and by finding
permutations that bring back the original combinations. Substitution and transposition ciphers
form the most common forms of cryptosystems. There are several cryptosystems like Vigenère
ciphers, Running-key ciphers, Vernam ciphers etc.

Block and Stream Ciphers

Substitution ciphers are further divided into block and stream ciphers [250]. A block cipher divides
the plaintext into blocks of fixed length and applies the same encryption function (same encryption
algorithm and key) to each block. For example, if the blocks are M1,M2,M3, . . . ,

8

Then,
EK(M) = EK(M1)EK(M2) . . .

In other words, the cipher-text thus obtained would be a concatenation of ciphertexts from such
individual block ciphers, obtained by applying the same encryption transformation to each block.
Intuitively, a substitution cipher is a block cipher whose block length is equal to one.

Stream ciphers are obtained by applying encryption to each individual digit in the message
stream. A key stream generator which generates a sequence of digits called the key stream is used
in this cryptosystem. The digits in the message and key stream are exclusive-ored to form bits in
the cipher-text.

Thus, each bit Cn of the cipher stream is formed as Cn = Mn ⊕K ′n, where Mn is the nth bit
of the plain-text and Kn is the nth bit of the key-stream. Similarly, the plain text is obtained by
doing modulo 2 addition between the bits of the key stream and bits of the cipher-text. Thus, Mn

is obtained by Mn = Cn⊕Kn. Stream ciphers have the advantage that the encryption of plain text
and decryption of cipher-text can be done using the same cryptosystem. However, the difficulty
and the challenge lies in designing a generator for generating the key stream bits.

1.3.2 Asymmetric or Public-Key Cryptography

In conventional cryptosystems, secret information will be shared by the sender and receiver. Public
key systems are designed in such a way that they contain both public and private information. They
are not only used for key distribution, but also for a much more important cause called message
authentication.

Diffie-Hellman Concepts in Public-Key Cryptosystems

Diffie and Hellman (1976) introduced the idea of public key cryptosystems [94]. In the Diffie
and Hellman public-key cryptosystem, there are two transformations, namely, EK and DK . They
both stand for encryption and decryption transformations respectively. The properties of the
cryptosystem are [250]:

1. For every key K in the cryptosystem,

DK(EK(M)) = M

i.e. decrypting an encrypted message yields the same message.

2. The transformations EK and DK are easy to compute.

3. It is computationally infeasible to know DK from EK for almost every K.

4. Encrypting a decrypted message also yields the same message. I.e.

EK(DK(M)) = M

5. It is feasible to compute EK and DK for every key K in the cryptosystem.

9

From property 3, D cannot be constructed from E, so it is perfectly secure for E to be publicly
known.

A public key system works in this way: Alice generates a pair of inverse transformations, EA and
DA. Alice makes the encrypting transformation publicly known. The decrypting transformation is
kept secret. EA is Alice’s public key, DK is the private key.

When Bob wishes to send a message M to Alice so that only Alice can read it, Bob :

1. Looks up in the public key directory to find Alice’s public key, EA;

2. Uses that key to generate an encrypted message, EA(M);

3. Sends this encrypted message to Alice.

Upon receiving EA(M), Alice applies the secret transformation to obtain the plaintext message.

DK(EK(M)) = M

Diffie-Hellman Algorithm Overview:

Diffie and Hellman went on to propose a way to find the transformations, E and D. We shall give
an overview of the algorithm here [250].

The protocol has two system parameters p and g. They are both public and may be used by
all the users in a system. Parameter p is a prime number and g is an integer less than p such that
there exists an exponent k, where for every number n between 1 and p− 1, n = gk mod p.

The Diffie-Hellman Public key distribution system works as follows:

• Assume Alice and Bob want to exchange a secret key among themselves over an insecure
channel.

• Alice generates a random private value a and Bob generates a random private value b. Both
a and b are chosen from the set of integers {1, . . . , p− 2}.

• Then, both compute the following using their public values g and p and their private values
a and b.

• Alice computes, ga mod p and Bob computes gb mod p. These are their respective public
keys. They exchange their public values.

• Finally, Alice computes gab = (gb)a mod p and Bob computes gba = (ga)b mod p. Because,
gab = gba = k, Alice and Bob now have a shared secret key k.

The method is based on exponentiation in a finite (Galois) field over integers modulo a prime,
or a polynomial field. It’s security relies on the difficulty of computing the logarithms in these
fields.

10

1.4 Examples of Security Protocols

Having introduced security protocols and cryptography, we will now present the structure of a
security protocol and two example protocols to which we will frequently refer in this thesis. A
security protocol consists of a set of a finite number of sent and received messages between finite
number of participants. It is represented as a sequence of message transmissions in the as

A→ B : M.

Here, A and B are the agents or participants in the protocol. M represents a message (un-
encrypted, encrypted, or a combination of both). So, the expression represents agent A, sending
message M to agent B. We term this a protocol rule. A protocol is a sequence of such rules
numbered from 1 to n, where n is the total number of rules in the protocol.

Let us look at the adapted Needham-Schroeder Public-Key Protocol (NSPK) [162]:

Msg 1. a→ s : b
Msg 2. s→ a : {PK(b), b}SK(s)

Msg 3. a→ b : {na, a}PK(b)

Msg 4. b→ s : a
Msg 5. s→ b : {PK(a), a}SK(s)

Msg 6. b→ a : {na, nb, b}PK(a)

Msg 7. a→ b : {nb}PK(b).

Before explaining this protocol, let us introduce some standard notations that we will follow
using this example: a and b are agent identities (or roles). There is a distinction between roles
and the actual agents participating in the protocol. We shall use participants’ names like Alice
and Bob to represent participants playing the roles in the protocol. s is the identity of a trusted
server; na and nb are nonces (explained in the next section); the functions PK and SK return
an agent’s public key and secret key respectively; {m}k denotes m encrypted by key k. Also, the
above variables are considered to be free variables that can be instantiated with different values in
different runs.

Let us explain this protocol, step-by-step.

Msg 1. a→ s : b

Agent ‘a’ sends to server the identity of agent ‘b’.

Msg 2. s→ a : {PK(b),b}SK(s,a)

Server responds and sends to a the public key of b and identity of b, encrypted with it’s session
key / shared key with a; thus, a can now have the public key of b.

Msg 3. a→ b : {na,a}PK(b)

a sends b, a random nonce na (created by a), together with it’s identity encrypted with b’s
public key (obtained in step 2).

Msg 4. b→ s : a

11

b then sends the server the identity of a.

Msg 5. s→ b : {PK(a),a}SK(s,b)

The server repeats the same as in step 2. But this time it sends to b the public key of a and
identity of a encrypted with the key it shares with b.

Msg 6. b→ a : {na,nb,b}PK(a)

b now sends to a na and nb together with it’s identity, encrypted with public key of a (obtained
in step 5). Now only a can decrypt this message.

Msg 7. a→ b : {nb}PK(b)

Lastly, a sends back to b, nb (obtained by decrypting message in step 6 with it’s private key)
encrypted with b’s public key; thus, only b can read this value (nb). Also, b can check this value
with the one it sent to a so that b is convinced that a has created this message and no one else.
nb now becomes the secret key or shared key for a and b for subsequent communications between
them.

As another example, consider the Woo and Lam protocol from [272].

Msg 1. a→ b : a
Msg 2. b→ a : nb
Msg 3. a→ b : {a, b, nb}shared(a,s)

Msg 4. b→ s : {a, b, {a, b, nb}shared(a,s)}shared(b,s)

Msg 5. s→ b : {a, b, nb}shared(b,s)

Note that b cannot decrypt the message he receives in message 3, but instead simply includes it
inside message 4.

The first protocol is a classical example of a protocol that satisfies the property of secrecy. The
second protocol satisfies the property of authentication. (Observe that there is no shared value
established between agents in the Woo and Lam protocol. The ultimate goal of the protocol is that
b should believe that a is really whom it claims to be). We will use these protocols as examples in
several places to illustrate our concepts and definitions.

1.4.1 Nonces

The definition of a nonce can be informally taken to be a fresh, random value. The dictionary
definition of a nonce however, reflects the phrases, ‘time being’, or ‘present occasion’. A ‘nonce-
word’ is used in place of ‘one occasion’.

In cryptographic protocol design, it’s use is subject to it’s creation—it has to be created such
that it is guaranteed that it is unpredictable and unique. The exact properties however, vary
depending on how they are used exactly. The key idea in using nonces is to establish causal
relationship between messages. For example, consider the Needham-Schroeder Public-key Protocol
presented above. In the third message (Msg 3), Alice sends Bob the message, {na, a}PK(b). If Alice
didn’t include the nonce na inside the encryption, she is open to an attack as follows: intruder Yves,

12

masquerading as Bob, can create the message 6 as {nY , b}PK(A) and send it to Alice. Since Alice
has no way of knowing that this message was created by somebody other than Bob, she innocently
sends {nb}PK(b) as the seventh message. Now, nY becomes the secret key between ‘Bob’ and Alice.

Yves can subsequently obstruct all messages sent to Bob by Alice and read them with the help
of this secret key. The attack works because of the lack of causality between msg 3 and msg 6.
With the help of a nonce in message 3, Alice can check the value sent in message 6 with the one she
generated to know that Bob was indeed able to decrypt message 3. Other uses of nonces also exist.
For example, many times they are used to prevent replay attacks. Since they are created to be
fresh and unique, replay of encrypted components that contain them in subsequent messages were
thought to be easy to detect. However, as we will see later, this is not always the case. We will
show that nonces cannot prevent all types of replay attacks, especially those that work even in the
presence of freshly created, random, unique values. The implementation of nonces is done using
freshly created random values drawn from some large space of possible values. With bit strings
of sufficiently long length (say 128), it is possible to make the possibility of a nonce failing to be
unique negligible.

1.5 Attacks

Having briefly introduced security protocols, security properties and cryptosystems used by security
protocols, we shall discuss attacks on security protocols in this section. Attacks on security protocols
are defined as a breach of security properties of the protocols. As said before, all the protocols need
not have all the security properties (secrecy, authentication, non-repudiation etc.). Each protocol
could be designed to satisfy just a subset of those properties. Any violation of those properties
by a penetrator using some technique(s) without the notice of honest agents is an attack on the
protocol. Many attacks continue to be published on security protocols (sometimes years after they
are first proposed [162, 163, 133]). Analysts continue to find a variety of attacks on protocols
through their analysis techniques. Even the protocols presented in previous section (NS protocol,
Woo and Lam protocol) were shown to be vulnerable to attacks. There are a variety of reasons
security protocols have flaws. Of course, the first thing to notice is that protocol security is an
undecidable problem [118]. Hence one can argue about the security of a given protocol in terms
of it’s vulnerability to a range of attacks, but cannot guarantee that a protocol is secure against
any given attack, using any given technique, at any time. Security protocols involve the exchange
of messages between parties with the intent of establishing a level of trust between the parties.
This level of trust may involve activities such as one-way or mutual authentication of identities, or
secure establishment of an encryption key to be used for the current session (a session key). The
number, format and content of messages exchanged varies with the individual protocols. The risks
to these protocols are dependent upon the actual goals of the protocols. For example, a one-way
authentication protocol is not at risk of a failure of mutual authentication, since that is not a goal.
Regardless of the goals of the protocols, researchers and practitioners have found many published
protocols to be flawed in that the participants complete the protocol assuming the goals have been
met when in fact they haven’t. These faults occur when an adversary uses specific properties of
the protocol to fool it into accepting messages that it shouldn’t. To illustrate the kind of attacks
to which security protocols can be vulnerable, we present a number of well-known strategies that
a penetrator can employ. However, please note that this list is not exhaustive but can serve to
illustrate various styles of attack. Also, these attacks that we present here are only the ones due to

13

a flaw in the protocol design. There can be other types of attacks such as, cryptanalytic, monitoring
timing, EM radiation in power consumption etc. These attacks are not due to a flaw in the protocol
but in the underlying cryptosystem.

1.5.1 Reflection

In reflection attacks [234], the trick is to fool an agent by sending a message created by the agent,
back to himself. An example is to bounce messages back at an agent so that he reveals the password.
Sometimes this can happen. A simple analogy might be responding to a guard’s question, ‘Tell me
the password?’ with ‘Tell me the password?’ to which, if he is programmed to respond automatically
to that request, he might respond with the password. Then, the same password can be supplied
back to him. This is a simple attack but in fact, such an attack has been used against some real
friend-or-foe type protocols. Observe that the attack depends on the symmetry of the situation. In
the above example, we have assumed that the guard was programmed to authenticate himself and
using the same password as people are approaching. Breaking the symmetry, for example, by using
a different password than the one which people approaching him use to authenticate themselves,
would foil such an attack.

1.5.2 Man-in-middle

A man-in-the-middle attack, as the name suggests, works when a penetrator sits in between two
communicating agents [234]. Usually in these attacks, the penetrator has complete control over
the network and can read all the traffic, obstruct messages from one participant from reaching the
other participant and can create his own messages and send them to other agents. Let us look at
the following näıve protocol to illustrate one such attack:

Let Alice and Bob be the agents wanting to communicate secretly (playing the roles of A and
B respectively). Assume that both do not know each others private and public keys. Let Yves
(denoted as Y) be the intruder. Also let PKA denote the public key of Alice.

1. A→ B : {X}PKA

Alice sends Bob, an element X encrypted with her public key. Therefore, this can be only be
decrypted by Alice’s private key which only Alice has.

2. B → A : {{X}PKA
}PKB

When Bob receives this message, he cannot decrypt the message. Only Alice can do this.
But, Bob can encrypt this further with his public key. He sends this back to Alice.

3. Now, using the commutative property of RSA [220], we have

{{X}PKA
}PKB

= {{X}PKB
}PKA

Therefore, Alice can strip off her encryption and give, {X}PKB
.

4. Alice can send this back to Bob which he and only he can decrypt.

14

This protocol seems pretty secure at first glance. But it turns out that intruder Yves can easily
subvert the protocol by intercepting the messages between Alice and Bob and inserting some of his
own. The attack can be shown as below:

1. Yves intercepts the first message from Alice and encrypts with his own public-key.

{{X}PKA
}PKY

2. This he returns to Alice and Alice has no way of knowing that this is not the one she expects
from Bob. So, she strips off her encryption according to the protocol and sends back to Bob:

{X}PKY

3. Yves again intercepts this before it can reach Bob and decrypts with his private key to know
X.

This attack is successful because of the lack of any form of authentication in this protocol. Alice
has no way of checking that the message that she gets back has indeed come from Bob.

1.5.3 Oracle

Here the intruder tricks an honest agent into inadvertently revealing some information that later
helps the intruder to attack the protocol [234]. Common examples of these attacks are ones which
also use some other technique such as interleaving to attack the protocol. These attacks might
also involve multiple runs of the protocol. In fact, they can involve the use of information from
runs of entirely different protocols. We shall present many examples for all these attacks including
explanations as to how they occur and the mechanism to prevent these attacks in the sections to
follow.

1.5.4 Interleaving attacks

We now present some attacks which have been by far the most popular among attacks on security
protocols. They are called interleaving attacks. As the name suggests, they work because of
interleaved runs of protocols. We shall illustrate this attack with a famous attack that combines
interleaving with oracle techniques. The protocol we consider is the Needham-Schroeder Public-Key
protocol we introduced in section 1.4

Msg 1. a→ b : {a, na}PKb

Msg 2. b→ a : {na, nb}PKa

Msg 3. a→ b : {nb}PKb
.

Another examination of the protocol would suggest that, after finishing the protocol run, Alice
and Bob might feel confident that:

• they know with whom they have been communicating;

15

• they agree on the values of the nonces na and nb;

• no one else knows the values na and nb.

These beliefs seem reasonable given the fact that only Bob can decrypt a message encrypted
with his public key and similarly for Alice. Alice and Bob can use these values for re-authentication
at a later time or even perhaps use the hash of these values as a shared session key for later secret
communication. It was believed that this protocol satisfies exactly these properties for many years,
until a very neat vulnerability on it was discovered by Lowe [162]. The attack proceeds as follows:

Msg α.1 A→ Y : {A,NA}PKY

Msg β.1 Y (A)→ B : {A,NA}PKB

Msg β.2 B → Y (A) : {NA, NB}PKA

Msg α.2 Y → A : {NA, NB}PKA

Msg α.3 A→ Y : {NB}PKY

Msg β.3 Y (A)→ B : {NB}PKB
.

In this attack, Yves is actually a recognized user. He has his own certified public key and private
key and is known to the other users. Alice innocently starts the protocol with Yves and sends the
first message. Yves takes this message and uses it as the first message in a communication using
the same protocol with Bob. Bob also sends the second message, nonces NA and NB concatenated
and encrypted with Alice’s public key. Yves now takes this encrypted chunk and sends it to Alice
as the second message of it’s run with Alice. Alice then sends Yves the nonce NB encrypted with
Yves’ public key as a part of the third message in the run α. Yves can read this value since he
can decrypt it with his private key. He then constructs the final message of the run with Bob,
using this nonce and Bob’s public key. So, at the end of this we have two interleaved runs of the
protocol with Yves communicating with Alice and Bob concurrently. Alice thinks Yves and she
exclusively share the knowledge of NA and NB. Bob thinks he is communicating with Alice when
in fact, he is communicating with Yves. Thus, the attack has created a mismatch in Alice’s and
Bob’s perception, at the very least.

This vulnerability has evoked a lot of interest and controversy in the community. The protocol
was first published in the seminal paper by Needham and Schroeder in 1978 [201]. The protocol
was subjected to analysis using the BAN logic of authentication and was given a clean bill of
health. The protocol was thus thought to provide a solid mechanism for authentication until the
above attack was published. This attack slipped through the BAN analysis since it falls outside
the assumptions made by the BAN logic (BAN explicitly assumes that all the users are honest).

The attack is a combination of interleaving and oracle. Two runs have been successfully com-
pleted, namely, α and β. In steps 2 and 3 Yves is using Alice as an oracle to decrypt the message
from Bob that he himself cannot decrypt. She is thus fooled in one run into providing Yves with
information that Yves can use to successfully run an attack in another run with Bob.

1.5.5 Type Flaw Attacks

Heather et al. [130] (page no 1) define type flaw attacks as:

16

“A type flaw attack on a security protocol is an attack where a field that was originally
intended to have one type is subsequently interpreted as having another type.”

Example:

Consider the seven message version of the adapted Needham-Schroeder Public-Key Proto-
col [162] in the section 1.3. We produce it again to illustrate a type flaw attack:

Msg 1. a→ s : b
Msg 2. s→ a : {PK(b), b}SK(s)

Msg 3. a→ b : {na, a}PK(b)

Msg 4. b→ s : a
Msg 5. s→ b : {PK(a), a}SK(s)

Msg 6. b→ a : {na, nb, b}PK(a)

Msg 7. a→ b : {nb}PK(b).

Meadows [187], describes a type flaw attack on the unmodified Needham-Schroeder Public-Key
Protocol. The modified version of the protocol is also vulnerable to essentially the same attack [130]:

Msg α.3. IA → B : {NI , A}PK(B)

Msg α.4. B → S : A
Msg α.5. S → B : {PK(A), A}SK(S)

Msg α.6. B → IA : {NI , NB, B}PK(A)

Msg β.3. I(NB ,B) → A : {NI , (NB, B)}PK(A)

Msg β.4. A→ IS : (NB, B)
Msg α.7. IA → B : {NB}PK(B).

Two runs are used in this attack, the messages of which are labelled α and β; IA denotes the
intruder I faking a message, apparently from A, or intercepting a message intended for A. The
intruder aims to impersonate A throughout run α. When B sends the nonce challenge at message
α.6, the intruder replays this message at A, as message β.3; A interprets the field (NB, B) as
being an agent’s identity, and so believes this message came from (NB, B). So, A tries to request
(NB, B)’s public key, by sending the ‘participant identity’ (NB, B) to the server; this allows the
penetrator to learn NB, and hence respond to the nonce challenge. Type flaw attacks on some
other protocols were also presented including the Woo and Lam protocol that we presented in the
previous section. Heather et. Al [130] propose a solution to prevent type flaw attacks on security
protocols using a technique of tagging each field with some information indicating its intended type.
They also prove their claim using the strand space framework presented by Thayer et al. [102].

1.5.6 Multi-Protocol

Alves-Foss [27] defines a multi-protocol attack as

“an attack against an authentication protocol that uses messages generated from a sepa-
rate protocol (not just another run of the same protocol) to spoof one of the participants
into successfully completing the protocol.”

17

Example

Consider the protocol below:

Msg i. B → A : B,A, {M,Nb, B}PK(A)

Msg ii. A→ B : A,B, {Nb, B}PKS(A)

Protocol 1.

Alves-Foss [27] describes a possible attack when this is combined with the Needham-Schroeder-
Lowe protocol (modified NS):

Modified NS protocol Tailored Protocol

Msg 3. EA → B : A,B, {Na, A}PK(B)

Msg 6. B → EA : B,A, {Na, Nb, B}PK(A)

Msg i. EB → A : B,A, {M = Na, Nb, B}PK(A)

Msg ii. A→ EB : A,B, {Nb, B}PKS(A)

Msg 7. EA → B : A,B, {Nb}PK(B)

Multi-Protocol Attack against Modified NS

1. Intruder EA, masquerading as A, sends message 3 to B. The tailored protocol requires Na

and M to be in the same format.

2. The intruder will then receive a response from B in message 6.

3. The intruder then forwards this message as message i for the tailored protocol to user A.

4. A responds with message ii of the tailored protocol, that includes a publicly readable copy of
the nonce Nb.

5. The intruder grabs this value to create message 7. Then he sends it to B who then validates
the intruder’s identity as A.

The attack works because of the ability of the intruder to force A to decode the secret field Nb

from message 6 and sent it back to the intruder in a format that the intruder can read. Since the
format of message i of the tailored protocol is exactly the same as message 6, there is no way that
A can detect the attack.

It is interesting to ask if every protocol vulnerable to such “tailored protocols.” Indeed, the
concept of tailored protocols is trivial—any protocol can be attacked if the simultaneous operation
of such tailored protocols exist. Kelsey et al. [140] go on to prove that given a protocol there always
exists another protocol such that the original protocol can be attacked.

18

This concept of tailored protocol is only for illustration purposes. In practice it is improbable
that honest users are convinced to install and use those tailored protocols to attack the original
protocol. However, reality is often a case of mixed protocols, if not tailored protocols. For example,
protocols like Kerberos and Neuman-Stubblebine [147, 206] have re-authentication parts which have
the same message formats as the primary protocol. Also, protocols like IKE, ISAKMP [126, 180]
etc. have different numbers of options and hence different protocols. In most occasions the same
user is involved in all the protocols.

After much discussion and debate for years on multi-protocol attacks, Guttman et al. proved a
useful result that the security of one protocol can never be undermined in the presence of another
protocol if both use disjoint encryption. We will explain more about this in a later section.

1.5.7 Replay

A replay attack on a security protocol is an attack involving the replaying of messages from a
different context than the intended context, thereby fooling an honest agent into believing that
the message did originate from the right participant. There have been many definitions of replay
attacks in literature. It is a term that tends to be loosely defined and is often interpreted in different
ways. However, we can classify them broadly as attacks on security protocols wherein:

1. A message (or parts of message) is replayed from another run of the same or different protocol
(external attacks)

–OR–

2. A message (or parts of message) is replayed from the same run (internal attacks).

Multi-protocol attacks and type flaw attacks that we presented earlier are a subset of replay
attacks. While multi-protocol attacks involve replaying or using messages from a different protocol,
type flaw attacks involve replay of messages by the intruder, that were created by the honest
participant, due to lack of knowledge about the types of fields in the messages. These may be
outside or inside the current protocol run.

The term replay attacks covers a much broader class of attacks that encompass interleaving,
multi-protocol and type flaw attacks. They cover the cases wherein messages are replayed from:

1. A different run of a different protocol;

2. A different run of the same protocol; or,

3. Inside the same run of the protocol.

Other replays also exist, such as straight replays, reflections etc. which are a variation of
the above replays. (Reflections have been already covered in the section on reflection attacks.
Deflections also exist which are just a variation of reflections in the sense that they involve deflecting
the message to a third party instead of reflecting them to the sender himself, as in reflection attacks).
Syverson [252] gives a taxonomy of replay attacks. He classifies replay attacks on cryptographic

19

protocols in terms of message origin and destination. The taxonomy is independent of any method
used to analyze or prevent such attacks. He claims that it is also trivially complete in the sense
that any replay attack is composed entirely of elements classified by the taxonomy. The taxonomy
is more than a list of replay types. This means that the classification is hierarchical and each level
in the hierarchy forms a partition at the preceding level. All replays can be classified as falling into
one of the categories at each level of the hierarchy. The taxonomy is broadly classified into:

1. Run external attacks (replay of messages from out side the current run of the protocol) and

2. Run internal attacks (replay of messages from inside the current run of the protocol), similar
to the classification that we presented.

Let us illustrate replay attacks using a classic example, the replay attack on the BAN-Yahalom
Protocol [72] published in [253]:

Msg 1. A→ B : A,Na

Msg 2. B → S : B,Nb, {A,Na}Kbs

Msg 3. S → A : Nb, {B,Kab, Na}Kas , {A,Kab, Nb}Kbs

Msg 4. A→ B : {A,Kab, Nb}Kbs
, {Nb}Kab

.

As before, let Alice, Bob and Server play the roles of A, B and S. Alice is the initiator in this
protocol. She sends her own name and a random number that she will use to verify the freshness of
later messages that contain it (using a nonce) to B. Next, Bob sends to the server his own nonce,
and the previous message that Alice has sent, encrypted with the secret key that he shares with the
server. In the third message, the server sends to Alice, a message that tells Alice that the server
has been talking to Bob, that the message is fresh (through Na), gives her the session key Kab and
an encrypted chunk for her to pass on to Bob. The first encrypted part, ({B,Kab, Na}Kas), tells
Alice that the server has been talking to Bob. The second encrypted chunk ({A,Kab, Nb}Kbs

) is
for her to pass on to Bob. When Alice sends this to Bob in the fourth message, it tells him that
the server has recently talked to Alice and gives him the session key. Because Alice has used the
session key to encrypt Bob’s nonce, the second encrypted chunk lets him know that she has seen
the session key recently. Now, the attack works as follows:

Msg 1. A→ B : A,Na

Msg 2. B → S : B,Nb, {A,Na}Kbs

Msg 1′. Ya → B : A, (Na, Nb)
Msg 2′. B → Ys : B,N ′b, {A,Na, Nb}Kbs

Msg 3. Omitted.
Msg 4. Ya → B : {A,Na(= Kab), Nb}Kbs

, {Nb}Kab
.

Here, YX refers to the penetrator Yves, masquerading as principal X. It is assumed that the
message is intercepted if this occurs in the place of an intended recipient.

20

This attack begins with the penetrator either eavesdropping on an initial message from Alice
to Bob or sending it herself. Yves initiates another run of the protocol at the second message,
masquerading as Alice. He uses nonce Na concatenated with Nb (both sent by Alice and Bob
respectively in the first run) as nonce N ′a in the second run. He intercepts the encrypted message
sent by Bob to Alice in message 2′ and drops the second run. He then uses this encrypted portion
as part of the fourth message of the first run. And so, he uses nonce Na as the shared key Kab

and sends it to Bob. He can now encrypt Nb with Kab since he now ‘knows’ Kab (nonce Na). At
the end of the protocol run, the intruder is able to make Bob believe that Na is the secret key. In
other words, Bob would communicate with Yves thinking that he is Alice and send him information
using the secret key Kab(= Na).

Although this attack is published as a replay attack, it falls into the sub-category of type flaw
attacks that we presented earlier. The attack assumes that substituting two concatenated nonces
for one will go undetected and be passed along when sent to someone who has no need to check the
nonce. It also assumes that substituting a random number generated to be a nonce for something
that has been generated as a session key will be successful. We will later explore replay attacks
further, since this thesis is centered around preventing them.

Many solutions have also been presented as countermeasures for replay attacks [55, 92, 123].
The existence of interleaving attacks has prompted occasional discussion of the inappropriateness
of freshness mechanisms for general prevention of replay. Some have proposed in their solutions
a mechanism to tie the messages to a particular protocol run rather than to a particular epoch.
(Timestamps for example were proposed for tying messages belonging to a particular epoch). So,
if a replay attack in the form of interleaving involves fresh messages, it would still be revealed by
the mechanism if the messages are from different protocol runs. However, the possibility of run
internal attacks shows that a mechanism is incomplete if it is not a general scheme to prevent replay
attacks. Also, there is the case of reflections and deflections. Some examples of countermeasures
were discussed in [194, 117]. They involve indicating who a message is from, who it is to, or both.
They propose asymmetry between messages X sends to Y and those Y sends to X as a simple
means of countering replay. This is also proposed in [67]. However, these mechanisms should be
only expected to be effective in case of reflections. To introduce effective asymmetry in a protocol
format, the problem of preventing type flaws must be addressed. A very important step in making
sure that format asymmetry is not itself attackable was made by Heather et al. [130], as mentioned
earlier. So, the proposed solutions using asymmetry can be expected to be effective. Our proposed
solution that we present here can be considered as a mixture of all these schemes. Our solution is to
indicate in each encrypted component in a protocol run an identifier for the run, it’s intended sender
and recipient, and the component number of the component in that protocol. This information
should be attached to the contents inside every encrypted component in the form of a tag so that
when a participant receives an encrypted component, he knows the origin, run and the intended
place of the component in the protocol. When a penetrator tries to fool an honest agent by replaying
an encrypted component from a different context, he cannot change the tag placed inside it when
it was created, and so will be caught when the recipient reads the tag. It is not necessary that the
recipient be able to decrypt a component when he receives it. Many times, guided by the protocol
rules, he might only be able to decrypt it a later stage of the protocol. However, no matter when
he decrypts it, if he notices that the tag indicates that the message belongs to another context, he
would stop the protocol run.

21

1.6 Analysis Approaches

Security protocols require careful analysis. This was recognized early on. It was also realized that
just poking around a protocol until one gets got bored and fails to locate an attack does not provide
any good assurance that the design is sound. We shall give an overview of some rigorous analysis
approaches in this section. These approaches have been proposed to make the reasoning about
security protocols more systematic, formal and in some cases, automated. However, this is not an
exhaustive survey; but enough information is provided so that a reader, if interested in pursuing
further studies on this analysis, can do so using this introduction. The area has seen an explosive
growth, with a number of formalisms being used for analysis. Broadly speaking they fall into four
main categories:

• logic-based

• model-checking, state enumeration

• proof-based

• cryptographic (provable security).

Recent trend has been towards combining these. For example, bringing together model-checking
and proof-based techniques and tools looks to be a very fruitful way to go for areas other than
security protocols, such as critical systems in general.

1.6.1 Dolev-Yao Model

This was probably one of the significant steps in the development of the subject. Dolev and
Yao, in their paper [97], laid the conceptual foundations of the subject by presenting the basic
intruder model that has been used in virtually all the work since. The idea of an intruder with
all the capabilities of manipulating messages, passing over the system, flushing, replaying, faking,
redirecting and so on, limited only by cryptographic constraints and knowledge of keys was set out.
The paper has also given an introduction to the concept of viewing the problem as a form of word
problem.

1.6.2 BAN Logic

Burrows, Abadi and Needham [72] made one of the first attempts to make the reasoning about
the properties of security protocols more systematic. They proposed a logic called BAN logic of
authentication. The idea is to reason at each state the beliefs of agents (legitimate) involved. i.e.,
deriving the beliefs of such agents as new information is received. For this, the initial knowledge,
assumptions and the protocol steps are mapped into formulae in the logic. This process is known
as idealization. Many flaws in proofs using BAN logic have resulted from faulty idealization. BAN
logic is really about authentication. This is a fact that is often overlooked, although the authors
clearly describe it in their formulation. Another important point is that BAN explicitly assumes
that all participants are honest. This is of course not a universally applicable assumption, but a

22

valid one in some contexts. In a distributed network environment like the internet, where assuming
that no malicious netizens would be involved in the system, can be so misleading that applying this
logic would lead to many erroneous results. If BAN is applied to contexts outside it’s assumptions,
the results can be seriously misleading as exemplified by Lowe attack on Needham-Schroeder Public-
Key Protocol [162].

Let us look at some of the formulae involved in BAN logic. These are not exhaustive but would
give a fair idea as to how to use the formalism. First,

P |≡ X.

This is pronounced, ‘P believes X’. More precisely, it should be interpreted as ‘P has a good reason
to believe X’. Next we have

P
K←→ Q

which is interpreted as: ‘the key K is good for use in communication between P and Q’ . This
should be interpreted as meaning that K is only and will only be known to P and/or Q (of course
assuming that P and Q themselves do not compromise K). Third, there is

](X).

It is pronounced, ‘the term X is fresh’ . This notion has been hotly debated. This does not state
how old the value is. BAN distinguishes only the present and past, a weak notion of time. Present
means from the start of the current protocol run under consideration. Past means everything before
the current run. Some pitfalls can be easily observed here. In the asynchronous universe, having a
global starting time at which the protocol starts may not be well-defined. Anyway,](X) is really
asserting, ‘X has not been sent in a message before the current protocol run’ . Next there is

P / X

which is read, ‘P sees X’ . In other words, ‘P receives X’. X might be a term inside a compound
term and might require decryption by P . In that case, it is assumed that P would have the
appropriate key. Finally, we have

P | ∼ X

This means ‘P once said X’, i.e., P has in the past sent a message that had X in it and, also, P
believed X at the time of sending this message.

Examples of the inference rules include:

P |≡ (P K←→ Q)

P / {X}K

P |≡ (Q| ∼ X).

23

This should be interpreted as saying: ‘if P believes that the key K is good for communication
between it and Q, and also if P has seen X encrypted with the K, then it can be inferred that P
now believes that Q has once sent X’. (The logic assumes that principals can identify their own
messages). There are more rules that deal with the notion of jurisdiction, which concern when
agents have the authority to make statements.

Protocol goals like those introduced in section 1.2 (security properties) can also be formulated
in the logic. For example, a key establishment protocol would typically aim to achieve as one of its
goals:

A |≡ (A K←→ B)
and

B |≡ (A K←→ B)

i.e., A and B both believe that the key K is good for communication between them.

The idea is to then see if the protocol goals can be derived using the formulae representing the
initial assumptions, protocol steps and the inference rules. Failure to reach the required goals can
indicate that the protocol needs to be changed in terms of its details or the need for the addition
of further assumptions. On the other hand, the analysis can sometimes identify places where the
assumptions are unnecessarily strong or the protocol can be further simplified, for example an
unnecessary encryption of a term. The BAN logic has proved itself highly effective in this sense.
But, for high-assurance applications, the precise interpretation of a successful BAN analysis is not
very clear. Questions like, ‘can a principal believe something that is false?’ crop up. This was the
problem with the original semantics. They were found to be problematic and raised such questions.
Subsequently, an improvement in the semantics was made but it still remains a fact that it is quite
difficult to interpret the results of a BAN analysis. This is true specifically because the protocol
steps must be idealized into the logic a step which may accidentally introduce implicit assumptions.

1.6.3 NRL Analyzer

The NRL analyzer [187, 186, 188] falls in between a model-checker and a theorem prover. Model
checkers involve specifying all the properties of a protocol including rules, assumptions, intruder
capabilities and protocol states in a generic model. A general procedure is followed to analyze the
protocol to find flaws or attacks. Theorem proving involves verifying the correctness of theorems
using automated tool support.

The NRL analyzer has been around for some time. It is still going strong. It breaks away from
traditional analysis approaches and specifies the problem as a word problem. It is a prototype
special-purpose verification tool, written in Prolog. It uses one of the classical concepts of artificial
intelligence called back-tracking in the analysis of cryptographic protocols.

NRL is based upon a version of the term-rewriting model of Dolev and Yao [97] mentioned
earlier. In the Dolev-Yao model, cryptographic protocols are thought of as an algebraic system
that obey a set of reduction rules. For example, encryption and decryption with the same key
using a private-key algorithm is self-cancelling. Thus, they model the intruder as attempting to
solve a word problem in a term-rewriting system. Using this insight Dolev and Yao, and later

24

Dolev, Even and Karp [96], developed a set of algorithms for proving the security of certain limited
classes of protocols. NRL is based on this model but takes a more general approach. For one thing,
it extends the goals of the intruder to include more than just finding out secret words. Also, the
model is extended to include local state variables possessed by the principals. This is because, for
example, a protocol can be broken if the intruder can convince a principal that a word already
known by the intruder is a session key. This models the scenario of protocols being broken, not by
the intruder discovering a secret word, but by the intruder convincing a principal that a word has
certain properties that it does not have.

While Dolev and Yao give a set of algorithms, NRL was developed based on a general proce-
dure for proving security properties of protocols and an interactive Prolog program that facilitates
this procedure. Protocols are specified as a set of transitions in a state machine. According to
Meadows [186], (page no. 4), each transition rule is specified in terms of:

1. words that must be input by the intruder before a rule can fire;

2. values that must be held by local state variables before the rule can fire;

3. words output by the principal (and hence learned by the intruder) after the rule fires; and,

4. new values taken on by local state variables after the rule fires.

In essence then, the NRL Analyzer is an equational re-writing tool, written in Prolog. It also
incorporates automated support to assist the user in proving certain impeachability theorems that
serve to prune the search space by helping to discard infinite nodes of potential state space. The
tool is run as a backward search from a specified insecure state to see if the state could be reached
from the initial state. The search is partly automatic. Sometimes the tool requires the user to
intervene. Typically, when the search space is growing explosively, the user needs to intervene and
prove some more lemmas that aid in cutting the branches that are leading the tool to go into an
infinite loop.

Using the tool requires quite a high level of user expertise. Protocol rules have to be accurately
coded and the insecure states from which the search is to be driven have to be identified. The search
typically needs a high level of expert user interaction (proving impeachability theorems and lemmas
etc. to prune the search space). The tool has been used to great effect to analyze a number of flaws
in a number of protocols. In some cases, new flaws have been discovered on famous protocols like
the Simmons broadcast protocol [242].

1.6.4 Strand spaces

The strand spaces approach has been developed by Thayer et al. at MITRE [102, 101]. A strand
represents a sequence of communications for an agent involved in communication. For an honest
principal, this encodes the expected sequence of send and receive messages associated with a partic-
ular role of the protocol. Agents can play multiple roles in a protocol (sometimes simultaneously).
For example, the role played by ‘a’ in the Needham-Schroeder-Lowe Public-Key protocol can be
represented by the following strand:

〈+{Na.a}PKb
,−{Na.Nb.b}PKb

〉.

25

‘+’ stands for send and ‘−’ for received. Similarly, the responder strand (agent ‘b’) is written as

〈{−Na.a}PKb
〉.

Formally, it is a sequence of the form 〈±f1,±f2, . . . ,±fn〉, where +f represents the transmission
of a message f and −f represents reception of f . A node is any particular communication ±f by
a single agent.

A graph structure is defined on strands by means of two types of edges denoted by → and ⇒:
A protocol is represented in terms of strands of roles in the protocol. A bundle is defined as a
collection of strands representing a particular history of the network.

Penetrator strands are also defined in terms of the possible actions by the penetrator. These
are parameterized by KP as the set of keys initially known to him. These strands include sending
text messages, concatenating two messages, separating two messages, sending a key, encrypting
a message after receiving an encryption key and decrypting an encrypted message to send the
plain-text message upon receiving the corresponding decryption key.

Reasoning takes place on sets of bundles. One can imagine this as giving the set of all possible
words consistent with a particular agent’s experience of a protocol run. With this framework in
place one can prove various security properties of protocols. The strand space framework was
originally proposed to prove security protocols correct, and so they were not initially used for
any other purpose, particularly the other direction in security protocol research—finding flaws.
Usually when using the strand space framework the protocol model is first stated. Then, some
useful lemmata are proved which have general utility in proofs. Since bundles form finite, well-
founded sets under the causal (partial) ordering, standard proof techniques for such structures can
be applied. Usually, induction, transformation and general properties of set theory are applied.

1.6.5 Provable security

All the above frameworks we have discussed have been the ones that have drifted away from the
details of the underlying cryptosystems, cryptographic algorithms and primitives. There also some
well-known ways to characterize the security of cryptographic primitives. These involve theories
of probability and complexity. They are quite technical and require in depth understanding to
interpret their exact mechanisms. Details of some of those techniques can be found in [64] and [213].
They typically boil down to a sort of process equivalence or at least approximate equivalence.
Firstly, the intruder is modelled as being able to perform an unbounded number of tests. One
example is asking for the encryption of some piece of text of his choice. He can repeat this
procedure possibly basing his choice of input text on the outcome of the previous tests. This
procedure reflects what is thought to be the most powerful attack strategies open to the intruder:
adaptive chosen-plaintext attacks. Finally, he submits two different texts and tries to guess which
of the resulting cipher-texts corresponds to which plaintext. A system is considered secure if he
cannot do this reliably with significantly better-than-even odds. If he can do it, then the system
is deemed insecure. Ideally, the penetrator is deemed to have ‘negligible advantage’ or for all
practical purposes, ‘no advantage’. This amounts to placing a tight bound on how much better-
than-even odds he can achieve as a function of the amount of work he performs in terms of tests
and computation. Again, the details of these are very technical. Numerous attempts have been
made to apply this style of reasoning to cryptographic protocols [65, 207]. Almost all of them

26

boil down to reduction-style arguments, e.g. breaking a protocol would be equivalent to breaking
the underlying primitive. An ideal thing to do is to combine both styles of analysis: formal and
cryptographic. However, a framework that encompasses both aspects of say, the strand space model
with the probability and complexity theory of cryptography would almost certainly be intractable.
Therefore, it seems better to be able to relate the results of the two styles of analysis [234].

27

Chapter 2

Background

2.1 Taxonomy of Replay attacks

In this section, we shall present a detailed taxonomy of replay attacks given by Syerson [252].
Our explanation is particularly aimed at describing the various kind of attacks so that a later
explanation of the appropriate prevention strategies is easier. The taxonomy is more than a list
of replay types. It is a categorization that is hierarchical and each level in the hierarchy forms a
partition of the preceding level. Also, we will show that this taxonomy is a complete taxonomy in
the sense that all replay attacks can be classified as falling into one of the categories at each level
of the hierarchy. The structure is basically determined by whence messages originate and where
messages arrive. Penetrator capabilities do not play any role in the classification (other than to
affect these two factors). Also, the classification is independent of any ability to detect or prevent
penetrator actions. Hence this independence frees us to consider which detection, representation,
or prevention mechanism are appropriate for a replay attack by focusing on where it occurs in the
taxonomy.

2.1.1 Origination Taxonomy

Origination taxonomy, as the name reflects, is based on the protocol run of origin for a message
(relative to the protocol run in which the replay occurs). Origination taxonomy can be classified
into:

1. Run external attacks (using replay of messages from outside the current run of the protocol)

(a) Interleavings (require contemporaneous protocol runs)
(b) Classic replays (runs need not be contemporaneous)

2. Run internal attacks (using replay of messages from inside the same/current run of the pro-
tocol).

There is no distinction between attacks involving replay of parts of a message or the whole
message. In fact, intuitively, the significant part of replays is the replay of encrypted components.

28

We shall not distinguish between messages and parts of messages when considering replays. It is
acceptable to use them interchangeably. Also, some attacks may fall into more than one category.
i.e., they can involve multiple types of replays to attack the protocol. In that case, it is helpful to
think of an attack as consisting of multiple attack elements which may or may not constitute whole
attacks. The following is the description of the classes of attacks set out in the above taxonomy.

Run external attacks use message components from one protocol run in another. The pro-
tocol run may be using the same protocol or a different protocol (as in multi-protocol attacks
described in section 1.4.4). One of the classic examples of this is the Denning-Sacco attack [92]
on the original Needham-Schroeder key distribution protocol [201]. The attack requires that a
penetrator capture a copy of the third message in the protocol and break the distributed session
key. He can then replay this third message later, as part of another run of the protocol (or another
protocol using the same message format). By doing so, he can convince the honest participant into
thinking he has just authentically exchanged a key with the penetrator. However, the reality is
that the key is an old key and he has exchanged it with a penetrator. This forms an external attack
because it uses a message from outside of the protocol run in which the replay occurs.

This is an example of a classic replay. They are so called because they have been known and
addressed for quite some time. They do not need contemporaneous runs1 of protocol and use a
message from outside the current run of the protocol. That message can come from a protocol
run that occurred at any time. (The only exception is when the long term keys have expired).
The other class of run external attacks are called interleavings. These require that two protocol
runs overlap in execution. The attack on the BAN-Yahalom protocol presented in section 1.4.6
is an example of this kind of attack. The attack is an interleaving attack because it depends on
messages constructed of message components from contemporaneous protocol runs. Observe that
if the second run is not begun during the first run, the penetrator cannot successfully complete the
attack.

Run internal attacks use message components from within the same or current run of a
protocol. An example of this is the attack on the Woo and Lam protocol [272] published by Heather
et. al [130], where an intruder spoofing as agent a and the server replays the fourth message created
by b back to b. Since he has already succeeded in making agent b create an encryption that had a
type flaw, he can replay that message as part of another message. Heather et al. also presented a
technique that prevents this attack in their paper.

2.1.2 Destination Taxonomy

Origination taxonomy is based on the protocol run of message origin relative to the run in which
the replay is made. Destination taxonomy focuses on the recipient of the message relative to the
intended recipient. There are two kinds of attacks in the destination taxonomy:

1. Deflections (message is deflected to some other participant, other than the intended recipient)

(a) Reflections (message is sent back to the sender)

(b) Deflections to a third party
1Contemporaneous refers to parallely executing protocol runs.

29

2. Straight replays (message is delayed).

Deflections involve deflecting the message to other than the intended recipient. These include
reflections (explained in section 1.4.1), where the message is sent back to sender and deflecting
the message to a third party (i.e., other than the sender and the intended recipient). Straight
replays are so-called because the message is sent straight from the sender to the intended recipient
without obstruction or deflection, although it may be delayed or have additional text appended to
it, generally altering the significance of the message.

To illustrate attacks using straight replays, let us look at the following example described
in [253]. In this attack, the penetrator reuses a message from Alice to the server (message 2), as
a different message from Alice to the server (message 4) in another round of the protocol. The
protocol involved in this attack was an artificial example created for illustration of these attacks.
However, Syverson also presented these attacks on well-known protocols, like the one below, on the
BAN-Yahalom Protocol.

Attack on the BAN-Yahalom Protocol involving straight replay

(1) A→ Yb : A,Na

(1′) Yb → A : B,Na

(2′) A→ Ys : A,N ′a, {B,Na}Kas

(2′′) Ya → S : A,Na, {B,Na}Kas

(3′) S → Yb : Na, {A,Kab, Na}Kbs
, {B,Kab, Na}Kas .

(2) Omitted.
(3) Ys → A : Ni, {B,Kab, Na}Kas , {A,Kab, Na}Kbs

(4) A→ Yb : {A,Kab, Na}Kbs
, {Ni}Kab

.

This attack is not as potentially dangerous in terms of the damage that it can cause compared
to the attack shown in section 1.4.7. The result is that Yves can spoof Alice into thinking that she
has exchanged a key with Bob. The session key is not released anywhere. This attack also does
not rely on assumptions of possible type flaws in the messages. The only assumption is that Alice
will not detect the reflection in the second run of her nonce from the first run.

This attack also illustrates all of the possible kinds of destination replays. Reflection is involved
when Yves, masquerading as Bob, sends message 1 back to Alice in message 1′. There is also a
third party deflection of the encrypted text from message 3′ in message 3. There is a straight replay
of encrypted text from message 2′ in message 2′′ of the second run.

The origination and destination taxonomies are independent of each other. Therefore, we can
combine them to make a full taxonomy of replay attacks (actually it would be a cross product of

30

both. i.e., by appending either one to the finest levels of distinction in the other). However, before
we present the full taxonomy, we would like to present two more types of attacks which we consider
as ‘special’ types of replay attacks. They are:

1. Multi-protocol attacks; and,

2. Type Flaw attacks.

Since we have already discussed both these attacks in section 1.4, we shall not discuss them in
detail again. But we shall illustrate with examples how both of these fall into the class of replay
attacks.

2.1.3 Multi-protocol attacks

As described before, a multi-protocol attack is an attack on a security protocol using messages
generated from another protocol to fool one of the participants into successfully completing the
protocol. These attacks are possible when the public-key infrastructure permits the use of a user’s
public key in multiple protocols. An attacker can then use either a different protocol which already
exists or a tailored protocol to break an otherwise secure protocol. In other words, these attacks
work only when a replay of encrypted components from different protocol runs (that may or may not
be using the same protocol) is possible. They are especially successful against a large class of public-
key authentication protocols. Particularly, in implementations of the public-key infrastructure
where a user’s public key can be used for more than one specific protocol, public-key authentication
protocols can be broken by launching multi-protocol attacks. Although, theoretically an attack
may consist of replays of any text (not just encrypted), an attack on a well-designed protocol can
succeed only with replay of encrypted components. Poorly designed protocols (which do not use any
form of authentication or encryptions for authentication and key distribution) may be vulnerable
even to replays of unencrypted text. Even in well-designed protocols, it might be necessary to
replay the unencrypted text along with the encrypted text. However, this is quite trivial. A mere
eavesdropping on the network or creation of a similar text can be used to replay unencrypted text.
In fact, there cannot exist a mechanism to check for the replay of unencrypted text. Hence, we
must acknowledge the fact that the significant and effective part of an attack involves only replay
of encrypted text.

A multi-protocol attack involves a similar replay of encrypted text from another protocol (not
just the another run of the same protocol) in the current protocol. Hence, the techniques to prevent
these attacks consist of identifying uniquely each encrypted text (with respect to the protocol in
which they are/were used). We shall discuss more about preventing multi-protocol attacks later in
the section on strategies to prevent these attacks. Multi-protocol attacks fall into the category of
run external attacks since they require at least two protocol runs for the attacks to work.

2.1.4 Type Flaw attacks

Type flaw attacks also involve replay of encrypted text in the wrong context to fool a participant
into completing a protocol successfully. Although by definition type flaws mean a flaw in the types
of fields in a message, in which case the taxonomy of type flaws is large, the attacks ultimately

31

work only by means of replaying encrypted components that were created using fields having types
other than the intended type. Let us illustrate this with an example attack on the Woo and Lam
protocol published in [130]:

Msg1. a→ b : a
Msg2. b→ a : nb
Msg3. a→ b : {a, b, nb}shared(a,s)

Msg4. b→ s : {a, b, {a, b, nb}shared(a,s)}shared(b,s)

Msg5. s→ b : {a, b, nb}shared(b,s).

where, shared(a, s) denotes a key shared between a and s. b cannot decrypt the message received
in message 3, but simply includes it inside the encryption in message 4. This can be exploited by
a penetrator by using a type flaw as follows:

Msg1. IA → B : A
Msg2. B → IA : Nb

Msg3. IA → B : Nb

Msg4. B → IS : {A,B,Nb}shared(B,S)

Msg5. IS → B : {A,B,Nb}shared(B,S).

The penetrator replays nonce nb in message 2 (sent by B) in message 3. Since B has no way of
checking the type of the received message (he cannot decrypt the message), he simply includes it
inside the encryption in message 4 and sends it to S. Since IS is masquerading as S, she can simply
send this message back to B as message 5. B can now decrypt this message, finds the expected
contents and is convinced that he has just finished a successful run with A, when in fact he has
run the protocol with IA.

The attack works because B has created an encrypted component without checking the types
of the fields. The penetrator takes advantage of this fact and replays the component as the next
message. In general, all type flaw attacks work only when the penetrator replays an encrypted
component that was created by an honest participant because of lack of knowledge about it’s type.

Type flaws can be used to attack a protocol by replaying messages from inside the current run or
from a different run. Hence, type flaw attacks fall into both run external and run internal attacks.
Also, they can consist of both deflections and straight replays. The above example attack on the
Woo and Lam protocol is an example of a reflection attack occuring in the same run (message 4
from B to IS is sent back to B in message 5). We now present the taxonomy of replay attacks that
include all the above mentioned types of attacks. This is a modified version of the taxonomy given
by Syverson [253].

32

2.1.5 Full Taxonomy

1. Run external attacks (replay of messages from outside the current run of the protocol)

(a) Interleavings (require contemporaneous protocol runs)

i. Deflections (message is directed to other than the intended recipient)
A. Reflections (message is sent back to sender)
B. Deflections to a third party

ii. Straight replays (intended principal receives message, but message is delayed)

(b) Classic replays (runs need not be contemporaneous)

i. Deflections (message is directed to other than the intended recipient)
A. Reflections (message is sent back to sender)
B. Deflections to a third party

ii. Straight replays (intended principal receives message, but message is delayed)

2. Run internal attacks (using replay of messages inside the same/current protocol run)

(a) Deflections (message is directed to other than the intended recipient)

i. Reflections (message is sent back to sender)
ii. Deflections to a third party.

(b) Straight replays (intended principal receives message, but message is delayed)

2.2 Strategies against replay attacks

In this section we shall discuss some strategies that were presented in the academic literature to
prevent replay attacks. Traditional mechanisms to prevent replay attacks focused on using nonces,
timestamps etc. For example, the nonce na in NSPK is used to stop a penetrator from replaying
b’s messages from a previous protocol run into the current run. The nonce is used for ‘freshness’,
or in other words, used for stopping replay of old messages in authentication. However, as we have
observed, the use of nonces does not prevent many types of replay attacks, including multi-protocol
and type flaw attacks. The existence of interleaving attacks has prompted occasional discussion
of the inappropriateness of freshness mechanisms for general prevention of replay. Devices like
timestamps which tie messages to a particular epoch were suggested but were also beset with
problems such as dealing with the asynchronous universe. Hence, some have suggested mechanisms
to tie messages to a particular protocol run rather than a particular epoch. If the interleaving
of messages are from different protocol runs, such a mechanism would reveal the replays. Such
suggestions have been cited in many places including [73, 55, 123]. However, the question of how to
generate such unique protocol run identifiers remains unanswered. Also, these would not stop all
kinds of replay attacks, mainly run internal attacks where messages are replayed inside the same
protocol run.

As for the destination taxonomy, one kind of countermeasure is one that indicates who a message
is from, who it is to, or both. Some examples of these were discussed in [194] to avoid reflection
attacks on particular protocols. One of the mechanisms suggested by Mitchell discusses binding
the name of the message originator to the message cryptographically. These mechanisms would

33

probably work well against reflections but not against deflections and straight replays. Another
mechanism discusses specialized use of shared keys in order preclude mistaking either the sender
or the receiver of a message. This will not rule out straight replays and can be very expensive to
implement. Some other similar mechanisms suggested by Gong [117] were also explicitly limited to
countering reflections.

The basic mechanism is to introduce asymmetry between messages X sends to Y and those Y
sends to X as a simple means of countering replay. Again, we should only expect this to be effective
in avoiding reflections. Syverson in [253] says, “We must also take care that format asymmetry is
not itself attackable.” This means that possible type flaws in messages must be avoided to achieve
the asymmetry. However, with the help of Heather et al.’s work on preventing type flaw attacks
on security protocols [130], one can be assured that any given protocol is invulnerable to type flaw
attacks and hence be assured that the required format asymmetry will be successfully achieved.

Aura [55] presents some strategies as a set of design principles for avoiding replay attacks in
cryptographic protocols. He claims that the principles are easily applied to real protocols and do
not consume excessive computing power or communication bandwidth. As opposed to good design
principles suggested at many places in literature (which are more like warnings and examples of
how protocols should not be built), these are specific instructions for constructing protocols that
avoid the pitfalls and satisfy the good principles. These include a claim that the techniques should
be implementable in real protocols at a reasonable cost in computation and bandwidth. This is
essential because of the tight performance constraints that the designers of concrete protocols often
struggle with. Low resource consumption is achieved using inexpensive hash functions and by
utilizing the cryptographic functions and redundancy that would in any case exist in protocols.
However, as in [23], there is no claim that the ideas are either sufficient or necessary to make
all protocols secure. The only claim is that following these guidelines in protocol design results in
conceptually simple protocols whose security is easier to reason about. The suggestions are actually
listed out in the form of strategies in each section.

1. First consider the concept of implicit typing by using unique functions. Here the suggestions
given by Carlsen [73] about the type information that can be attached to messages and data
items are cited. In particular, the protocol identifier, transmission step identifier, message
subcomponent identifier, primitive type of data items, and protocol run identifier are con-
sidered. Except for the protocol run identifier, all the other tags can be represented using
static type information by attaching static labels to message data structures. However, full
explicit typing is usually avoided for performance reasons. Instead, Aura suggests that cre-
ating unique functions for all sub-messages costs significantly less than explicit typing of all
messages. So the first strategy is (page no 61),

“Strategy 1. Use a unique cryptographic function for each sub message in order
to tag the sub messages with their static data types. Create the unique functions
by parameterizing standard cryptographic functions.”

However, according to Aura, it still remains an open question as to how to tag messages with
a protocol run identifier. We would call this identifier a session-id for a protocol run. One
of the aims of this thesis is to answer the generation of such a run identifier through a very
specific procedure.

2. Many protocol flaws are caused by the excessive removal of redundancy from the messages in

34

a protocol. This happens because the protocol designer is tempted to simplify the protocol.
But it is often difficult to see which messages are important and which messages are not for
the correctness of a protocol. In fact, the more information included in messages, the more
difficult it is to commit a replay. Several classic protocol failures would have been prevented
by explicitly stating the name of the intended recipient in the encrypted messages [92, 162].
But many times this is too expensive to follow. For example, in mobile communications and
smartcard interfaces the use of security technology is severely limited by the high cost of data
transfer. Also, in most cases the redundant data is already known by the receiver and is used
only for comparison with the expected values. Hence, sending just a conflict-free hash of the
data with enough redundancy so that the receiver can reliably compare with the received
value would suffice. Instead of full information (known by the sender), the messages can
contain:

(a) all information known by the sender but unknown to the receiver;

(b) a cryptographic hash of all information known to both the sender and the receiver.

Aura summarizes this in his second strategy as:

“Strategy 2. Include in all authenticated messages a hash of all information that
both the sender and the receiver should agree on at that stage of the protocol run.”

Since the run identifier is the one piece of type information that could not be handled with
unique cryptographic functions, the idea is to combine unique functions with hashed full
information for complete typing of message data.

3. Replay attacks against session data can also arise from confusion about the assumptions
behind a key. For example, in a version of the Diffie-Hellman key exchange, where the public
keys are stored in public directories, if an attacker copies another person’s public key and
sends it into the directory as his own key a replay attack can occur. The attacker may not
be able to recover the session key but he can replay messages between two sessions because
they both have the same session key. The attack can be foiled by requiring the principals to
demonstrate the possession of the corresponding private D-H key before accepting a public
key to the directory. Hence, the strategy is (page no 66):

“Strategy 3. Understand the trust assumptions made in the key-agreement pro-
tocol and limit the use of the session key accordingly, or change the protocol to
eliminate the assumptions.”

4. Finally, regarding the use of unique session keys for each session and binding the session key
to it’s intended use, the following strategies are given:

“Strategy 4. To prevent copying of session keys and data between sessions with
different sets of principals, distribute instead a key derivation parameter and gen-
erate the session key by hashing the names of the principals with the parameter”;

“Strategy 5. To bind the session key to it’s intended use, distribute instead a key
derivation parameter and generate the session key by hashing with the parameter
all information related to the key distribution process and the intended uses of the
key.”

35

2.2.1 Multi-Protocol Attacks

In section 1.4.4 we discussed multi-protocol attacks. We have also included multi-protocol attacks
into our list of replay attacks. We now present the principles and suggestions given in the literature
to prevent these attacks.

Firstly it is useful to know the two conditions that enable these attacks:

1. The cryptographic services on the user’s machine must permit the use of a public key in more
than one protocol. Although it is not impractical to assume that a user may have multiple
public keys for multiple levels of security, and possibly for multiple job functions, it has not
been seen as necessary in the past for a user to have a separate public key for every security
protocol that he/she uses. In fact, it is very expensive to have a separate public key for each
purpose. Usually users prefer not to have multiple certified keys because of the cost involved
in buying certified keys.

2. The second protocol that enables these attacks needs to be installed on the machine that the
masqueraded user is using. Also, the second protocol must have access to the cryptographic
services on that machine that utilize the user’s public-key or private key algorithms. This
protocol need not be a specific tailored protocol but can be an authenticated secure protocol
that happens to share message formats with the attacked protocol.

These conditions may exist in a wide range of systems and implementations of the public key
infrastructure. To prevent these attacks would mean making either one of these conditions unattain-
able. Kelsey, Schneier, and Wagner [140] present five design principles for protocols that “appear”
to render the chosen protocol attack impossible.

Principle 1. Limiting the scope of the key (to address the first condition above); This needs some
mechanism to implement this restriction. Current cryptographic APIs (Application Program
Interface) in the market do not impose any restriction on the use of keys other than limiting
a key to a particular algorithm and to encryption or decryption. If the application has a
handle for the key, it can use it. The APIs have to be designed to manage key use securely.

Principle 2. Identify uniquely each application, protocol, version and protocol step: This is same
as condition above. However, identifying uniquely in this manner does not guarantee the se-
curity of the protocol. If the tailored protocol matches the attacked protocol in the identifiers,
it is still possible to launch an attack. Remember, bad guys lie.

Principle 3. Include a fixed identifier in a fixed place in the cryptographic protocol: However, as
Kelsey et al. point out, this only prevents the multi-protocol attack using protocols designed
with this principle. It does not prevent any attack using tailored protocols that do not
implement this design suggestion.

Principle 4. Tie the unique identifier (specified in principle 3) to encryption in a way that forces
the identifier to be used for successful decryption: This technique prevents a blind signing
protocol from being used to decrypt secret messages.

36

Principle 5. Include support for these mechanisms using smartcards: This is not really a design
principle, but rather a statement that infers that a device implementing cryptographic pro-
tocols must be able to enforce restriction that render multi-protocol attacks impossible (or at
least restrict their scope).

Alves-Foss [27] gives some suggestions to address these design principles. We will not go into
those suggestions further. They are just suggestions for implementing these conditions. We meet
some of those conditions in this thesis through our approach that we present later.

2.2.2 Type Flaw Attacks

As mentioned earlier, Heather et al. [130] define a type flaw attack on a security protocol as an
attack where a component that was originally intended to have one type is later interpreted as
having another type. Many replay attacks in fact depend on type flaws, including the attack on
the BAN-Yahalom protocol that we presented in section 1.4.7. Hence, preventing type flaw attacks
prevents large class of replay attacks. Heather et al. [130] present a technique that prevents all type
flaw attacks on security protocols. In their paper they present a system where fields are tagged
with some extra information indicating their intended type. The tag can be thought of as a few bits
attached to the field, with different bit patterns allocated to different types, e.g. “(nonce, N)” used
to represent a value N tagged in such a way to indicate that it is intended as a nonce. Similarly,
compound messages are also tagged; for example, “(pair, ((nonce, N),(nonce, N ′)))” represents a
pair of values N and N ′ tagged as nonces and so on. Below is an example given in the paper that
shows how the tagging prevents type flaw attacks. Consider again the attack on Woo and Lam
Protocol presented earlier (section 2.1):

Msg1. IA → B : A
Msg2. B → IA : Nb

Msg3. IA → B : Nb

Msg4. B → IS : {A,B,Nb}shared(B,S)

Msg5. IS → B : {A,B,Nb}shared(B,S).

If we adopt the tagging scheme, the nonce in message (2) would be (nonce,Nb). The penetrator
cannot replay the nonce in this form as part of message 3. However, he can retag the nonce with
the tag that B is expecting ({|agent, agent, agent, nonce|}shared−key, Nb). Message 4 would then
become (without the “pair” tag to simplify the explanation):

({|agent, agent, {|agent, agent, nonce|}shared−key|}shared−key,
{(agent,A), (agent,B), ({|agent, agent, nonce|}shared−key, Nb)}shared(B,S)).

Now this message cannot be replayed as an instance of message 5 because B is expecting a
message where the third field inside the encryption is tagged as being a nonce. The intruder can

37

at most change the outer most tag to create:

({|agent, agent, nonce|}shared−key,
{(agent,A), (agent,B), ({|agent, agent, nonce|}shared−key, Nb)}shared(B,S)

but he cannot change the inner tag without access to the appropriate key. Hence, the tagging
scheme prevents the attack.

Heather et al. also present a proof of the efficacy of the tagging scheme in preventing all kinds
of type flaw attacks. They also discuss a possible implementation for the tagging scheme. One
of the corollaries presented in the paper hints at using a unique component number as part of
each encrypted message in a protocol to prevent these attacks. However, there is a subtle flaw
in their claim that this component numbering prevents all type flaw attacks. They claim that
their original tagging scheme (tagging each part of a message) prevents type flaw attacks involving
two different protocols (not merely two different runs of the same protocol). With the component
numbering however, this claim is no longer valid. In the presence of a tailored protocol or a
secondary protocol which has matching message formats (see attacks in section 1.4.4) as the original
protocol, component numbers may not be of any help. For example, two encrypted messages having
different formats may have the same component numbers in two different protocols. Therefore when
an honest participant sends an encrypted message having a type flaw to an intruder, the intruder
can now replay it to another (or the same) participant as part of another encrypted message of
another protocol. Since the component numbers now match, even though there is a type flaw, it
cannot be detected2.

This flaw arises because of the inability to uniquely identify each protocol run. Using component
numbers identifies each encrypted component in a single protocol but not multiple protocols. To
identify and prevent attacks involving multiple protocols, we need a mechanism similar to the
protocol run identifier suggested by Aura [55] that we presented earlier.

2.2.3 Disjoint Encryption

For a security protocol to achieve a security goal, it does not depend on what can happen but on
what cannot happen. As shown in previous sections, when multiple cryptographic protocols are
combined the penetrator has new opportunities to obtain the messages which ought to authenticate
principals to their peers. Protocol mixing has shown itself to be a significant cause of protocol
failure and makes the analysis of protocols more difficult [27, 140, 118]. However, as explained in
the section on multi-protocol attacks, in practice it is not uncommon to combine different protocols
using cryptography. The purpose of a key distribution protocol, usually, is to deliver a session
key to be used for encryption. However, this use may make replay attacks possible if used to
construct messages similar to messages used in the key distribution protocol itself. An interesting
question is, “Does the use of a key undermine the guarantees provided by the protocol distributing
the key?” [123]. In addition to having different protocols running concurrently, protocol mixture
is also prevalent. For example, many recent protocols have large numbers of different options,
and therefore have large numbers of different sub-protocols inside them [93, 126, 180, 189]. As

2The same attack can occur even more readily if we do not use component numbers.

38

mentioned earlier, if one protocol has encrypted components, all of which are disjoint with the ones
used by another protocol (either a tailored or legitimate protocol), in terms of message format, then
a replay attack (or a subset like the multi-protocol or type flaw attacks) cannot exist (although,
this is an indeed strong assumption). Guttman et al. [123] (page no 1) also suggest a rule of thumb
for protocol independence when protocols are to be mixed together:

“Common sense suggests a rule of thumb when protocols are to be mixed together.
This rule is that if the primary protocol uses a particular form of encrypted message as
a test to authenticate a peer [122], then the secondary protocols should not construct
a message of that form. The sets of encrypted messages that the different protocols
handle should be disjoint. One way to arrange for this is to give each protocol some
distinguishing value, such as a number; that number may then be included as part of
each plaintext before encipherment. Then no principal can mistake a value as belonging
to the wrong protocol. Another way to achieve disjoint encryption is to ensure that
different protocols never use the same key, although this may be expensive or difficult
to arrange.”

Guttman et al. also put forth this principle in the same spirit as those of Abadi and Needham
presented as prudent engineering practice for cryptographic protocols [23]. They have proved this
concept formally; i.e. they prove that, if two protocols have disjoint encryption, then the first
protocol is independent of the second. This means that if the first protocol achieves a security goal
(whether a secrecy goal or an authentication goal) when the protocol is executed in isolation, then
it still achieves the same security goal when executed in combination with the second protocol.
They have used multi-protocol strand spaces [103], to prove that two cryptographic protocols are
independent if they use encryption in non-overlapping ways. The idea is to study the penetrator
paths, namely, sequences of penetrator actions connecting regular nodes (nodes in the strands of the
honest participants) in the two protocols. The concentration is then on showing that the removal of
all inbound linking paths (message transmission in the secondary protocol to a message reception
in the primary protocol) has no effect if the bundles can be modified and if the encryption does
not overlap in the two protocols. The resulting bundle, thus, would not depend on any activity of
the secondary protocol. The proof is also exemplified using the Neuman-Stubblebine protocol as
an example [103, 206]. Unfortunately, the aproach they suggest requires all installed protocols to
follow the these rules or be analyzed for disjointness prior to use.

2.2.4 Our approach

Carlsen presents a list of type information that can be attached to messages and elements [73]. These
include protocol identifier, protocol run identifier, primitive types of data items, transmission step
identifier and message subcomponent identifier. Aura [55] studies these techniques and comes up
with some strategies against replay attacks that are neither necessary nor sufficient but enhance
the robustness of a protocol. A recent trend in the literature has been to prove protocol security
against specific attacks by tagging messages with one of the type information suggested by Carlsen
(eg. [123, 130]).

In the same spirit, we prove that all replay attacks can be prevented by tagging each encrypted
component with a session-id (another name for Carlsen’s protocol run identifier) and a component

39

number (renaming Carlsen’s message subcomponent identifier). However, unlike previous attempts,
our suggestion is a general solution and prevents all types of replay attacks in Syverson’s taxonomy.
Although, it is not an entirely new solution, it solves the problem of replays using a combined
solution that is devoid of any possible vulnerabilities due to interdependencies.

Introducing component numbers inside encryptions is intuitive, but the generation and use of
session-ids requires some explanation. Some have discussed tagging messages with all the informa-
tion that is in possession of a principal and relevant to the protocol [272]. This is also called the
principle of full information. Aura [55] hints at a trivial way of including a hash of all previous
messages in a protocol run, almost as a substitute to the principle of full information and the run
identifier. This is prudent to some extent. In fact, as Aura points out, it is enough to include
only a hash of the redundant data that is already known to the receiver. This doesn’t affect the
performance for obvious reasons. However, careful observation of this suggestion reveals a possible
vulnerability: Two protocol runs can overlap in the executed information at a typical stage of the
runs!

Therefore we suggest a different approach to generating session-ids to identify runs. For the
purpose of this discussion, it suffices to know that such identifiers can be used in an effective way and
will possess a necessary property—remaining unique to every protocol run. Briefly, all participants
need to choose a random number, and combine those into a single long string of random bits.
This value should be hashed together with the identities of all principals, reducing the chance of
an accidental match in session-ids to a great extent. Two features are necessary to generate such
an identifier: 1) Every principal should possess the same hash functions 2) A change in one of
the random numbers/principals’ identities should make the resulting value differ from it’s original
value.

Observe that the so-generated session-id is different in properties from other similarly used
identifiers. For example, the run identifier used in Otway-Rees protocol [211] is generated by only
one participant and hence was shown to be prone to replay attacks [76]. It is also similar to the
“cookies” coined in Photuris [139] which are an add-on that can be used to make a protocol more
resistant to DOS attacks. A cookie is a unique nonce computed from the names of the sending and
receiving parties and local secret information that only the sender possesses. Kent et al. in [141]
also use cookies, using signed Lamport hash chains [148] to play the roles of cookies, providing weak
authentication. Cookies provide initially weak authentication to users while they aid in subsequent
establishment of strong authentication. Session-ids are similar to cookies in the kind of initial
assumptions and their ultimate use except, unlike cookies where only the sender is aware of the
value, a session-id is publicly known.

However, the publicly known identifier needs to be unique for every protocol run. Intuitively, a
dishonest principal might use a different value from the pre-agreed upon value. (In fact, this will be
definitely true if he replays components from previously completed runs and not from interleaved
runs). However, the proof we are going to present will establish that even such behavior does not
succeed in breaking a protocol in this scheme. Further, hashing with participants’ identities (cited
as useful in numerous places including [23, 55, 194, 117]) prevents any other attempts to spoof user
identities, and launch man-in-middle type attacks (as similarly used by [141]).

40

Chapter 3

Strand spaces

The proof that the tagging scheme actually works forms the main part of this part of our work.
We prove our claim using a mathematical framework and the concepts and notations from sets,
relations and graph theory. In particular, we choose the strand space framework because it is a very
convenient framework for the reasoning required in these kind of proofs. The strand space model
was originally developed to reason about the correctness of a security protocol. Although it’s use is
not limited to that, this still continues to be the main use of the strand space model. The approach
is distinguished from other works because of the simplicity of the model, it’s clean representation,
and the ease of developing intelligible and reliable proofs even without automated tool support.
In this section, we will outline the concepts in strand spaces using definitions and concepts. Most
of the definitions and concepts are taken from [102]1. We shall also include some lemmas and
propositions, the proofs of which can be found in [102]. We exclude proofs in order to explain the
model and concepts clearly, without getting too much into the details, thus sparing the reader with
the tedious proofs. A strand is a sequence of events; it represents the sequence of communications
by a legitimate party in a security protocol or a sequence of actions by a penetrator. A strand
space is a collection of strands, equipped with a graph structure generated by causal interaction.
Correctness claims on a protocol may be expressed in terms of the connections between strands of
different kinds.

3.1 Introduction

A strand is a sequence of events that a single principal may engage in. Each individual strand is a
sequence of message transmission and receptions, with specific values of all data such as keys and
nonces. Thus, it is a sequential process that exhibits no internal or external choice. For a legitimate
principal (honest participant), a strand represents the actions of that principal (of only that party,
not it’s supposed interlocutor) in one particular run of the protocol. If that particular party may
be involved in more than a single run of the protocol during a period of time, each role that the
party plays is represented by different strands. The activities of all the parties are represented
by their respective strands. A strand for a penetrator is a sequence of message transmissions and
receptions that model a basic capability that a penetrator should be assumed to possess. For

1In fact, almost all of the definitions have been reproduced with out any change from [102]

41

example, penetrator strands can include activities such as:

• receiving a key and a message encrypted using that key, and then sending the text inside the
encryption;

• receiving two messages, concatenating both and then sending the result;

• sending out a data item such as a name that the penetrator already knows.

Possible penetrator actions may be modeled by connecting a number of penetrator strands.

Strand space models the assumption that some values originate only freshly and uniquely by
including only one strand for originating that data item by initially sending a message that would
contain it. In contrast, many strands may combine with the originating strand by receiving the
message and processing its contents further. Also, a strand space models the assumption that some
values are impossible for a penetrator to guess - the space simply lacks any penetrator strand in
which this value is sent without receiving it first.

3.2 Basic Notions

Let A be the set of elements which are the possible messages that can be exchanged between
principals in a protocol. The elements of S are referred to as terms. A subterm relation is defined
on A; t0 @ t1 means t0 is a subterm of t1. Principals in a protocol can either send or receive terms.
The transmission of a term is represented as the occurrence of that term with positive sign, and
reception of a term as it’s occurrence with a negative sign.

Definition 1. [102, def. 2.1]

A signed term is a pair (σ, a) with a ∈ A and σ one of the symbols +,−. A signed term is
written as +t or t. (±A)∗ is the set of finite sequences of signed terms. A typical element of (±A)∗

is denoted by 〈〈σ1, a1〉, . . . , 〈σn, an〉〉.

Signed terms are also treated as ordinary terms, by abuse of language.

Definition 2. [102, def. 2.2]

A strand space over A is a set Σ together with a trace mapping tr : Σ→ (±A)∗.

A strand space is usually represented as a set of strands Σ. The trace may not be always
injective. For example, to model replay attacks, we would need to distinguish identical traces
occurring at different times.

Definition 3. [102, def. 2.3]

Fix a strand space Σ

1. A node is a pair 〈s, i〉, with s ∈ Σ and i an integer satisfying 1 ≤ i ≤ length(tr(s)). The set
of nodes is denoted by N . A node 〈s, i〉 belongs to the strand s. Clearly, every node belongs
to a unique strand.

42

Figure 3.1: A Bundle

2. If n = 〈s, i〉 ∈ N then index(n) = i and strand(n) = s. Define term(n) to be (tr(s))i, i.e. the
ith signed term in the trace of s. Similarly, uns term(n) is ((tr(s))i)2, i.e. the unsigned part
of the ith signed term in the trace of s.

3. There is an edge n1 → n2 if and only if term(n1) = +a and term(n2) = −a for some a ∈ A.
Intuitively, the edge means that node n1 sends the message a, which is received by n2, recording
a potential causal link between those strands.

4. When n1 = 〈s, i〉 and n2 = 〈s, i+1〉 are members of N , there is an edge n1 ⇒ n2. Intuitively,
the edge expresses that n1 is an immediate causal predecessor of n2 on the strand s. n′ ⇒+ n
is written to mean that n′ precedes n (not necessarily immediately) on the same strand.

5. An unsigned term t occurs in n ∈ N iff t @ term(n).

6. Suppose I is a set of unsigned terms. The node n ∈ N is an entry point for I iff term(n) = +t
for some t ∈ I, and whenever n′ ⇒+ n, term(n′) /∈ I.

7. An unsigned term t originates on n ∈ N iff n is an entry point for the set I = {t′ : t @ t′}.

8. An unsigned term t is uniquely originating iff t originates on a unique n ∈ N .

A term t can play the role of a nonce or session key in a strand space structure if it originates
uniquely in a particular strand space. The set of nodes N , together with both the sets of edges
n1 → n2 and n1 ⇒ n2 is a directed graph 〈N , (→ ∪ ⇒)〉.

43

3.3 Bundles and Causal Precedence

A bundle is a finite subgraph of the directed graph, 〈N , (→ ∪ ⇒)〉. The edges are regarded as
expressing the causal dependencies between the nodes. Figure 3.1 illustrates a bundle.

Definition 4. [102, def. 2.4]

Suppose →C⊂→; suppose ⇒C⊂⇒; and suppose C = 〈NC , (→C ∪ ⇒C)〉. C is a bundle iff:

1. C is finite.

2. If n2 ∈ NC and term(n2) is negative, then there is a unique n1 such that n1 →C n2.

3. If n2 ∈ NC and n1 ⇒ n2 then n1 ⇒C n2.

4. C is acyclic.

Because C is a graph, it follows from conditions 2 and 3, that, n1 ∈ NC .

Definition 5. [102, def. 2.6]

If S is a set of edges, i.e. S ⊂ → ∪ ⇒, then ≺S is the transitive closure of S, and �S is the
reflexive, transitive closure of S.

Both the relations ≺S and �S are subsets of NS × NS, where NS is the set of nodes incident
with any edge in S.

3.4 Terms and Encryption

According to the assumptions ([102], sec. 2.3.),

• A set T ⊆ A of atomic messages (texts);

• A set K ⊆ A of cryptographic keys disjoint from T, equipped with a unary operator inv : K→
K;

The assumption is that inv is injective; i.e., it maps each member of a key pair of an asymmetric
cryptosystem with the other; and that it maps a symmetric key in a symmetric cryptosystem
to itself.

• Two binary operators are defined to produce encrypted messages and concatenating two
messages:

encr : K× A→ A
join : A× A→ A

It is customary to write inv(K) as K−1, encr(K,m) as {m}K , and join(a, b) as a b. If k is a set
of keys, k−1 denotes the set of inverses of elements of k.

44

3.5 Freeness Assumptions

Freeness assumptions are stated in terms of axioms. These axioms basically say that the message
terms (set A) are freely generated from the set of texts T and set of keys K using encr and join.

Axiom 1. [102, Axiom 1] For m,m′ ∈ A and K, K ′ ∈ K,

{m}K = {m′}K′ =⇒ m = m′ ∧K = K ′

This means that if two cipher texts are equal then the terms inside the encryption and the
keys used for the encryption are the same in both the cipher texts. In other words, a different
term and/or a different key cannot result in the same cipher text. Usually, this is implemented
probabilistically.

Axiom 2. [102, Axiom 2] For m0,m
′
0,m1,m

′
1 ∈ A and K,K ′ ∈ K,

1. m0m1 = m′0m
′
1 =⇒ m0 = m′0 ∧m1 = m′1

2. m0m1 6= {m′0}K′

3. m0m1 /∈ K ∪ T

4. {m0}K /∈ K ∪ T.

Each of the conditions are very important in the analysis using the framework. The conditions
say that an encrypted text cannot be obtained by concatenating two unencrypted terms, set of
terms is not closed under the join operation and a key cannot occur inside a term as a subterm.
The last condition is particularly important for correctness conditions to hold in many protocols.

Given Axiom 2, width of terms is defined:

Definition 6. [102, def. 2.10] If m ∈ K ∪T or if m = {m0}K , then width(m) = 1. If m = m0m1,
then width(m) = width(m0) + width(m1).

Definition 7. [102, def. 2.11]

The subterm relation @ is defined inductively, as the smallest relation such that:

• a @ a;

• a @ {g}K if a @ g;

• a @ g h if a @ g or a @ h.

3.6 The Penetrator

In this section we would show how the penetrator actions can be modeled in terms of his capabilities.
His powers are characterized by two ingredients,

45

1. A set of keys that he already knows (KP);

2. A set of penetrator strands that allow the penetrator to generate new messages from messages
he intercepts.

The atomic actions that the penetrator is capable of are encoded in a set of penetrator traces.
Following is the list of those atomic actions:

Definition 8. [102, def. 3.1]

A penetrator trace is one of the following:

M Text message 〈+f〉 with f ∈ T.
F flushing 〈−f〉.
T Tee 〈−f,+f,+f〉.
C Concatenation 〈−f1,−f2,+f1f2〉.
S Separation 〈−f1f2,+f1,+f2〉.
K Key 〈+k〉 with k ∈ KP .
E Encryption 〈−k,−f,+{(f)}k〉, with k ∈ KP .
D Decryption 〈−k−1,−{(f)}k,+f〉, k ∈ KP .

This set of penetrator traces guarantees that the penetrator actions are closed under joining,
encryption, and the appropriate “inverses”.

3.7 Correctness Properties

The original notions of correctness are expressed informally by Thayer et al. [102]. For example,
they extend Lowe’s definition of authentication [164] and state that a protocol guarantees agreement
to a participant B (say, as the responder) for certain data items ~x if:

“each time a principal B completes a run of the protocol as responder using ~x, which
to B appears to be a run with A, then there is a unique run of the protocol with the
principal A as initiator using ~x, which to A appears to be a run with B.”

A simple notion of secrecy is also stated. A value x is secret in a bundle C if for every node
n ∈ C, term(n) 6= x. In other words, a value is secret if the regular strands never emit it and the
penetrator can never emit it through his possible actions. Honest participants may “know” a secret
value in the sense of carrying out computations that depend on it, so long as their behavior in the
protocol does not include disclosing it in public. Also, if we can prove that the penetrator never
emits a value, it follows that he can never derive it from the values he receives and his available
actions since, if he derived it, then he would be capable of emitting it.

We will put these definitions formally as given in [130]. Firstly, we shall define a template for
a strand.

46

Definition 9. Let Var be a set of variables such that each variables can be instantiated using a
substitution function sub defined as a mapping from variables to terms, sub : Var → Term where
sub(v) = f , f ∈ Term, v ∈ Var. Then, a strand template is defined as a sequence of signed variables,
(σ, v) where σ is one of +,− and v ∈ Var. Also, upon using substitution function sub on all the
variables of a template, the result should be one of the elements of the trace, tr : Σ→ (±A)∗.

We can now define correctness properties using strand templates. The definitions have been adopted
from [130].

3.7.1 Secrecy

The definition of secrecy says that there is a breach of security when there is some strand (of
some minimal length) where certain keys have not been compromised, and the value of a particular
variable v (intended to remain secret) becomes known to the penetrator.

Definition 10. [130, def. 1] Let temp be the template for some role; let v ∈ Var be a variable of
temp, intended to remain secret; let h be a positive integer; and let Keys be a set of keys that the
penetrator may not know. A failure of secrecy is said to exist if each of the following holds:

1. There is strand s = sub(temp) with C-height at least h (i.e. at least the first h messages of s
appear in the bundle C).

2. ∀k ∈ Keys � sub(k) /∈ KP .

3. There is a node in C with label +sub(v).

The definition says that secrecy is violated if there is a node transmitting a secret value in plain
text in the bundle under consideration. If there is a node transmitting the secret value, it means
that either the honest agent hasn’t sent it or that the penetrator was able to synthesize it using his
actions.

3.7.2 Authentication

For authentication, we would consider what it means for a particular role r2 to be authenticated
to another role r1. For authentication to be satisfied, one would expect that whenever there is a
strand s1 of r1, there should be a “corresponding” strand s2 of r2; these strands should agree upon
the identities of the agents involved, and possibly, upon the values of some other variables (e.g. a
symmetric key established between them); this is captured by specifying that the strands should
agree on the values of all variables from some set X.

Definition 11. [130, def. 2]

Let temp1 and temp2 be templates for two roles; let X be a set of variables of those templates;
let h1 and h2 be positive integers; and let Keys be a set of keys that may not be available to the
penetrator. A failure of authentication is defined as when each of the following holds:

1. There is a strand s1 = sub(temp1) with C-height at least h1.

47

2. ∀k ∈ Keys � sub1(k) /∈ KP .

3. There is no strand s2 = sub2(temp2) with C-height at least h2 such that ∀x ∈ X, sub1(x) =
sub2(x).

This definition is parameterized by temp1, temp2, X, h1, h2 and Keys. sub1 and sub2 are
corresponding instantiation functions (def. 9) for roles r1 and r2 that instantiate the variables in
templates temp1 and temp2 to correspond to elements in T.

48

Chapter 4

Modelling Protocols

In this chapter, we will present the protocol model used for the proof. But before going further, let
us present some assumptions in the model. First, we assume that honest agents will tag messages
that they create with the expected tags. For example, if they intend to send a message in a protocol
run with session-id, ‘23456’ and in it an encrypted component having a component number ‘2’, they
would indeed tag the encrypted component with these two values. On the other hand, we do not
assume that the penetrator sends a message with the correct tag. The penetrator is allowed to send
a message from any other context and hence with an incorrect tag, reflecting that the message was
acquired from some other context, prior to the protocol run or inside the protocol run but under
a previous message. We also assume implicit connection determination—all interactions over the
network are considered connection oriented. Therefore, participants can be involved in multiple
protocols simultaneously, without messages from those protocols being accidentally interleaved (for
example, as shown in the attack on the Woo-Lam protocol discussed in [23]).

In the following sections, we will introduce modelling protocols to include tagged facts. Then we
will give a brief overview of an adapted strand space model having the newly defined facts. Next,
we will introduce strand templates and define what it means for an encrypted fact to be correctly
tagged. Lastly, we will present a modified penetrator capabilities model.

4.1 Tags

A tag can be formally defined as:

Tag ::= JOIN SID CNO

A typical tag in a run α will be written as (sidα, cno). The first part is the session-id of α and
the second part is the component number for one of the encrypted facts of α. Tags have to be
essentially under every encrypted fact. If an encrypted fact has parts that are encrypted, then
a different tag must exist for each of the encrypted facts inside it. It is also useful to define a
projection function to derive the session-id and component number from a tag as

(t)s =̂ sid, (t)c =̂ cno.

49

Note: As in [102], JOIN and ENCR represent concatenating two data items and encrypting a
data item respectively. When two data items a, b are to be concatenated, we will write a . b or
(a, b). When a data item a is to be encrypted with a key k, we will write, {a}k.

4.2 Facts

We use the terms component, message and fact interchangeably in this thesis.1 Facts are defined
as:

Fact ::= UF | EF | JOIN Fact Fact

UF ::= JOIN Atom UF

EF ::= ENCR TF

TF ::= JOIN Tag Fact

where UF, EF, TF represent unencrypted, encrypted and tagged fact respectively. This grammar
can be further simplified but is more useful in this form for further parts of the proof.

Let uf, ef denote the set of unencrypted and encrypted facts respectively. Let Atom be the set
of atomic values (eg. Alice, Bob, NA, PubKey(A) etc.) assumed to be contained in a protocol.
By assuming these atomic values, many different messages can be created by pumping those values
into the strings of the language generated by the above grammar.

Note that the grammar requires that the strings in the language generated by using the grammar
should obey some rules:

1. Every encrypted component is tagged.

2. If an encrypted component has sub-encrypted components, each of them must have a tag.

Similar to tags, a projection function on tagged facts is also useful. In this case, the projection
function can be defined to derive the tag and fact components from a tagged fact. This projection
is defined as:

If (t, f) is a tagged fact, then
(t, f)1 =̂ t, (t, f)2 =̂ f.

4.3 Subfacts

Similar to subfacts defined in section 2.3, subfacts for the facts defined above can also be defined.

Definition 12. The subfact relation is the smallest relation on facts such that:
1although message is used to mean a collection of facts (or components) sent in a single protocol step.

50

1. f @ f ;

2. f @ {tf ′}k′ if f @ (tf ′)2;

3. f @ (f1, f2) if f @ f1 ∨ f @ f2.

sub-untagged-facts of a tagged fact can also be defined:

f @ tf if (t, f) @ tf for some tag t.

4.4 Adapting strand space model with tagged facts

As mentioned earlier, we will use the strand space model of [102] for the proof because it provides
a particularly suitable notation for the kind of reasoning required for the proof. However, the
results of the proof are quite general and can be applied to various analysis approaches to security
protocols such as those in [187, 97, 162] etc. A brief overview of the strand space model to adapt it
to deal with facts defined in section 3.1 is given below. There is some new terminology used to suit
the present model, while some of the terminology of the original strand space model is maintained.

Definition 13. A strand is a sequence of communications by either an honest agent or a penetra-
tor involved in a protocol run. It is represented as a sequence of the form 〈±f1,±f2, . . . ,±fn〉,
f1, . . . , fn are facts (similar to terms in the original strand space model). A ‘+’ indicates trans-
mission of a fact and ‘-’ indicates reception of a fact. Every node belongs to a unique strand. The
set of a nodes is denoted as N .

1. Let ni, ni+1 be consecutive nodes on the same strand. Then, there exists an edge ni ⇒ ni+1

in the strand.

2. If ni = +f and nj = −f are nodes belonging to different strands, then there exists an edge
ni → nj.

3. N together with both the sets of edges ni ⇒ ni+1 and ni → nj is a directed graph, 〈N , (→
∪ ⇒)〉.

A bundle represents either part or whole of a protocol run. It is an acyclic, finite subgraph
of 〈N , (→ ∪ ⇒)〉. Formally, if →C⊂→, ⇒C⊂⇒ and (→C ∪ ⇒C) is a finite set of edges, then
C = (→C ∪ ⇒C) is a bundle if:

1. If n2 ∈ NC has a negative sign for it’s fact, there exists a unique n1 such that n1 →C n2;

2. Whenever n2 ∈ NC and n1 ⇒ n2, then n1 ⇒C n2;

3. C is acyclic.

51

4.4.1 Unique origination in bundles

Security properties of a protocol are essentially dependent on maintaining the secret values and the
values that originate uniquely. We capture this aspect in our adapted strand space model through
the following definition.

Definition 14. Entry point, origination and unique origination in the adapted strand space model
are defined as:

1. A node n is an entry point to a set of facts S if the term of n is +f for some f ∈ S, and for
each node n′ preceding n on the same strand the term of n′ /∈ S.

2. A fact originates on a node n if n is an entry point to the set S′ = {f ′ | f @ f ′}.

3. Similarly, a tagged fact tf will be said to originate on a node n if n is an entry point to the
set S′′ = {tf ′ | tf @ tf ′}.

4. A fact or a tagged fact is said to be uniquely originating in a bundle if it originates on a
unique node of the bundle.

4.4.2 Honest strands

In this section, we will show how we model honest strands. They are also called regular strands.
Similar to [130], we use the concept of a strand template to define each role in a protocol. Upon
instantiation of these templates, we obtain honest strands.

Consider a set Var representing variables. Elements of this set form the language generated by
the following grammar:

V ar ::= UV | EV | JOIN V ar V ar | APPLY Function V ar

UV ::= AtomV ar | JOIN AtomV ar UV

EV ::= ENCR TaggedV ariable

TaggedV ariable ::= JOIN TagV ar V ar

where UV - Unencrypted Variable, EV - Encrypted Variable. TagV ar - Tag Variable.

The variables defined by the above grammar may include elements of the set AtomVar. In-
stantiation of elements of AtomVar correspond to elements of Atom. The variables termed as Var
also consist of a set of function variables (similar to those defined in [130]). Function variables
are obtained by the application of a function identifier on variables, denoted as APPLY Fn V ar,
where Fn denotes the set of function identifiers. The variable APPLY g (v1, . . . , vn) represents the
function g applied to the variable, v = (v1, . . . , vn). Obviously, the functions thus obtained would
be partial and undefined when applied to arguments of the incorrect type.

Before defining strand templates to suit the facts defined in the previous sections, consider the
set Tags and TagVar. We shall define an instantiation function, inst, on the set of tag variables,
TagVar:

52

Let,
inst : TagVar→ Tags

so that, if tv ∈ TagVar, inst(tv) = t for some t ∈ Tags.

Also let
insv : AtomV ar → Atom

so that if v ∈ AtomVar, insv(v) = f for some f ∈ Atom.

Using inst and insv functions, we can now define an instantiating function, ins :

ins : Var→ Fact

so that if v ∈ Var, ins(v) = f for some f ∈ Facts.

The ins function can now be defined to apply on all possible variables as follows:

ins(v) =

{(inst(tv′), insv(v′))}insv(k′) if v ∈ ev such that v = {(tv′, v′)}k′

(ins(v1), ins(v2)) if v1, v2 ∈ Var and v = (v1, v2).
g(ins(v′)) if v is a function variable such that

v = g(v′), g ∈ Fn and v′ ∈ Var.

The definition of a strand template in this model can now be formalized:

Definition 15. Let {v1, . . . , vn} ∈ Var be a set of variables in a template St. Let {f1, . . . , fn} ∈
Facts be a set of facts in a strand S. St is said to be a strand template for strand S iff for each node
〈a, v〉, v ∈ Var(st), a ∈ {+,−}, there exists a corresponding node 〈b, f〉, f ∈ Facts(s), b ∈ {+,−} such
that, ins(v) = fand a = b.

In other words, if St = 〈〈a1, v1〉, . . . , 〈an, vn〉〉 and S = 〈〈b1, f1〉, . . . , 〈bn, fn〉〉, then, ∀vi ∈
{v1, . . . , vn} ∧ ai, bi ∈ {+,−} ∧ fi ∈ {f1, . . . , fn} ∧ i ∈ {1, . . . , n}, ins(vi) = fi and ai = bi.

All strands representing an execution of a particular role can be formed by instantiating the
free variables of the corresponding template, i.e., by substituting the tag variables with tags and
the atomic variables with atoms.

For example, let temp be a strand template. Then the role played by b in the Woo and Lam
protocol [272] (shown in section 1.4) can be defined by the following sequence of variables:

temp = 〈−(a),+(nb),−(x),+({t2, a, b, x}shbs
),−({t3, a, b, nb}shbs

)〉

53

This strand template uses five variables: a, b, s, nb and x. (The first encrypted component in the
protocol, which b cannot decrypt, is represented by a variable x, indicating that b is not expected
to decrypt this component according to the protocol). Also, it uses two tag variables: t2, t3.

Let Alice and Bob be represented by A and B respectively. A typical execution by Bob in a
run with Alice, using a session-id of, say, ‘1120’ would look like (assuming that Bob is honest):

ins(temp) = 〈 − (A),
+ (NB),
− (X),
+ ({(1120, 2), A,B,X}shBS

),
− ({(1120, 3), A,B,NB}shBS

).〉

This is obtained by using the instantiation function ins, where ins is defined as:

ins(a) = A, ins(b) = B, ins(s) = S, ins(nb) = NB,

ins(x) = {(1120, 1), A,B,NB}shBS
(= X).

It is important here to note that the function ins can be defined to map to a new set of values
each time. This captures the aspect of different protocol runs containing different values. It is also
interesting to see for which mapping of the ins function we will be able to obtain an attack on a
protocol. In fact, some have aimed at showing that it is impossible to find an instantiation function
that will model an attack in their scheme [130].

The definition of a strand template also includes the implicit assumption that when an honest
agent first sees an atomic variable (untagged) in a message that it receives, it will accept any value
for the variable.

4.4.3 Correct-tagging

An encrypted fact is said to be well-tagged if the tag component of the fact has the correct session-
id and component number in it. Therefore, in a sense, the encrypted fact is being generated and
sent in the expected context. We capture this using the formalizations that we present below.

Definition 16. Let Π = {π1, . . . , πm} be a set of strand templates representing a protocol. Let
Σ = {σ1, . . . , σm} be a set of strands such that, ins(πi) = σi for i = 1, . . . ,m. Let α be a subset of
Σ representing a protocol run. Then a unique component number can be assigned to each encrypted
fact in the set of encrypted facts in α using a bijective function CNo defined as,

54

CNo : ef × Σ∗ → cno

such that,

∀ef ∈ α ∧ ∀f1, f2 ∈ ef,∃c1, c2 ∈ cno � CNo(f1, α) = CNo(f2, α) iff f1 = f2

We can also impose an ordering for the component numbers assigned to elements of ef using a
precedence relation, ≺.

Definition 17. Let S be a set of encrypted facts. Then ≺S is a partial order. i.e. a reflexive,
anti-symmetric and transitive closure of S. Every non-empty subset of S has ≺S-minimal and
≺S-maximal members.

The relation ≺S is a subset of S × S. (when the set S is understood, we will write ≺). Now
let ef be the set of encrypted facts in α. For each f ∈ ef, a component numbering order can be
enforced such that

∀f1, f2 ∈ ef, if f1 ≺ f2 then CNo(α, f1) < CNo(α, f2).

Also, CNo(α,≺ −minimal(ef)) = 1 and CNo(α,≺ −maximal(ef)) = n, if the cardinality of
ef = n.

Also let,
SId : Σ∗ → sid

such that, for α ⊆ Σ∗, SId(α) ∈ sid is the session-id for the protocol run, α.

An ideal tag environment, ι can be formally defined on the set of strands Σ representing a
protocol run α, such that for any fact f ∈ ef in α, ι(α, f) gives the ideal tag to be used inside f ,
i.e.

ι : Σ∗ × ef → Tag

such that

∀α ⊆ Σ∗ ∧ ∀f ∈ ef, ι(α, f) = (SId(α),CNo(α, f))

When the context (protocol run) is understood, we will simply write, ι(f). The concept of an
encrypted fact being correctly tagged can be defined using the above formalization.

Definition 18. Let f = {tf ′}k′ be a fact in a protocol run α; then well-tagged can be inductively
defined on all possible facts as follows2:

• if (tf ′)2 ∈ uf then well-tagged(f)⇔ (tf ′)1 = ι(f);
2Recall that subscripts “1” and “2” return the tag and fact component respectively from a taggedfact (Sec 3.1)

55

• if (tf ′)2 ∈ ef then well-tagged({tf ′}k′) if well-tagged((tf ′)2) ∧ (tf ′)1 = ι(f);

• well-tagged(f1, f2)⇔ (well-tagged(f1) ∧ well-tagged(f2)) if f1, f2 ∈ ef.

Note that well-tagged is a partial function. Therefore, it is undefined for facts that are not en-
crypted.

Assumption 3. There exists an ideal tag environment, ι for each set of strands representing a
protocol run that is obtained by instantiating a set of strand templates such that all the facts in the
protocol run are well-tagged with respect to ι.

In other words, we assume that it is possible to generate a session-id for each protocol run
and give each of the encrypted facts in the protocol run a unique component number. Facts of any
different protocol run using the same protocol can be compared with ι to see if they are well-tagged.

Assumption 4. If the fact f originates on a regular strand, then well-tagged(f).

This assumption has a couple of facets:

• If an honest agent instantiates an encrypted variable, it instantiates the session-id component
of the tag inside it with the session-id of the protocol run in which it intends to send the
message.

• Also, it includes the correct component number for the component together with the session-
id.

4.4.4 Penetrator strands

Penetrator strands in the original strand space model should also be modified in order to adapt
with this model. This is necessary because penetrator strands also form a part of the total strand
space in a typical execution of a protocol. The strands of the penetrator in this model is represented
by the series of strands below using some possible atomic actions.

The change in the structure of the penetrator strands as compared to the original strand space
model is the inclusion of a Replaying (R) strand. Also, in addition to the assumption that the
penetrator has a set of keys KP and a set of text messages TP available to him, we also assume
that he has a set of encrypted facts, EP, with him that he would have somehow obtained (e.g. by
eavesdropping over a network, obtained from a previous run in which he was a legitimate user).

Definition 19. A penetrator strand is one of the following:

56

M Text message 〈+f〉 with f ∈ TP.
F flushing 〈−f〉.
T Tee 〈−f,+f,+f〉.
C Concatenation 〈−f1,−f2,+f1f2〉.
S Separation 〈−f1f2,+f1,+f2〉.
K Key 〈+k〉 with k ∈ KP.
E Encryption 〈−k,−f,+{(t, f)}k〉, with k ∈ KP.
D Decryption 〈−k−1,−{(t, f)}k,+f〉, k ∈ KP.
R Replaying 〈+f〉, f ∈ EP.

The replaying strand captures the action of a penetrator sending an encrypted component that
he acquired from another protocol run or within the same protocol run but in a different message
(replay).

Note that we consider not only replaying of encrypted components, but also replaying of un-
encrypted components. In fact, we allow the penetrator to replay a message of any type into a
message of a different (expected) type, e.g., an Atom in place of another Atom, an Atom in place
of another encrypted component, an encrypted component in place of an encrypted component and
so on. For example, sending a message, f1.f2 with f1 ∈ uf and f2 ∈ ef in place of f3 ∈ uf can be
constructed as a sequence of M and R strands.

However, this does not restrict the generality of the scheme. As we will show in the proof, the
scheme also prevents all such type flaw attacks too, due to component numbering. The session-id
helps in preventing all type-flaw attacks (which, as we discussed in section 2, are one class of replay
attacks) that occur not only in the same run or a different run of the same protocol, but also those
that occur from a different run using a different protocol.

Lemma 5. Every ill-tagged fact originates on an E or an R strand.

Proof. According to assumption 1, ill-tagged facts do not originate on honest strands. The only
possible strands for the origin of a fact are, M, K, E and R strands. In the case of M, K strands
there is no tagging. In the case of E strand, it may or may not be well-tagged (we do not restrict
the penetrator to put correct tags inside encryptions, but arbitrary tags). That leaves us with the
R strands. Since these involve replaying of old message components, they would be ill-tagged.

4.5 Security properties and attacks

In this section, we consider the security properties of protocols. We have already given generic defi-
nitions of these properties in section 2.3.3. These are applicable to strands instantiated using strand
templates that do not involve tagging, using an instantiation function, sub. Here we would redefine
the security properties within the adapted strand space model, for strands that are instantiated,
by using the instantiation function ins on strand templates that have tagged variables.

57

4.5.1 Secrecy

Similar to the earlier definition of secrecy, this definition says that when certain keys have not been
compromised in a strand of minimal length, there is still a breach of security if an honest strand has
entry points to a set of secrets. If there is no such honest agent having entry points to a set having
secret elements, then a penetrator also cannot “say” an element in the set since a penetrator can
only send an element that he can deduce after hearing that element once.

Definition 20. Let temp be the template for some role; let v ∈ uv be a variable of temp, intended
to remain secret; let h be a positive integer; and let Keys be a set of function variables. A failure
of secrecy exists when each of the following holds:

1. There is a strand s = ins(temp) with C-height at least h (i.e. at least the first h messages of
s appear in the bundle C).

2. ∀k ∈ Keys . ins(k) /∈ KP. (No private key is visible to the penetrator)

3. There is a node in C with label +ins(v) with v ∈ uv.

The parameters of this definition are: temp, v,Keys and h; for a given protocol one would be
interested to see if this property holds for some particular values of this parameters. (i.e. finding an
instantiation function that would instantiate these variables to satisfy each of the three conditions
above).

4.5.2 Authentication

We now redefine the property of authentication. Similar to the earlier definition in section 2.3.3,
we would expect that whenever there is a strand s1 of r1, there should be a “corresponding” strand
s2 of r2; these strands should agree upon the identities of the agents involved, and possibly upon
the values of some other variables. We would capture this aspect by specifying that the strands
should agree on the values of all variables from set X.

Definition 21. Let temp1 and temp2 be templates for two roles; let X be a set of variables of those
templates; let h1 and h2 be positive integers; and let Keys be a set of function templates. A failure
of authentication exists when each of the following holds:

1. There is a strand s1 = ins1(temp1) with C-height at least h1.

2. ∀k ∈ Keys . ins1(k) /∈ KP.

3. There is no strand s2 = ins2(temp2) with C-height at least h2 such that ∀x ∈ X . ins1(x) =
ins2(x).

This definition is parameterized by temp1, temp2,X, h1, h2 and Keys. (See section 3.4.2 for the
definition of the instantiation function ins).

58

Chapter 5

Transforming Bundles

5.1 Overview

We focus on transforming bundles in this chapter. We shall show that, given a bundle C, we
can rename all the tags in C so that the resulting bundle has facts, all of which are well-tagged.
In particular, if every protocol execution is a bundle then the transformation corresponds to a
scenario where the resulting bundle still reflects the same protocol but under a different execution
with possibly different penetrator strands. The honest strands however are preserved. We shall
show this by proving that the regular strands in the original bundle get transformed into regular
strands of the transformed bundle (instantiation of some strand templates).

We start off by defining such a transformation function (ψ) and show that such a ψ can always
be constructed.

5.2 The transformation function, ψ

The definition below states the required properties of ψ:

Definition 22. Given a bundle C, executed in an ideal tag environment ι, we define

ψ : Fact→ Fact

to be a transformation function that transforms C as a well-tagged bundle if:

1. ψ preserves unencrypted facts: if ψ(f) = f if f ∈ uf.

2. ψ returns well-tagged terms: well-tagged(ψ(f)).

3. ψ is the identify function over well-tagged terms: if well-tagged(f) then ψ(f) = f .

4. ψ distributes through encryptions

ψ({(t, f)}k) = {(ι(f), ψ(f))}k

59

5. ψ distributes through concatenations

ψ(f1, f2) = (ψ(f1), ψ(f2))

6. When ψ is applied to an ill-tagged fact f of C, it produces a fact that has a new tag, i.e. a
fact that has a tag not in common with ψ(f ′) for any other fact f ′ of C

∀f ∈ ef,¬well-tagged(f) ∧ f ′ @ ψ(f)⇒ ∀f ′′ ∈ ef, (f ′)1 6= ψ(f
′′
)1

This establishes an injectivity property for ψ over facts of C.

The following lemma proves that such a ψ can always be found.

Lemma 6. For any given bundle C in an ideal tag environment ι, it is possible to define some
transformation function ψ for C.

Proof. The method we give below gives a recipe for constructing a transformation function ψ
defined in definition 22. Let there be a fact f . We define how the transformation would be done
on all possible smallest sub-facts of f before defining it on f itself. We will consider the possible
sub facts of f , case by case, until we define ψ over all possible subfacts.

1. If f ∈ uf, lift the transformation function on f for condition 1: ψ(f) = f .

2. If f = {(t′, f ′)}k′ ∈ ef and well-tagged(f) then define ψ{(t′, f ′)}k′ = {(t′, f ′)}k′ for condition
3.

3. If f = {(t′, f ′)}k′ ∈ ef and ¬well-tagged(f) then define ψ{(t′, f ′)}k′ = {(t′′, f ′)}k′ so that
t′′ = ι(f ′) for condition 3.

4. If f = (f1, f2), then define ψ(f) = (ψ(f1), ψ(f2)) (for condition 4).

The only assumption is that we can always change an ill-tagged fact to a well-tagged fact. This
is not very difficult. For example, honest agents always receive two kinds of encrypted messages.

1. Those they can decrypt; and,

2. Those that they are not expected to decrypt (according to the protocol). Let these be named
as some set XH.

Our transformation function does not change the tags inside those messages that the honest agent
can decrypt (The reasoning is trivial; an honest agent does not accept an encryption that has an
invalid tag. This was part of our initial assumptions). Informally speaking, if an honest agent is
willing to accept facts that have a subfact from set XH that is ill-tagged, then they should accept
any value in it’s place. Hence, we change the tags inside all ill-tagged facts so that the facts are now
well-tagged. This corresponds to our ability to change the sid to that of the sid of the protocol run
and the cno to that of the cno of that encrypted component by doing a look up on the set cno of
that protocol run. Note also that ψ is a partial function. For example, when the penetrator sends
an encrypted fact that has a different expected type, the format of the message may not correspond
to any element in ef. Hence, ψ is undefined for all those encrypted facts that are not contained in
ef.

60

5.3 Regular strands

In this section we show that if S is a regular strand then ψ(S) is also a regular strand. By
definition, if S is a regular strand, then it must be an instantiation of a strand template temp
under an instantiation function ins such that S = ins(temp). Now consider another strand S′

formed by instantiating temp using another instantiation function ins′ defined as

ins′(v) = ψ(ins(v))

so that, ins′(v) = ins(v), ∀v ∈ uv.

Since S′ is merely another strand instantiated by using a different instantiation funciton on the
same strand template, by definition it would be a regular strand too. We will show in the following
lemma that S′ can be obtained by transforming each of the facts in S using ψ.

Lemma 7. Let temp, ψ, ins, ins′ be as above; Then,

ψ(ins(temp)) = ins′(temp).

Proof. Let v be a variable in temp. We show that ψ(ins(temp)) = ins′(temp) by doing a case
analysis of all the possible forms that v can take in temp.

• Case v is an unencrypted variable, i.e. v ∈ uv; then:

ψ(ins(v)) = ψ(ins′(v)) (from above, ins′(v) = ins(v),∀v ∈ uv)
= ins′(v) (from condition 1 of definition 22.)

• Case v is a function application, e.g. v = g(v1, . . . , vn), v1, . . . , vn ∈ AtomVar; then:

ψ(ins(v)) = ψ(ins(g(v1, . . . , vn)))
= ψ(g(ins(v1, . . . , vn))) (from definition of ins)
= ψ(g(ins(v1), . . . , ins(vn))) (again from definition of ins)
= ψ(g(ins′(v1), . . . , ins′(vn))) (from above)
= ψ(g(ins′(v1, . . . , vn))) (from definition of ins)
= ψ(ins′(g(v1, . . . , vn)))
= ψ(ins′(v))
= ins′(v) (ψ(ins(v)) = ins′(v), ∀v ∈ uv)

61

• Case v is an encrypted fact, e.g. v = {(tv′, v′)}kv′ ; then:

ψ(ins(v)) = ψ({(inst(tv′), insv(v′))}insv(kv′))

= (by condition 3 of definition 22 and since well-taged(ins(v)) from assumption 2)
{(inst(tv′), insv(v′))}insv(kv′)

= (again by assumption 2, and since well-tagged(ins′(v)), ins′t(tv
′) = inst(tv′))

{(ins′t(tv
′), insv(v′))}insv(kv′)

= (from definition of ins and ins′v(v′) = insv(v′), ins′v(kv′) = insv(kv′))
ins′(v)

• Case v is a pair, e.g. v = (v1, v2); then,

ψ(ins(v)) = ψ(ins(v1), ins(v2)) (by definition of ins)
= (ψ(ins(v1)), ψ(ins(v2)))
= (ins′(v1), ins′(v2)) (from above results)
= ins′(v1, v2)
= ins′(v)

5.4 Penetrator strands

In this section, we present the continuing saga of transforming a bundle. Any given bundle can
contain both regular strands and penetrator strands. In the previous section we have shown that
transforming regular strands in a bundle correspond to some other regular strands of the same pro-
tocol without altering either the message format or the strand structure. In this section we show
similarly how we transform penetrator strands in a given bundle to contain no ill-tagged facts. We
will see that we wouldn’t need to change the strand structure even in this case. We will just change
the tags inside all facts that are ill-tagged so that now they are well-tagged. Intuitively, penetrator
strands may use some facts that the honest agent doesn’t decrypt (the set XH). These may or
may not be well-tagged. However, for example, if the honest agent is tricked into accepting an
Atom in place of an encryption, we do not transform the fact. Instead, we lift the ψ since it is an
unencrypted fact. This will not alter the result of the proof and will be effective in preventing all
type-flaws as will be shown later. As before, we assume that he has some text messages, TP, keys,
KP, and some encrypted facts, EP with him.

M Text message Let S = 〈+x〉 with x ∈ TP. Define S′ = 〈+ψ(x)〉, which is an M strand
because ψ(x) = (x) when x ∈ TP.

F Flushing Let S = 〈−f〉. Define S′ = 〈−ψ(f)〉, which is an F strand.

T Tee Let S = 〈−f,+f,+f〉. Define S′ = 〈−ψ(f),+ψ(f),+ψ(f)〉, which is a T strand.

62

C Concatenation Let S = 〈−f1,−f2,+f1f2〉. Define S′ = 〈−ψ(f1),−ψ(f2),+ψ(f1, f2)〉 which is
a valid concatenation strand because

ψ(f1, f2) = (ψ(f1), ψ(f2))

by condition 5 of definition 22.

S Separation Let S = 〈−f1f2,+f1,+f2〉. Define S′ = 〈−ψ(f1, f2),+ψ(f1),+ψ(f2)〉 which is a
valid separation strand, again by condition 5 of definition 22.

K Key Let S = 〈+k〉 with k ∈ KP. Define S′ = 〈+ψ(k)〉 = 〈+k〉, which is a K strand.

E Encryption Let S = 〈−k,−f,+{(t, f)}k〉 with k ∈ KP. Define

S′ = 〈−ψ(k),−ψ(f),+ψ({(t, f)}k)〉

which is a valid encryption strand because ψ({(t, f)}k) = {ι(f), ψ(f)}k by condition 4 of
definition 22.

D Decryption Let S = 〈−k−1,−{(t, f)}k,+f〉, k ∈ KP. Define

S′ = 〈−ψ(k−1),−ψ({(t, f)}k),+ψ(f)〉,

which is a valid decryption strand because, ψ({(t, f)}k) = {(ι(f), ψ(f))}k by condition 4 of
definition 22.

R Replaying Let S = 〈+f〉, f ∈ EP. Define S′ = 〈+ψ(f)〉 which is a valid replaying strand
because ψ(f) is merely well-tagged without any additional change in the message.

One special case here concerns when the penetrator receives a well-tagged fact and sends another
fact in it’s place, either by replaying or by “retagging”: i.e. a combination of (a) F and R strands:
〈−f,+f ′〉 with f ′ ∈ EP or (b) D and E strands: 〈−f,+f ′〉 (〈−{(t1, f1)}k1 ,−k1,+f1,
+{(t2, f2)}k2 ,−k2,+f2〉), with k1, k2 ∈ KP, f = {(t1, f1)}k1 and f ′ = {(t2, f2)}k2 .

This can be visualized as in figure 5.1. In this case, we change the strand structure by removing
all the intermediate nodes between +f and −f ′ as in figure 5.2 and replace the entire structure
with ψ(f)→ ψ(f ′).

5.5 Preserving unique origination in bundles

Thus far we have described how a given bundle C can be transformed into another similar bundle C ′

in which all the facts are well-tagged. We have shown that it is possible to achieve the transformation
without altering the strand structure anywhere. Our transformation merely transforms ill-tagged
facts (ones which are produced by the penetrator and not checked by the honest agents) into well-
tagged ones. In essence, for every edge +n → −n in C, we create a similar edge +ψ(n) → −ψ(n)
in C ′. In this section, we show that this transformation preserves unique origination in bundles.

Note that we have applied the transformation function only on tagged facts and only on the tag
component of a tagged fact. Also, we did not change the strand structure or introduce new nodes
anywhere.

63

. .

-f’. .+f’

. .

+ f’. .-f’

.-k.+k

-f+ f+ f -f

(a) (b)

F

R

.

.

.

E

D

Figure 5.1: Penetrator strands combining (a) F, R strands (b) D, E strands

. .
-Y (f’)+Y (f)

Y (f) = Y (f’)

Figure 5.2: Replacing strands in Fig 5.1 using ψ

64

Lemma 8. Let C be the original bundle and C ′ be the transformed bundle such that, ψ(C) = C ′.
If f0 is a fact, uniquely originating in C, then f0 also originates uniquely in C ′.

Proof. The only possible places of origin of a fact in the penetrator strand are:

1. M strand. In this case, since ψ(f0) = f0, ∀f ∈ uf, unique origination is preserved when C is
transformed into C ′;

2. K strand. In this case too, the same applies as that of the M strand;

3. R strand. From the definition of ψ, transforming does not change the fact component of a
tagged fact. Also, by the injectivity property of ψ (condition 6 of definition 22), there is no
duplication of tags.

Therefore, unique origination is preserved when C is transformed into C ′ using ψ.

65

Chapter 6

Proof

6.1 Overview

In this chapter, we prove our main claim - the tagging scheme prevents all replay attacks. We use
the results from previous chapters as the basis for the proof. We follow an indirect approach for
our proof. We will show that a protocol is secure under the tagging scheme if it is secure in the
absence of replay attacks. Note that we do not intend to prove that there cannot be undetected
replays in a protocol run. We only prove that no such replays can aid in attacking the protocol.
For this purpose, we chose to identify the attributes of a replay and the correctness properties of a
protocol and combine them both to constitute a replay attack.

The focus then is on showing that no attacks exist that use replays if all the honest agents
adopt the tagging scheme. To be precise, we show that:

If a protocol is secure in the absence of replays, then it is secure under the tagging
scheme even in the presence of replays.

Put in other words, the tagging scheme prevents all attacks arising out of replays. We turn this
around and show that:

If there is an attack on a protocol under the tagging scheme, there is also an attack
on the protocol when adapting the tagging scheme with all tagged messages correctly
tagged.

In the previous chapter, we have shown how we can obtain a well-tagged bundle from any given
bundle. We have used a transformation on a given bundle and changed all ill-tagged facts to well-
tagged facts. We have not changed the strand structure at any place including penetrator strands.
We have also shown that the well-tagged bundle preserves unique origination. Those concepts can
be summarized in the following theorem.

Theorem 9. If C is a bundle, then C can be transformed using a transformation function, ψ, into
a bundle C ′ such that:

66

• C ′ contains the set of facts in C, all of which transform into well-tagged facts using ψ;

• C ′ contains the same honest strands as in C;

• C ′ contains penetrator strands similar to those in C except for a change in tags for some of
the tagged facts;

• C ′ has the same strand structure as that of C with facts uniquely originating if they were
uniquely originating in C.

Proof. The results in each of the sections in chapter 5 can be regarded as the proof for each of the
statements laid in the theorem.

In the following sections we prove that if there is an attack on C, there is a corresponding
attack on C ′. We prove this by considering an attack to mean a failure to achieve a desired goal
at the end of the protocol run, e.g. secrecy, authentication (we have defined both in chapter 3),
non-repudiation, fairness, anonymity and so on. We shall however, prove it only for the first two
properties. Other properties can be similarly considered and proven.

6.2 Secrecy

Theorem 10. Let C be a bundle and C ′ be a well-tagged bundle obtained by transforming C. i.e.
ψ(C) = C ′. If there is a failure of secrecy in C, there is also a failure of secrecy in C ′.

Proof. Following definition 20, suppose there is a failure of secrecy in C as follows:

1. There is a strand s = ins(temp) with C-height at least h; and,

2. ∀k ∈ Keys · ins(k) /∈ KP; and,

3. There is a node n with label +ins(v).

We show that there is a corresponding attack in C ′. Let instantiation function ins′ be defined as in
section 5.3:

ins′(v) = ψ(ins(v)).

According to def. 20, if there is a failure of authentication in C ′ then:

1. There is a strand s′ = ins′(temp) = ψ(ins(temp)) with C ′-height at least h, corresponding to
s from the way we have constructed the honest strands of C ′.

2. ∀k ∈ Keys · ins′(k) /∈ KP because ins′(k) = ins(k) for such k.

67

3. The node corresponding to n will have label +ins′(v) (= ψ(ins(v))).

However, from the definition of ins, we have ψ(ins(v)) = ins(v) ∀v ∈ uv. Hence, there is a
node +ins′(v) in C ′ as well and therefore a failure of secrecy in C ′.

6.3 Authentication

Theorem 11. Let C be a bundle and C ′ be a well-tagged bundle obtained by transforming C, i.e.
ψ(C) = C ′. If there is a failure of authentication in C, there is also a failure of authentication in
C ′.

Proof. Following definition 21, suppose there is a failure of authentication in C such that:

1. There is a strand s1 = ins1(temp1) with C-height at least h1; and,

2. ∀k ∈ Keys · ins1(k) /∈ KP; and,

3. There is no strand s2 = ins2(temp2) with C-height at least h2 such that ∀x ∈ X . ins1(x) =
ins2(x).

We show that there is a corresponding attack in C ′. Let instantiation ins1′ be defined as in
section 5.3

ins1′(v) = ψ(ins1(v)).

According to def 21, if there is a failure of authentication in C ′ then

1. There is a strand s1′ = ins1′(temp1) = ψ(ins1(temp1)) with C ′-height at least h1, correspond-
ing to s1, from the way we have constructed the honest strands of C ′.

2. ∀k ∈ Keys · ins1′(k) /∈ KP because ins1′(k) = ins1(k) for such k.

3. There is no strand s2′ = ins2′(temp2) with C ′-height at least h2 such that ∀x ∈ X · ins1′(x) =
ins2′(x). Suppose there were such an s2′; then, by the way we have constructed the honest
strands in C ′, s2′ would correspond to some strand s2′′ = ins2′′(temp2) with C ′-height at
least h2 such that

∀v ∈ Var · ins2′(v) = ψ(ins2′′(v))

But then we would have for every x ∈ X

ψ(ins1(x)) = ins1′(x)
= ins2′(x)
= ψ(ins2′′(x)).

68

However, this contradicts part 3 of the above definition, since we have ins1(x) = ins2′′(x) due
to the injectivity property of ψ (condition 6 of definition 22).

6.4 An example

In this section, we shall show that the results obtained through the proof can be applied directly
to protocols which are vulnerable to replay attacks. We prove this by showing that if a protocol
is executed under the assumption that there is no replay of messages and is secure then it is also
secure under the tagging scheme in the presence of replays. We take the example of the Needham-
Schroeder Public-Key Protocol that we discussed at various places in this thesis to serve to illustrate
this. We have shown how this protocol was attacked using various techniques, such as, man-in-
the-middle, type-flaw, multi-protocol and interleaving attacks. Our explanation should now serve
to reason about the efficacy of the tagging scheme in preventing all those attacks which involve
replaying messages.

The two roles in this protocol can be defined by the strand templates:

Init =̂
〈+ {t1, na, a}PK(b),

− {t2, na, nb, a}PK(a),

+ {t3, nb}PK(b) 〉,

Resp =̂
〈 − {t1, na, a}PK(b),

+ {t2, na, nb, a}PK(a),

− {t3, nb}PK(b) 〉.

Thayer et al. in [102] establish a number of properties of this protocol. These established
properties assume some conditions. For example, they assume that there exist no type flaws in the
messages, no replay of messages from a different protocol and so on. Some are implicit and some
are explicit. However, we will now show that the result we were able to achieve guarantees that
a protocol remains secure even when all those assumptions are dropped if the tagging scheme is
adopted.

As an example, consider Proposition 5.2 in [102] According to this proposition, a ‘responder’s
guarantee’ is: Let there be a bundle in which there is a responder’s strand s1 = ins(Resp) such
that ins1(Pv(a)) /∈ KP. Then there exists a corresponding initiator’s strand s2 = ins2(Init) such
that ins1v and ins2v agree on a, b, na and nb (for 1 ≤ i ≥ 3, ins1t(ti) = ins2t(ti) = φ). In other
words, authentication is guaranteed w.r.t the definition we have given as definition 21: There is
no failure of authentication if temp1 = Resp, temp2 = Init,X = {a, b, na, nb}, h1 = 3, h2 = 3 and
Keys = {Pv(a)}.

69

We can use our main result to show that this protocol achieves this property even in presence
of any of the replay attacks we have given in chapter 2. In particular, if Alice and Bob establish
a session with session-id ‘sidα’, then the strand templates can be instantiated using ins1 and ins2
defined as

ins1t(t1) = (sidα, 1), ins1t(t2) = (sidα, 2), ins1t(t3) = (sidα, 3)

and

ins1v(na) = ins2v(na) = NAlice,

ins1v(nb) = ins2v(nb) = NBob,

ins1v(PK(a)) = ins2v(PK(a)) = PK(Alice),
ins1v(PK(b)) = ins2v(PK(b)) = PK(Bob).

An authentication guarantee of the protocol was already established by proposition 5.2 in [102]
(with t1 = t2 = t3 = null). We can immediately apply our main result to prove that this guarantee
is maintained even in presence of replays. Particularly, the protocol remains secure in the presence
of replays when

t1 = (sidα, 1), t2 = (sidα, 2), t3 = (sidα, 3)

from theorems 2 and 3.

70

Chapter 7

A Communication-Computation
Efficient Group Key Algorithm for
Large and Dynamic Groups

7.1 Introduction

With the advent of new arenas such as wireless ad-hoc and low powered distributed computing
and communication devices, designers of group key encryption algorithms can no longer ignore
communication in favor of computation or vice versa. In some environments the power cost of
communication may be sufficiently high to warrant low cost communication protocols, whereas in
other environments computation cost may be the dominant feature. Consequently, this chapter
introduces the Communication-Computation Efficient Group Key protocol (CCEGK), which is a
extension of EGK [28] and TGDH [142, 145].

The Communication-Computation Efficient Group Key Algorithm (CCEGK) is a group key
management algorithm based upon two preceding group key management algorithms, EGK [28]
and TGDH [142, 145]. By extending this previous work, CCEGK considerably improves both
communication and computation costs of their related operations. Furthermore CCEGK fully
implements, as detailed in this chapter, several methods that are not described by other authors
in the literature. For instance, CCEGK fully implements an initialization operation while the
TGDH and STR [143, 144] algorithms do not. Next CCEGK presents two mass leave operations,
Mass Leave-Balanced, and Mass Leave-Imbalanced (detailed later), while the TGDH algorithm
only details a Mass Leave-Imbalanced. The Add operation in CCEGK is distinct from TGDH and
similar to EGK; each time the controller sends a message, it sends a message with only one key size,
as opposed to TGDH which sends all blinded keys in the group. Our merge method differs from
TGDH in a similar manner. Next TGDH and STR’s partition (split) operation could be better
understood as a mass leave operation; since it is not detailed in literature it will not be compared
further. Lastly TGDH and STR do not implement a balance operation, and CCEGK does detail a
balance operation later in this chapter.

There are similarities as well. CCEGK’s leave and key refresh operations are the same operation
as in TGDH, while join and initilize are almost identical to those of EGK and other operations

71

are similar. While CCEGK adopts ideas from both TGDH and EGK, the focus on computation
and communication efficiency warrants a distinct algorithm. Table 7.1 details the differences and
similarities between CCEGK and TGDH, and CCEGK and EGK.

The goal of this chapter is to present the full details of every operation of CCEGK in a stan-
dardized manner. This chapter provides the following material

• We fully describe the main key management operations for CCEGK, including initialization,
add, mass add, merge, leave, mass leave, partition, and key refresh. This set of operations
provides a basis for full comparison of competing group key protocols.

• Some group key protocols, such as our proposed CCEGK protocol, do not rebalance the binary
key tree upon every operation. Therefore, we introduce two separate rebalance schemes, which
are not expensive in either computation or communication costs. The rebalance operation is
not documented in the literature for EGK, TGDH or STR even though it can greatly affect
the overall performance of the protocols over time as the trees become more unbalanced.

• We provide a theoretical analysis of the costs of both computation and communication for each
operation for each of the compared protocols. This is beneficial since a complete treatment
of all of these operations is not available in the literature. A separate recent study by Challal
and Seba reviews a large number of group key protocols, but only compare the initialization
costs [74]. The papers introducing STR [143, 144] and TGDH [142, 145], and companion
performance paper [38] do not address initialization and partition operations at all (their
partition operation is effectively a mass leave operation). We provide this missing information
and also illustrate a point of contention with their published results.

7.2 Background

In 1976, Diffie and Hellman introduced a two party key exchange protocol, DH, that allows two
participants to create a private key [94] through the use of publicly exchanged messages. This
protocol is now at the heart of many two-party secure communication protocols, including SSL
[110] and SSH [275]. When we log in to a secure web site, our machine exchanges information with
the web server to create a secure session key. That key is used to encrypt subsequent communication,
protecting confidential information such as credit card numbers. With the increasing use of network
technologies, there are several applications that would greatly benefit from an extended group
key exchange algorithm that provides the same protection as DH, but for groups of participants.
These applications include conference calls, distributed computation, white-boards and distributed
databases, among many others. To ensure secure and reliable communication in these applications,
there have been several attempts to create efficient group key protocols for large and dynamic
groups based on the DH algorithm [70, 71, 137, 249, 61].

Key refresh Initialization Join Mass Join Merge Leave Mass Leave
EGK NA similar similar different different different different

TGDH same NA different different different same different

Table 7.1: Operation Comparison with CCEGK

72

These approaches can be divided into two categories of key management, centralized and con-
tributory [28, 248, 37, 38]. In centralized key management, a single member creates keys and
securely transmits them to all other group members. The drawback is that a centralized approach
requires a trusted sponsor who generates and distributes the keys, leaving a single point of fail-
ure. The trusted sponsor cannot be continuously available to support operations in the event of
an arbitrary network partition, so this approach is not appropriate for reliable group communica-
tion. Some authors have suggested using a distributed approach where the centralized management
is distributed among many hosts, increasing the system’s fault tolerance and reliability, but still
requiring a set of trusted hosts.

The contributory group key management approach is based on the idea that each group member
will directly contribute to key management and key generation (each member contributes to the
entropy of the key). This alleviates the problem of a single point of failure and trust in a centralized
group key management system. In the late of 1990s there were several group key protocols concur-
rently introduced, such as EGK [28], TGDH [142, 145], and STR [143, 144], based on contributory
group key management to improve the costs of communication and computation. EGK, TGDH
and STR utilize a binary-tree structure to provide an efficient number of message exchanges, but
they provided different algorithms for the key and group management protocols. EGK and TGDH
focus more on the cost of computation than on that of communication. STR focuses on improving
the cost of communication more than the cost of computation, in keeping with Becker and Willie’s
original work on efficient communication in group key protocols [61].

7.3 Group Key Exchange and Management Background

The purpose of this paper is truly two-fold: first to introduce a new group-key agreement protocol
based on an underlying two-party key exchange and second, to compare our protocol with other
protocols that have appeared in the literature. To that aim, we constructed a simulator to evaluate
the efficiency of the algorithms, as described by their authors. Additionally, we have analytically
compared their algorithmic performance. Before we introduce our protocol, we first provide a
summary of the basic concepts and terminology of group key protocols used throughout this paper.

7.3.1 Public Two-Party Key Exchange

A two-party key exchange protocol is a protocol that permits two entities with no prior shared
secrets to publicly exchange information so that at the end of the protocol they both possess the
same shared secret, and any eavesdropper listening in on the communication is unable to obtain
that same secret. After the protocol runs, the participants can derive a session key from the shared
secret. Throughout this paper we will use the term group key or secret key to refer to this shared
secret and its derivative keys. Diffie and Hellman [94] introduced the first such public two-party
key exchange algorithm, which we call DH. There are other two-party key exchange protocols with
cryptographic strength comparable to DH. For the purposes of this paper we will use DH as a place
holder for any of these two-party protocols. As we first introduced with EGK [28], we can use any
of these two-party protocols at any point in CCEGK, changing protocols for each pair of groups
communicating and even between rounds. The replaceability of these protocols is unique to the
binary-tree-based group key protocols.

73

7.3.2 Diffie-Hellman Protocol with indistinguishable security

Let g, p and q be publicly known values, where p, q are large primes and where p = 2q + 1. g is a
generator of the group QRp that is a subgroup of Z∗p and the order is |QRp| = q. Let Alice and Bob
choose secret private values xA and xB from Zq = {0, ..., q − 1}, respectively. From these secret
private values, they create their corresponding public values (blinded keys), rA and rB, and send
them to each other.

Alice→ Bob : rA = gxA mod p
Bob→ Alice : rB = gxB mod p

Bob and Alice then compute a shared secret key using their partner’s public value and their own
private value:

K = (rA)xB mod p = (rB)xA mod p = gxA∗xB mod p

An eavesdropper can know p, q, g, gxa mod p, g
x
b mod p and still not be able to compute the shared

key K. Furthermore, this Diffie-Hellman protocol is based on the Decisional Diffie-Hellman
assumption. An eavesdropper can not distinguish between random keys in QRp and keys that were
generated by the above algorithm.

7.3.3 Group Key Protocols

The class of group key protocols we examine are those based on the utilization of underlying two-
party key exchange algorithms such as the DH algorithm described above. The idea behinbdthese
protocols is that the group is arranged in a binary tree hierarchy. Although other structures exist,
the binary tree hierarchy has provided for the most efficient algorithms to date. At the base of the
tree are pairs of nodes, each representing a group of size one. During the algorithm, two groups
pair up and communicate their blinded keys to one another, forming a single shared key. These
groups then form a new group and use the shared key to generate a new secret group key which
is used to generate the new blinded key for the next merging operation. This style of tree-based
algorithm appeared in the literature in the early 2000s as different research groups concurrently
focused on this topic. The first suggestion of a tree-based approach was by Becker and Willie [61],
but they did not develop a full protocol around the concept. Protocols emerged later, including
EGK [28], TGDH [142, 145], and STR [143, 144], all based on contributory group key management
to improve the cost of communication and computation.

7.3.4 Terminology

Group Key Management Operations

Throughout this paper we will address several group key management operations used by group
key systems. The operations we describe are the following:

74

Initialization Operation This is the initial creation of the group key and organization of the key
management infrastructure.

Join This operation brings a new member into the existing group.

Mass join (Mass add) This operation allows many new members to be added to an existing
group simultaneously when these new members have not already formed a group of their
own.

Merge (Group fusion) This operation, as opposed to mass join, is used when another group is
combined with the existing group to become a new group.

Leave This operation is used to remove a member from the group.

Mass leave This operation is used when multiple members are simultaneously removed from the
existing group.

Split (Partition, or group fission) This operation, different from mass leave, occurs when a
single group is divided into two or more component groups.

Key refresh To prevent the secret key from becoming stale, it should be changed. Moreover, to
prevent an adversary from breaking in, we should refresh the original key and generate a new
secret key periodically.

Secrecy Terms

In the cryptographic protocol literature, there are several goals related to the management of group
keys with respect to membership changes in the group. These goals are:

Group key secrecy Any generated group key is indistinguishable in polynomial time from a
random number. This is called the “Decision Diffie-Hellman Problem” (DDH) [68]. For the
protocols discussed in this paper, the cryptographic strength of the generated group key is
solely dependent upon the strength of the underlying two-party protocols. That said, we will
not address the DDH problem further in this paper.

Weak backward secrecy This ensures that new members cannot decrypt and understand pre-
vious messages that were sent prior to their joining the group.

Backward secrecy This ensures that a passive adversary who knows a contiguous subset of group
keys can not discover preceding group keys.

Weak forward secrecy This ensures that the leaving members can no longer decrypt and un-
derstand messages after they have left the group.

Forward secrecy This ensures that a passive adversary who knows a contiguous subset of previous
used group keys can not discover subsequent group keys.

Perfect forward secrecy This is a more strict version of the above. The active or passive attacker
can additionally have a long-term secret key or session key of a current or past group member
and still not compromise the communication.

75

n number of group members
N number of merging, joining or leaving members or subgroups
r denotes a random integer

< l, i > the ith node at level l in the binary key tree
K<l,i> the secret key of the node < l, i >

bK<l,i> blinded key of the node < l, i >, e.g., αK<l,i> mod q
bKi blinded key of the ith group member.
Mi the ith group member, i ∈ [1, n]
Ki secret key of the member Mi

α an exponentiation base, which is a prime number based on DH
q order of the algebraic group (large prime number for DH)

BT the binary key tree

Table 7.2: Symbols used in metrics

Key independence This requires that anyone who knows a true subset of the group keys, or
the private keys corresponding to a true subset of the blinded keys, is unable to guess an
additional group key.

Evaluation Metrics

In our evaluation of the performance of the algorithms we evaluate many costs. This includes
communication and computation costs for the evaluated operations. The values is these costs are
depicted in Table 7.2.

Number of rounds This is a generic time unit used to compare the number of steps taken in
different operations. The algorithms often require synchronization between rounds; therefore,
this number becomes important when taking synchronization time into account.

Number of unicast messages This is the sum of the messages sent by each member to another
single member in the group in the operation. This number is useful for determining total
communication and is important if many or all nodes are on the same network collision
domain, thus forcing these messages to be sent sequentially and not in parallel.

Number of broadcast messages This is the sum of the messages sent by each member to all the
other members in the group for the operation. Since the messages go to all members of the
group, it greatly affects total communication costs depending upon the underlying network
topology1.

Number of messages This is the sum of all unicast messages and broadcast messages. We use
this number to determine the total time of communication in an underlying broadcast network.

Number of sequential exponentiations During an operation there will be a series of computa-
tionally expensive cryptographic operations (such as modular exponentiation used in the DH
algorithm). The algorithms in the literature often require the results of one cryptographic op-
eration prior to the execution of another. This metric represented the worst case scenario, the
longest sequence of dependencies of these costly cryptographic operations in the operation.

Number of signatures This is the sum of digital signatures used in every round. In every round
the sponsor sends one digital signature.

1The existing group key literature assumes a fully connected broadcast network.

76

Number of verifications Given that each message needs to be verified, the number of verifica-
tions is equal to the number of messages; however, several verifications can occur in parallel,
so we need to concern ourselves with the number of sequential verifications – the maximum
number of verifications that must occur during an operation.

In addition, we define the sponsor as the group member elected to coordinate group activities. In
our prior work, we have used the term group controller for this designation; however, sponsor seems
to be a more fitting appellation.

7.4 CCEGK Protocol

In this section, we discuss our communication-computation efficient group key (CCEGK) algorithm.
This algorithm is based on EGK, which we presented a few years ago [28], and adopts conventions
and a few operations from TGDH [142, 145]. EGK was originally created with the concept of rapid
addition of new members and low rekeying costs. TGDH and STR adopt a more balanced approach
but also use tree-based group keying. CCEGK is an attempt to merge these two concepts.

Having extended EGK and TGDH, CCEGK is based on a binary tree structure that assumes a
consistent world view among all group members. Specifically, we make the following assumptions
which are consistent with those made in the group-key literature:

1. All members know the key tree structure, an ordered list of each other’s identities, and their
initial position in the tree.

2. All participants can unambiguously determine their group sponsor.

3. Every member sees the same sequence of group key operations.

To implement a consistent world view, TGDH and STR use View Synchrony (VS), a simple
specification that allows processes to synchronize on specific views [106]. According to the authors
of TGDH and STR, VS is essential for any fault tolerant group key agreement protocol. Therefore,
as with TGDH and STR, we assume an implementation that supports the semantics of VS.

These assumptions are straightforward but have sweeping ramifications that are necessary to
facilitate current group key exchange algorithms. It is understandable that the current group key
exchange algorithms would make use of these assumptions, as the cost of communication for a
traditional wired network is fairly small. However, less traditional networks, including wireless,
will need a reassessment of these assumptions; we leave that discussion to a future paper.

Given these assumptions, a set of nine operations emerge from the group key field. Almost
every proposed protocol is presented with split, merge, add, leave, mass add, and mass leave.
However, initialize, rebalance, and key refresh are potential exceptions, as we indicate below. In
this section we define each of these nine operations as they are implemented in CCEGK. We also
provide the CCEGK communication and computation costs for each operation. For completeness
we include digital signature and verification costs if they are implemented in the protocols. We
leave discussion of signatures and signature verification to Section 7.6. In Sections 7.7 we provide
a theoretical comparisons of the CCEGK costs to those of EGK, STR and TGDH.

77

Communication Computation
Rounds Messages Unicast Broadcast Sequential Exponentiations Signatures Verifications

h 2n− 2 n n− 2 2h-2 h 2n− 2

Table 7.3: Costs of initialization operation

Throughout the remainder of this section, we chose to use terminology and conventions estab-
lished in the TGDH papers since they have been published in venues with a wider distribution than
the original EGK paper.

7.4.1 Initialization Operation

The initialization operation is the group genesis algorithm. In this algorithm each node pairs
up with its neighbor, if available, to establish a new shared key. If no neighbor is available (as in
an incomplete binary tree), the single node will behave as an atomic group. The new group then
repeats the pairing with other groups until there is only one group. The basic operation occurs as
follows:

1. Suppose that there is a collection of entities: { M1,. . ., Mn} (it is not important whether n
is equal to 2r). From assumption 1, we know all members can sort their identities in some
order. Each member represents the sorted set of identities as the labels for the sponsors of a
binary tree.

(a) In round 1, each node Mi generates a DH key pair consisting of a secret key Ki and a
corresponding blinded key bKi = αKi mod p. Each node Mi unicasts a message including
its blinded key to its sibling. Mi performs a two-party Diffie Hellman (DH)2 with its
sibling to calculate a new DH key pair with the private key and the blinded key. Each
node has a single parent and single sibling. We choose the rightmost node as the sponsor
of the group (if n is not even, the last node does nothing in the first round; we treat it
as a group. The same condition is in every round). We treat every new group as a new
node, so the new number of nodes is

⌈
n
2

⌉
.

(b) In subsequent rounds, each member of the group determines the new group private and
blinded keys. The sponsor of each group broadcasts a message including its group’s new
blinded key to all of the members of its sibling group. Every member then performs a
two-party DH with the blinded key of its sibling group to generate a new group with a
new DH key pair. We again choose the rightmost node as the sponsor of this new group.

(c) We repeat the above process until round h = dlog2 ne(h is the height of the key tree).
At this point we have a single group, G, which includes all the members, each sharing
the group secret key K<0,0>.

The costs of the CCEGK initialization operation are summarized in Table 7.3.
2Recall that although we use DH in this paper, any equivalent two-party public key algorithm can be used in place

of DH. The choice of algorithm can be based on the pair of nodes involved in the exchange.

78

Communication Computation
Rounds Messages Unicast Broadcast Sequential Exponentiations Signatures Verifications

1 2 1 1 1 1 2

Table 7.4: Costs of the Join Operation

7.4.2 Join Operation

The join operation occurs when a new joining member sends a join request to the group. The
procedure for the join operation is as follows:

1. Suppose that the group has n members: {M1, . . . ,Mn}. The new member, Mn+1, broadcasts
a message including its own blinded key to every member of the group. Simultaneously the
sponsor of the original group (the shallowest rightmost leaf) unicasts the group’s blinded key
to Mn+1.

2. The group and the new node create a new group. The new root key node has two children:
the root node of the original tree on the left and Mn+1 on the right. Every member can now
compute the group key because all original members only need the new member’s blinded
key, and the new member Mn+1 needs only the blinded group key of the original group.

The costs of the join operation are summarized in Table 7.4. We assume that before the join
operation, the sponsor of the original group and a new joining member generate their own blinded
key and therefore do not include these costs in the table.

CCEGK, as do EGK and STR, always joins at the root of the tree, resulting in potentially far
fewer sequential exponentiations. TGDH will join at the root only if the tree is a full tree, in an
attempt to keep the tree more balanced. STR ,on the other hand always has a skinny tree, where
every internal node had one child that is a leaf.

For purposes of comparison, the left-hand side of Figure 7.1 shows a sample tree taken from
Figure 2 of the TGDH paper [145]. In this example, member M4 is joining the group BT1. In [145]
the new node is added to the bottom of the tree. In this example, the sponsor M3 performs the
following actions:

1. generates a new root node and a new member node.

2. sets the new root node as the parent node of the original root node and the new member
node, denoted as node < 0, 0 >.

After these actions, all members in the original group know bK<1,1>; and the new member M4

knows bK<1,0>, and if it has previously computed its own blinded key, then every member can
compute the new group key in one round with one sequential exponentiation.

7.4.3 Merge Operation

The merge operation occurs when two or more subgroups wish to merge into one group. The
sponsor announces the merge event for these subgroups. These subgroups receive the notification

79

<0,0>

<1.0>

<2,0> <2,1>

M2M1

Tree G

<1,0>

<2,1><2.0>

<3,0> <3,1>

M3

Sponsor

M2M1

Tree G*

<1,1>

<0,0>
New Membe

M3

Sponsor

<1,1>

M4

Figure 7.1: Tree updates from the join operation.

Communication Computation
Rounds Messages Unicast Broadcast Sequential Exponentiations Signatures Verifications

1 N 0 N N 1 N

Table 7.5: Costs of Merge Operation

and they perform DH exchanges to establish a new group key. The procedure of the two-subgroup
merge operation is as follows:

1. Suppose we have two groups G1 and G2 in the first round. The sponsor of each subgroup
(the shallowest rightmost leaf) broadcasts a merge request message including the blinded key
of the group to the members of the other group.

2. G1 and G2 create a new group. The new root key node has two children: the root node of
G1 on the left and the root node of G2 on the right. Every member in the new group can
compute the group key because all the members in G1 know the blinded group key of G2 and
all the members in G2 know the blinded group key of G1.

Figure 7.2 shows an example of GroupG1 = {M1,M2,M3}merging with GroupG2 = {M4,M5},
where the sponsor is M3. Since all members in G1 know bK<1,1>, and all members in G2 know
bK<1,1>, every member can compute the group key in one round. The costs of the two-subgroup
merge operation are summarized in Table 7.5.

We can extend the merge operation to an N -subgroup merge operation: the sponsor of every
subgroup broadcasts the blind key of its own group key to every member, including the group
members and the members of the other subgroups. Every member knows his position in the key
tree. The sponsor of the new group internally determines the iterative merger of the group as above,
calculating the blinded keys up the path to the root. It then broadcasts these to all members who
can then internally rekey. So in an N -subgroup merge operation we only need one round, N
messages, and N sequential exponentiations.

CCEGK, as with EGK, merges the two roots of the trees, resulting in lower cost but a potentially
more unbalanced tree. TGDH merges the shallower tree to the deeper one, or at the root, whichever
creates the shallowest final tree. STR adds one tree to the bottom of the other.

80

<0,0>

<1.0>

<2,0> <2,1>

M2M1

Tree G1

<1,0>

<2,1><2.0>

<3,0> <3,1>

M3

Sponsor

M2M1

Tree G1*

<1,1>

<0,0>

M3

Sponsor

<1,1>

<0.0>

<1,0> <1,1>

M5M4
<2,2> <2,3>

M5M4

Tree G2

Figure 7.2: Tree updates from the merge operation.

7.4.4 Mass Join (N-Member Join) Operation

The mass join operation occurs when two or more joining members send join requests to the group
sponsor. The sponsor then announces the mass join event to the current group and the joining
members. The current group and these members receive the notification and they perform DH
exchanges to establish a new group key. EGK [28] put forward two ways to implement this mass
join. In this paper we still use these two methods and supplement them with a new method.

1. Mass Join-Iterative [28]: treats N members as N separate single member joins.

2. Mass Join-Merge [28]: initialize the N entities to form their own independent group, then
merge this group with the original group to generate a new group.

3. Mass Join-Simultaneous: The sponsor of the current group and N joining members broadcast
a message including their blinded key to every member. Due to VS we know that every
member has received this set of blinded keys before starting the mass-join operation. The
sponsor then calculates all the blinded keys created as if these members were being added
sequentially and broadcasts the keys to all members. Each member can determine the same
view of the system and can calculate his position in the key tree; every member can generate
the group key of the new group. In this method, we use one round, N + 1 messages, and
2(N − 1) sequential exponentiations.

The costs of the mass join operation are summarized in Tables 7.6-7.7.

Mass Join-Iterative is most expensive among these three methods in the communication and
computation costs. In communication costs, Mass Join-Simultaneous is more efficient than Mass
Join-Merge, whereas in computation costs, Mass Join-Merge is more efficient than Mass Join-
Simultaneous. In this paper, we use the Mass Join-Simultaneous method when we compare the
costs of communication and computation in the mass join operations of the other protocols.

81

Method Communication
Rounds Messages Unicast Broadcast

Mass Join-Iterative N 2N N N
Mass Join-Merge h′ + 1 2N N N

Mass Join-Simultaneous 1 N + 1 0 N + 1

Table 7.6: Communication Cost of Mass Join
** h′ is the height of the key tree that is created by N joining members, h′ = dlog2Ne

Method Computation
Sequential Exponentiations Signatures Verifications

Mass Join-Iterative 2N − 1 N 2N
Mass Join-Merge 2h′ h′ + 1 2N

Mass Join-Simultaneous 2(N − 1) 1 N + 1

Table 7.7: Computation Cost of Mass Join
** h′ is the height of the key tree that is created by N joining members, h′ = dlog2Ne

7.4.5 Leave Operation

The leave operation occurs when a group member sends a leave request to the group. The sponsor
announces the leave event to the remaining group members, who then do DH exchanges to create
a new shared key. In EGK we required a leave operation to fully reinitialize the tree. To reduce
costs, the procedure of the CCEGK leave operation is very similar to that in TGDH [142, 145]:

1. Suppose that we have n members in the group, and a group member Mi wants to leave the
group. The sponsor is the shallowest rightmost sponsor of the subtree rooted at Mi’s sibling
node. In the leave operation, every member updates its key tree by deleting the sponsor
corresponding to Mi. The former sibling of Mi replaces Mi’s parent node. The sponsor picks
a new secret key and computes all keys on its key path up to the root.

2. After the sponsor generates all the keys, it broadcasts a message including all the blinded
keys to the other members in the group. After the other group members receive the message,
they can compute the group key for each node on up the new tree.

Figure 7.3 shows an example of member M3 leaving from a group where the sponsor is M2.

The costs of the leave operation in the worst case are shown in Table 7.8. The total sequential
exponentiations in the leave operation depend on the position of the leaving member. For purposes
of evaluation, we will only consider the worst case in the leave operation.

Since our join and merge operations add to the root node, our tree can become very unbalanced.
At some point the cost of the above leave operation may be greater than the cost of initializing a
new group. Under such cases, instead of the above operation, we will invoke a rebalance operation
(see Section 7.5).

Communication Computation
Rounds Messages Unicast Broadcast Sequential Exponentiations Signatures Verifications

1 1 0 1 3h-3 1 1

Table 7.8: Costs of Leave Operation

82

<0,0>

<1.0>

<2,0> <2,2>

M5M1

Tree G*

<1,0>

<3,1>

<2.0>

<3,0>

<2,3>

M2

Sponsor

M5

M1

Tree G

<1,1>

<0,0>

M2

Sponsor

<2,1>
<2,2><2,1>

M3 M4

<1,1>

<2,3>

M4

Figure 7.3: Tree updates from the leave operation.

7.4.6 Mass Leave (N-member leave) Operation

The mass leave operation occurs when two or more group members send leave requests to the
group. The sponsor announces the mass leave event to the remaining group members. The remain-
ing group members receive this notification and do DH exchanges to create a new group key. There
are two ways to implement the mass leave operation, depending on the number of leaving group
members. Suppose that we have n members in the group and N members will leave the group.
The two methods are as follows:

(I) Mass Leave-Balanced: When the number of leaving group members is very large, it is
more efficient to reconstruct the key tree using the initialization operation in Section 7.4.1. The
total number of rounds is dlog2(n−N)e; the total number of messages is 2(n − N − 1). The
sequential exponentiations are 2 dlog2(n−N)e. In this method, the updating key tree becomes
balanced. Consequently, a later rebalance scheme is not needed.

(II) Mass Leave-imbalanced: When there are fewer leaving group members, it is more effi-
cient to use the Mass Leave-Imbalanced method. The procedure is as follows:

1. The sibling of every leaving node replaces its parent node. Every remaining member updates
its key tree by deleting all leaving members. For every leaving node, we determine its sibling
node and its parent node and replace its parent node with its sibling node. Then every
sponsor, after deleting every leaving node, uses the same criteria as described in the leave
operation. We choose the shallowest rightmost sponsor as the sponsor in the new key tree.
To prevent reusing the old group key, the shallowest rightmost sponsor in the array picks a
new secret key. We update the order number and the level of every node in the new tree.
We put every sponsor into two initial empty arrays: A, called sponsor array, and B, called
intermediate node array.

2. The elements in A calculate their secret keys and blinded keys on their key-path as far as
possible in parallel. For example, an element < k,m > in B can calculate its secret keys
and blinded keys up to the node < l, i >. We check whether < l, i > is already in B. If

83

<0,0>

<1.0>

<2,0> <2,1>

M3M2

Tree G*

<1,0>

<2,3><2.0>

<3,0> <3,1>

M5

Sponsor

M2M1

Tree G

<1,1>

<0,0>

M5

Sponsor

<1,1>

<2,2><2,1>

M3 M4

Figure 7.4: Tree updates from the mass-leave operation.

Table 7.9: Communication Cost of Mass Leave
Method Communication

Rounds Messages Unicast Broadcast
Balanced h 2(n−N − 1) n−N n−N − 2

Imbalanced min(dlog2Ne+ 1, h′) min(2N, dn−Ne) 0 min(2N, dn−Ne)

not, we insert the node < l, i > into B, and remove < k,m > from B. And so on for the
other elements in B. After that, we check whether elements in B have an offspring-ancestor
relationship. If they do, we will remove all the offspring from B. Now, for every element
< l, i > in B, we will search the nodes in A which are the offspring of < l, i >, keep the
shallowest rightmost node in A and remove the other offspring from A. Now every element
in A will broadcast all of its blinded keys to all the members in the new balanced tree. After
receiving the messages, all the members calculate the blinded keys and secret keys on their
key-path as far as possible in parallel.

3. We iterate Step 2 until the number of elements in B is 1 and the element is the root node.

In the second method, the updating key tree is still imbalanced. Because rounds, messages
and sequential exponentiations in the mass leave operation depend on the position of the leaving
members, we will consider the worst case in the mass leave operation. In the worst case, we need
min(dlog2Ne+ 1, h) rounds, min(2N,n−N) messages and 3h− 3 sequential exponentiations (note
that in general h is larger than dlog2(n−N)e). Figure 7.4 shows an example of members M1 and
M4 leaving from a group using the second method.

The worst-case costs of the mass leave operation are summarized in Tables 7.9-7.10.

From Tables 7.9 and 7.10, we know the number of messages and verifications in Mass Leave-
Balanced are greater than those in Mass Leave-Imbalanced. Total sequential exponentiation in
Mass Leave-Balanced are smaller than that in Mass Leave-Imbalanced, in both the average and
worst case. When N ≥ n

2 , the number of rounds and signatures in Mass Leave-Balanced are smaller

84

Method Computation
Sequential Exponentiations Signatures Verifications

Balanced 2h h 2(n−N − 1)
Imbalanced 3h′ − 3 min(dlog2Ne+ 1, h′) min(2N, dn−Ne)

Table 7.10: Computation Cost of Mass Leave

** h and h′ are the height of updating key tree after N members are leaving from the group using the Mass Leave-Balanced
and Mass Leave-Imbalanced schemes respectively. h = dlog2(n−N)e and in general h′ is larger than h.

Method Balanced Imbalanced
Rounds max(hi) max(min(dlog2 Pie+ 1, hi

′))
Messages max(2(n− Pi − 1)) max(min(2Pi, n− Pi)
Unicast max(n− Pi) 0

Broadcast max(n− Pi − 2) max(min(2Pi, n− Pi)

Table 7.11: Communication Cost of Partition

than those in Mass Leave-Imbalanced. Otherwise, the number of rounds and signatures in Mass
Leave-Balanced are larger than those in Mass Leave-Imbalanced.

7.4.7 Partition Operation

The partition operation occurs when the current group will split into two or more subgroups. The
sponsor announces the partition event to every subgroup. Every subgroup receives this notification
and performs DH exchanges to create a new group key. The partition operation is similar to the
mass leave operation; it can apply two different methods: Partition-Balanced and Partition-
Imbalanced to the partition operation corresponding to Mass-Leave-Balanced and Mass-Leave-
Imbalanced methods. Suppose that we have n members in the group and the group will be split
into N separate subgroups G1, G2, . . . GN . For every subgroup, we treat the group members of
the other subgroups as leaving members. Therefore, the partition operation can be treated as
an N -mass leave operation. Note that the N -mass leave operations are simultaneous. The total
number of rounds is the largest of the rounds from the separate N -mass leave operations, and
the number of sequential exponentiations is the maximum sequential exponentiations among the
N -mass leave operations. The number of messages is the largest of all the messages in every mass
leave operation. Figures 7.4 and 7.5 are examples of splitting two subgroups from the original
group. The first of these figures is identical to that of the mass-leave operation. The two subgroups
are G1{M2,M3,M5} and G2{M1,M4}, respectively.

Suppose the total size of leaving members for subgroup Gi is Pi. hi and hi
′ are the height of

updating key tree in the ith subgroup (1 ≤ i ≤ N) in Partition-Balanced and Partition-Imbalanced,
respectively (note that in general hi′ > hi). The worst case costs of the Partition operation are
summarized in Tables 7.11-7.12. Since this is a partition operation and not a mass leave, we consider
the costs of reforming both subgroups in contrast to the costs published by Kim et al. [142, 145]
which only look at the costs of one of the subgroups.

85

<0,0>

<1.0>

M1

Tree G2

<1,0>

<2,2><2.0>

<3,0> <3,1>

M4

Sponsor

M2M1

Tree G

<1,1>

<0,0>

M4

Sponsor

<1,1>

<2,3><2,1>

M3
M5

Figure 7.5: Tree updates for subgroup G2 in the partition operation.

Method Computation
Sequential Exps. Signatures Verifications

Balanced max(2hi) max(hi) max(hi)
Imbalanced max(3hi

′)− 3 max(min(dlog2 Pie+ 1, hi
′)) max(min(2Pi, n− Pi))

Table 7.12: Computation Cost of Partition

7.4.8 Key Refresh

To avoid exposure of the group’s secret key, we should refresh it periodically. The group’s sponsor
picks a new secret key and computes its keys and blinded keys up to the root of the tree. After
computing the group key, it broadcasts a message including all the blinded keys to the other
members. Upon receiving the message, the other members can calculate their keys and blinded
keys.

Because sequential exponentiations depend on the position of the group sponsor, we will consider
the worst case costs in the key refresh operation, summarized in Table 7.13.

7.5 Rebalance Scheme

After numerous add, merge, leave, mass leave, and partition operations, the key tree can become
quite unbalanced. So, when the key tree reaches a certain imbalance point, usually caused by
leave, mass leave, or partition operations, we should rebalance the tree and treat the rebalance

Communication Computation
Rounds Messages Unicast Broadcast Sequential Exponentiations Signatures Verifications

1 1 0 1 3h-3 1 1

Table 7.13: Costs of Key Refresh

86

operation as a leave, mass leave, or partition operation. The imbalance point can vary depending
on network and efficiency requirements. One possible rule of thumb is to rebalance during a leave
operation when the cost of rebalancing exceeds that of leaving. We discuss two ways to implement
the rebalance scheme on a tree of size n:

1. Choose a subtree as the basic tree. To rebalance we have two requirements, the height, h, of
the basic tree is dlog2 ne and the basic tree is more densely populated than the other subtrees
of the same height. The height of the basic tree is easy to calculate, and it is also easy to
determine which subtree is the most dense by counting the number of members. After we
determine the basic tree, we choose the shallowest rightmost sponsor in the basic tree as the
sponsor in the new balanced tree. We treat every group member which is not in the basic
tree as a separate entity and insert them into the basic tree from the shallowest level down to
the deepest level. After we finish inserting all the entities, we update the order number and
the level of every node in the new tree. The height of the new key tree is h and the new key
tree becomes more balanced, if log2 n is an integer, the tree is a full binary tree.

2. Alternatively, we divide the original tree into several subtrees. The height of every subtree is
at most h. The division procedure is as follows:

(a) We choose a subtree with the largest number of members and height no more than h.
We split off that subtree.

(b) We repeat Step (a) to split every remaining subtree, until the height of every remaining
subtree is no more than h. Note that in the end the heights of some subtrees may be
less than h.

(c) We sort these subtrees from highest height to lowest height and from largest to smallest
group size. We denote the largest subtree as the basic tree. We treat every subtree as
an entity. We choose the shallowest rightmost node of every entity as the sponsor of the
entity. The sponsor of the basic tree determines the insertion position for every entity
and informs the other subtree sponsors of the positions in the basic tree. Our insertion
strategy is as follows: we insert the subtrees sorted from highest to lowest height into the
nodes from the shallowest level down to the deepest level. If the joining entities increase
the height of the basic tree, they join to the root node of the basic tree. After we finish
inserting all the entities, we update the order number and the level of every node in the
new tree.

Picking one of the above methods, we perform the following actions:

1. We put every sponsor into two initial empty arrays: A, the sponsor array, and B, the inter-
mediate node array. The nodes are sorted by depth order. The elements in A calculate their
secret keys and blinded keys on their key-path as far as possible in parallel. For example, an
element < k,m > in B can calculate its secret keys and blinded keys up to the node < l, i >.
We check whether the node < l, i > is already in B; if not, we insert the node < l, i > into
B. We then remove < k,m > from B, and so on for the other elements in B. After that,
we check whether some elements in B have an offspring-ancestor relationship. If so, we will
remove all the offspring from B. Now for every element < l, i > in B, we will search the
nodes in A whic are the offspring of < l, i >, keep the shallowest rightmost node, and remove

87

the other offspring from A. Now every element in A broadcasts all its blinded keys to all the
members in the new balanced tree. After receiving the messages, all the members calculate
the blinded keys and secret key on their key-path as far as possible in parallel.

2. We iterate Step 1 until the number of elements in B is one and that element is the root node.

Suppose the number of total entities including the basic tree is N , and (using the second
method) the height of the new rebalanced tree is h′. In the first method, in the worst case, we need
min(dlog2Ne+ 1, h) rounds, 2N messages, and 3h− 3 sequential exponentiations. The advantage
of the first way is that it can let the tree become a full binary tree, and the number of rounds and
sequential exponentiations are very small. The drawback, however, is that N may be very large
because we treat every group member that initially is not in the basic tree as an entity and they
could be quite numerous. The total communication cost is quite expensive when N is very large.
In the second method, in the worst case, we need min(dlog2Ne + 1, h′)rounds, min(2N,n − N)
messages, and 3h′−3 sequential exponentiations. The advantage of the second method is that N is
much smaller than that of the first method. Although the height of the key tree might be increasing,
it increases slowly. Therefore, the number of the rounds and sequential exponentiations are still
small, but the number of messages is much smaller than that of the first method. The drawback is
that the new tree is still unbalanced. So, when N is very small, we shall use the first method. If N
becomes very large, we will consider using the second method. Note that in EGK, the key tree will
be rebalanced in the leave, mass leave, and partition operations by reconstructing the new key tree.
Although the number of rounds is h, the communication and computation costs are very expensive
because the number of rounds is 2n, as is the number of verifications. In TGDH after the merge,
leave, mass leave and partition operations, the key tree also becomes unbalanced but they do not
provide a rebalance scheme, rather they rely on the heuristic choices of insertion points for joins
and merges to maintain a partial balance. In STR, the key tree is the most unbalanced compared
to EGK, TGDH, and CCEGK, and STR does not provide a rebalance scheme.

Figure 7.6 shows an example of the first rebalance scheme. We perform the following actions:

1. We will choose the subtree whose root node is < 2, 0 > as a basic tree and M4 as the group
controller. Suppose at first, the sponsor array A and the intermediate node array B are
empty. Node < 2, 1 > is the sibling of < 4, 1 >, and < 1, 1 > is the sibling of < 3, 1 > . The
key tree is updated where < 5, 0 > becomes < 3, 0 > in the new tree, and so on. We put
< 3, 3 >, < 2, 2 >, and < 2, 3 > into A and B.

2. In the first round, < 3, 3 >, < 2, 2 > and < 2, 3 > calculate their blinded keys and secret keys.
Node < 3, 3 > can calculate the secret keys K<2,1> and K<1,0> and blinded keys bK<2,1> and
bK<1,0> because it knows the blinded keys bK<3,2> and bK<2,0>. We put < 1, 0 > into B
and remove < 3, 3 >. Node < 2, 2 > can calculate the K<1,1> and bK<1,1> because it knows
bK<2,3>, we remove < 2, 2 > from B and insert < 1, 1 > into B. We remove < 2, 3 > from
B, because in A, < 2, 2 > and < 2, 3 > are the offspring of < 1, 1 > in B. We keep < 2, 2 >
in A and remove < 2, 3 > from A, then < 3, 3 > and < 2, 2 > broadcast their message to
every member. Every member can calculate its blinded keys and secret keys.

3. We remove < 1, 0 > and < 1, 1 > from B and insert < 0, 0 > into B. We remove < 3, 3 >
from A. Node < 2, 2 > broadcasts all the blinded keys to every member, every member can
calculate the group key.

88

<5,0>

<4,0>

<5,1>

<4,1>

<3,0> <3,1>

<2,0> <2,1>

<1,0> <1,1>

<0,0>

<1,0>

<2.0>

<3,0>

<2,1>

<3,1> <3,2> <3,3>

<2,2> <2,3>

<1,1>

<0,0>

M1 M2

M3

M4

Sponsor

M5

M6

M1 M2 M5 M3

M4

Sponsor
M6

Tree G Tree G*

Figure 7.6: Tree operations from the rebalance scheme.

7.6 Authentication

Although the algorithm of CCEGK based on DH is secure and not easy to break, the entire system
is vulnerable if the keys are not securely distributed. Therefore, we should implement an authen-
tication algorithm in CCEGK. Our protocol will authenticate any operation, such as an addition
of new members, a leaving group member, or mass leaving group members. We suppose that it
is acceptable for this authentication to use public-key authentication. There are several ways to
authenticate a group key exchange, such as centralized authentication, implicit authentication, and
pairwise authentication [28, 54, 71, 138, 212]. The authentication of CCEGK can use any of the
above authentication schemes. Centralized authentication is based on a digital signature and a
public key infrastructure. A group may assign a single trust sponsor to perform authentication for
the whole group, which will occur in the first step of the key exchange algorithm. Every group
member sends its public key PKi using an authenticated message. The sponsor validates the au-
thenticity of the senders and sends a message to all authenticated group members. The drawback of
centralized authentication is that the certificates are to be exchanged, so they consume bandwidth.
Implicit authentication authenticates the sponsor and trusts the sponsor to have authenticated
group members. This method directly maps to authenticated two-party key exchange algorithms
in which the group members authenticate the blinded key transmitted by their partner. In pairwise
authentication, every member encrypts a message with the group key and then broadcasts it in
an authenticated message to all group members. If any of the authentications fails, the group key
is discarded and a new key is generated without the unauthenticated member. In this paper, in
order to compare the computation cost between the four protocols, for convenience and because
TGDH and STR use the centralized authentication scheme, we suppose CCEGK uses the central-
ized authentication scheme (EGK supports centralized, implicit, and pairwise authentication and
gives the algorithms in detail in [28]).

89

Protocols Communication
Rounds Messages Unicast Broadcast

CCEGK Initialization h 2n− 2 n n− 2
Join 1 2 1 1

Mass Join 1 N + 1 0 N + 1
Merge 1 N 0 N
Leave 1 1 0 1

Mass leave min(h′ + 1, h) min(2N,n−N) 0 min(2N,n−N)
EGK Initialization h 2n− 2 0 2n− 2

Join 1 2 0 2
Mass Join h′ + 1 2N 0 2N

Merge N 2N − 2 0 2N − 2
Leave h 2(n− 1) 0 2(n− 1)

Mass leave h 2(n−N) 0 2(n−N)
TGDH Initialization h 2n− 2 0 2n− 2

Join 2 3 0 3
Mass Join h′ + 1 2N 0 2N

Merge h′ + 1 2N 0 2N
Leave 1 1 0 1

Mass leave min(h′ + 1, h) min(2N,n−N) 0 min(2N,n−N)
STR Initialization n− 1 2n− 2 0 2n− 2

Join 2 3 0 3
Mass Join 2 N + 2 0 N + 2

Merge 2 N + 1 0 N + 1
Leave 1 1 0 1

Mass leave 1 1 0 1

Table 7.14: Table in Comparison of Communication

7.7 Theoretical Comparison of Four Protocols

In this section, we analyze the complexity of the four protocols CCEGK, EGK, TGDH, STR.
Complexity includes the cost of communication (such as number of rounds, number of messages,
number of direct messages, number of broadcast messages) and the cost of computation (number
of sequential exponentiations, signatures, and verifications).

Because communication cost is important in high-delay networks, we cannot ignore it. A pro-
tocol is needed to balance the cost. Tables 7.14 and 7.15 summarize the costs of communication
and computation for every operation among four protocols in the worst case situation.

The number of current group members, mass join members, and mass leave members is n; the
number of merging groups (including the original group) is N and the number of merging members
is m. We use h to denote the height of the updating key tree and and define h′ as dlog2Ne. It is
noted that Kim et al. do not implement the initialization operation in TGDH and STR. The total
number of messages and total verifications in the mass leave operation of TGDH are inconsistent
with each other in [145] and [38]. In this paper, we implement the initialization operation in TGDH
and STR, and we use a modified value explained in the Appendix that seems to better fit their
description of their algorithm,; see the Appendix for further details. It is important that we see
how these protocols operate when multiple operations are executed. In [282] we therefore compare
the average costs of multiple instances of these operations to get a better feel by experimental
simulation.

90

Protocols Computation
Sequential Exponentiation Signatures Verifications

CCEGK Initialization 2h− 2 h h
Join 1 1 1

Mass Join N 1 1
Merge N − 1 1 1
Leave 3h− 3 1 1

Mass leave 3h− 3 min(h′ + 1, h) min(2N,n−N)
EGK Initialization 2h− 2 h h

Join 1 1 2
Mass Join 2h′ h′ + 1 h′ + 1

Merge 2N N 2N − 2
Leave 2h h h

Mass leave 2h h h
TGDH Initialization 2h− 2 h h

Join 3h− 3 2 3
Mass Join 3h− 3 h′ + 1 2N

Merge 3h− 3 h′ + 1 2N
Leave 3h− 3 1 1

Mass leave 3h− 3 min(h′ + 1, h) min(2N,n−N)
STR Initialization 2(n− 1) n− 1 n− 1

Join 4 2 3
Mass Join 3N + 1 2 N + 2

Merge 3m+ 1 2 N + 1
Leave 3n

2
+2 1 1

Mass leave 3n
2

+2 1 1

Table 7.15: Table in Comparison of Computation

91

Part II

Multiple Independent Levels of
Security Architecture

92

Overview of Part II

The first two parts of this report discussed network authentication protocol design and analysis.
Based on this work we found that we had to develop a new architecture to support execution of
the protocols. This portion of the report summarizes our results in this area.

The work highlighted in this section has been published in several papers, and results in masters
thesis and dissertations. The abstracts for these publications can be found in final section of this re-
port. Publications related to design and analysis of MILS system are filed under the following keys:
Alves-Foss02a [29], Alves-Foss04a [32], Alves-Foss04b [34], Alves-Foss06a [30], ConteDeLeon02b
[81], ConteDeLeon06a [82], ConteDeLeon06b [83], ConteDeLeon07a [84], Dai03a [88], Hanebutte05a
[124], Harrison05a [127], Joy06a [135], Oman04a [209], Robinson07a, [221], Robinson07b [222],
Robinson07c [223], Rossebo06a [227], Son06a [246], Son07a [247], Son08a [245], Taylor04a [254],
Wahsheh06a [261], Wahsheh07a [262], Wahsheh07b [263], Wahsheh08a [260], Wahsheh08b [264],
Wahsheh08c [265], Wang06e [267], Wang06f [266], Yang05d [274], Zhou06c [287], and Zhou08a
[285].

Specifically we provide a summary of the MILS architecture, and overview of our design guidance
work in terms of traceabilty issues and security policy refinement. This design guidance helps in
building secure systems that can be used to deploy trusted network authentication protocols.

93

Chapter 8

Multiple Independent Levels of
Security Overview

8.1 Introduction

The design and implementation of secure applications is a daunting task. Especially since these
applications rely upon the security of the underlying operating system and services. Too often, a
secure service or application will be compromised by a security flaw in a supporting service or op-
erating system. The Multiple Independent Levels of Security and Safety (MILS) approach remedies
this situation by providing a reusable formal framework for high assurance system specification and
verification.

High assurance systems are those that require convincing evidence that the system adequately
addresses critical properties such as security and safety [131]. If the high assurance system fails
to meet its critical requirements, then there is a potential for security breach or loss of life. Since
such systems are so critical, there is a need for a rigorous design and analysis process. The avionics
community has understood this for years and has developed a set of guidelines for the design,
analysis and evaluation of safety systems [228, 229]. Although very rigorous and adequate for safety
of airborne computing systems, it is insufficient to meet the security concerns of high-assurance
security systems; systems that protect national security interests. The Common Criteria (CC)
provides guidance for design, analysis and evaluation of security critical systems that includes a
very high level of assurance [53]. At the higher levels of assurance, the CC requires the use of
formal methods, mathematical models and proofs.

It is commonly believed that the successful deployment of a high assurance secure application
requires the existence of an underlying secure operating system and services. Unfortunately, at-
tempts to develop secure, general-purpose operating systems have failed to be supportable. They
have failed for various reasons, but predominately due to the fact that they were architected to
do too much and the requisite formal methods used became too difficult to manage. Historically,
a high assurance operating system was based on the concept of a security kernel and Trusted
Computing Base (TCB), all of which required formal methods evaluation. Two such systems that
became unsupportable are Blacker [269] and Caneware [224]. Through the development lifecycle
they included more and more functionality into the trusted computing base, requiring too much

94

effort in the development of the supporting formal methods.

For embedded systems, the need for a secure operating system is no less critical. While user
access is not a problem, secure communications and safe process execution is still a concern. Careful
development and verification of the operating system and trusted applications must assure that the
system is free from security vulnerabilities.

To obtain high assurance we recommend a hierarchical system architecture, where multiple
layers provide specific, well-defined security mechanisms that can be used by higher layers. When
a system is designed to provide a security mechanism, the mechanisms must be i) always in-
voked, ii) non-bypassable, iii) tamperproof and iv) evaluatable. Evaluation of the correctness of
the mechanisms is a time consuming and difficult task, made even more difficult by complex security
mechanisms.

Fortunately, a sound engineering approach (the MILS approach) exists to simplify the speci-
fication, design and analysis of security mechanisms. This approach is based on the concept of
separation, as introduced by Rushby [232, 231]. The concept of separation has been accepted in
the avionics community and is a requirement of ARINC 653 [52] compliant systems. Through sep-
aration, we can develop a hierarchy of security services, where each level uses the security services
of a lower level to provide a new security functionality that then can be used by higher levels. Each
level is responsible for its own security domain and nothing else. Limiting the scope and complex-
ity of the security mechanisms provides us with manageable and more importantly, evaluatable
implementations. General user applications can then execute, untrusted, isolated from each other
except through communication channels managed by these security services.

In the remainder of this paper we provide an overview of the MILS architecture and its associated
levels. In Section 8.2, we introduce the MILS architecture, the system design model that is the
focus of our work. In Section 8.3, we present the partitioning kernel, the lowest layer of the MILS
hierarchy. In Section 8.4, we discuss the hardware support needed to a separation kernel. Then in
Section 8.5, we discuss the needs of shared device drivers. Section 8.6 expands on the basic MILS
architecture for distributed systems. This is complemented by the discussion of MILS middleware
and applications in Section 8.7 and Section 8.8. Sections 8.9, 8.10, and 8.12 conclude the paper
with a description of an example MILS system.

8.2 MILS Architecture

In the past, secure systems were designed with the concept of a security kernel and a Trusted
Computing Base (TCB) [95]. The key concept behind this approach is that the security decisions
and the security enforcement mechanisms are an integral part of the TCB. Following this design
paradigm, development teams found that more and more of their system functionality was being
included in the TCB. Once this occurred, the evaluation of system security became unmanageable.

What is needed is a system architecture that allows a structured, compartmentalized approach
to the design of a secure system. As we shall see, this design necessarily requires the deployment
of several different execution environments (partitions/tasks) within a microprocessor. This design
feature will force the system kernel to support many context switches per second – on the order of
thousands. Fortunately, we are now at a point where the speed of current processors will support
this level of context switches for the type of lightweight system kernel we propose. Evidence of

95

progress in this direction can be seen in recent development efforts such as the ARINC 653 Standard
[52] for partitioning operating systems, the Motorola AIM/Mask [179] separation-based operating
system and encryption chipset, and the Integrity-178 [36] partitioning Real-Time Operating System.

The focus of this research is based on the concept of the MILS architecture, which was created to
simplify the process of the specification, design and analysis of high-assurance computing systems
[270].

Within the MILS architecture, application layer entities are provided with the mechanisms to
control, manage and enforce their own application level security policies in a manner that ensures
that the enforcement mechanisms are always invoked, non-bypassable, tamperproof and evaluat-
able. At this level we have trusted application-level security services and untrusted applications.
The MILS architecture assumes certifiable trust within the microprocessor, separation kernel, mid-
dleware services layer, and for the application-level security services. Thus, we assume a benign
fault model within the microprocessor and RTOS, but a malicious fault model for the untrusted
applications. Benign faults will need to be addressed via traditional fault-tolerant diversity and
redundancy, with fault containment procedures instituted within the microprocessor and RTOS.
For example, illegal instructions and memory violations are assumed to be trapped and handled via
the microprocessor and separation kernel. Likewise for covert channels and residual data needing
sanitization. Violations of information flow that cannot be detected and trapped in this fashion will
need to be handled within the middleware services layer. Faults occurring within the middleware
services layer (those that cannot be detected and trapped at lower levels) constitute an open issue
currently being addressed by the MILS research community. At the application layer, execution
is confined to the application partition, with limited communication to other partitions. All com-
munication is monitored by the certified application layer security services and lower processing
levels. Applications are assumed to be rogue and are confined to operating within their partition
resources, with finite boundaries of space and time. In the remainder of this section we introduce
the concepts behind the MILS architecture.

8.2.1 MILS, MLS, MSLS and SLS

Traditionally, the military model of a secure operating system includes the concept of multi-level
security (MLS). The idea behind this concept is that the system will be processing data items that
are classified at different levels of security, and the information flow security policy that prevents
the transfer of high-level classified information into low-level objects must be preserved. Therefore,
we define a MLS system as one that must be certified to process and output co-mingled data at
multiple classification levels. Classic security models, such as the Bell-LaPadula model [63], have
been used to specify the secure behavior of such MLS systems.

The problem with full MLS systems is that they must be rigorously analyzed for security before
they can be certified. Every portion of the MLS system must be analyzed to ensure that it properly
handles labelled data and that there is no possible violation of the security policy. Even with a
TCB architecture, or reference monitor [39], in place, there is often too much to evaluate.

The MILS architecture was developed to resolve the difficulty of certification of MLS systems,
by separating out the security mechanisms and concerns into manageable components. These
components are classified based on the way they process data:

96

Figure 8.1: MILS refinement of an MLS system

• SLS Single-Level Secure component that only processes data at one security level.

• MSLS Multiple Single-Level Secure component that processes data at multiple security levels,
but always maintains separations between classes of data. A device that processes messages
one at a time (such as an I/O device driver) may be such a device.

• MLS Multi-level Secure components that co-mingle data at different security levels. Typically
this is a device that will downgrade information from a higher level of security to a lower level
through either filtering or the application of encryption technology.

A MILS system isolates processes into partitions, which define a collection of data objects,
code and system resources. These individual partitions can be evaluated separately, if the MILS
architecture is implemented correctly. This divide and conquer approach will exponentially reduce
the proof effort for secure systems. To support these partitions the MILS architecture is divided
into layers.

8.2.2 System Architecture View

Alves-Foss [26] defined a system architecture based on the separation of an MLS system into a
MILS system consisting of multiple single level components with a few multi-level components. All
components shared a common communication medium, (see Figure 8.1). In this work the author
used the concept of logical trusted network interface units (TNIU) [230], to mediate communication
between separate units. As mentioned in that paper, this mediation can be implemented by the
operating system, in this case a MILS separation kernel (SK), which limits communication between
partitions to only that which is specifically configured into the system. The system architect, using
an SK, can graphically represent the system and authorized information flow.

The architecture in Figure 8.1 can represent a collection of SLS, MSLS and MLS components
in a system, for example a collection of microprocessors or computers on a shared network. If the
communication to the network is mediated by TNIUs, we get the configuration defined by Rushby
and Randell [230], which was formally specified and verified to satisfy the restrictiveness [182, 181]
security policy in [25, 31].

97

Figure 8.2: Whitebox Representation of Secure MultiLevel FileServer DataBase

However, we are not limited to a physical network or bus for communication. If we virtualize
this network into representing kernel supported communication channels, then we get the type of
separation system required by the MILS architecture, as specified in [26]. For example, we can
take a multi-level file server and architect it as depicted in Figure 8.2. Regardless of the view,
the architecture can refine MLS components down to a network of single level components, MSLS
components, and simpler MLS components. With the SK and middleware in place, the architect
can be confident of system security and safety. In addition, the certification of the components and
layers is modular, allowing for great reuse.

At this level, the system architect views the system as a collection of execution engines, each
of which processes data at one or more security levels, and limited communication channels that
provide for information flow between the partitions. These channels may be shared memory seg-
ments, or SK-supported data streams. This view of the system can be depicted more abstractly as
a directed graph with vertices for the partitions and edges for the channels; instead of the broadcast
network show in Figures 8.1 and 8.2.

8.3 MILS Separation Kernel (SK)

The partitioner (separation kernel) layer is the base layer of the system, and is responsible for
enforcing data separation and information flow controls within a single microprocessor; providing
both time and space partitioning. This layer provides only a few base security mechanisms, following
the recommendations of Saltzer and Schroeder [237] for economy of mechanism, keeping security
mechanisms as simple as possible. The complexity of the partitioner is low enough that it can
even be implemented in the microcode of a partitioning microprocessor as shown in [208]. The
partitioner provides for the following:

1. Data Separation. The memory address spaces, or objects, of a partition must be completely
independent of other partitions. The act of accessing an object by an executing partition
must not affect the state of other partitions (no exfiltration), and an executing partition must
not be affected by the state of any other partition or partition’s objects (no infiltration).

2. Information Flow. This requirement is a modification of data separation. Although pure
data separation would be easier to verify [231], it is not practical. There is a definite need

98

for partitions to communicate with each other. However, for secure systems, we need to
be able to define the authorized communication channels between partitions. The SK will
define precise moderated mechanisms for inter-partition communication. Only through these
mechanisms may pure data separation be violated.

3. Sanitization. To ensure the information flow requirement, the SK is responsible for cleaning
any shared resources (microprocessor registers, system buffers, etc.) before a process in a new
partition can use them.

4. Damage Limitation. The consequences of a fault or security breach in one partition are
limited by the data separation mechanisms. Addresses spaces of partitions are separate, and
as such, an errant process in one partition can not affect processes in other partitions. The
SK will also enforce bounds on shared resource, providing guaranteed minimum processing
time, memory and other resources to the partitions as well as enforcing maximum usage of
these resources.

In addition, the partitioner must be always invoked, non-bypassable, tamperproof and evaluat-
able. In the MILS architecture, the partitioner is responsible for timesharing the microprocessor
between the partitions, and this function cannot be stopped. For high assurance systems satis-
fying the EAL7 certification requirements of the Common Criteria (CC), the functionality of the
partitioner must be certified to have been rigourously verified using formal methods [53]. A CC
protection profile has been developed to define the functionality of such a high-assurance partitioner
[210], and submitted to the Open Group. One example of a partitioner specification can be found
in ARINC 653 [52].

8.4 MILS Hardware Support

A system built on the concept of separation requires a certain amount of hardware support for the
SK to work correctly. According to the Separation Kernel Protection Profile (SKPP) [210], and
ARINC-653 [52] the hardware support for a SK includes:

• Processing Power. For any system, but especially real-time systems, the processor must
have sufficient computing capacity to meet the worst-case timing requirements of the system.

• Atomicity. The processor must provide atomic operations for implementing processing con-
trol constructs, such as partition swaps and memory map changes.

• Privileged mode of operation. There will be some privileged instructions that must only
be executed by the SK.

• Memory Management Unit (MMU): The MMU provides separation of address spaces
between the partitions. Without hardware support for separation, there can be no data
isolation or damage limitation. The processor must have access to the required memory
resources and provide the SK with the ability to restrict partition access to memory.

• Instruction Traps. The processor must have some mechanism to transfer control to the SK
if a partition attempts to execute a privileged or invalid operation.

99

• Timing Control. The processor must provide the SK with the ability to control and restrict
the execution time of partitions; and therefore must have access to timing resources which
provide a non-bypassable way of ensuring control is returned to the SK after some elapse of
time.

• I/O Access Limitation. The processor must provide a mechanism for restricting access to
I/O devices to specific partitions; and therefore have access to required I/O resources.

This basic list of processor features is available on many commercial microprocessors and moth-
erboards; and should not be seen as a hinderance in the development of a secure MILS systems.
The hardware used in MILS systems may be little different than the hardware currently used in
embedded systems and can include commercial off-the-shelf hardware when available. For high
assurance certification there may be requirements that the motherboards be certified, however this
is not a specific requirement of the MILS architecture.

8.5 MILS Device Drivers

The MILS architecture requires that the SK remains small, to ensure that it can be fully evaluated.
This means that services typically included in the operating system must now be included in
the address space of the individual partitions, or delegated to separate “shared” partitions, with
communications between partitions mediated by the SK policy. Device drivers for shared devices
fall into this later category. Devices in a MILS system could include sensors, controllers and possibly
mass storage.

When a device is private and should not be shared, it can be assigned to its own partition.
Since most modern processors use memory-mapped I/O, the device can be protected from access
by the MMU. An example of a critical device driver that should not be shared is the controller
for the landing gear in an aircraft. Other less sensitive devices could be shared between several
partitions. A sensor that places a sample in a device register is an example of a device that might
be accessible to more than one partition. An engine temperature sensor would periodically update
a data register with the latest reading and would need to be available to the process that updates
the pilot’s display as well as the engine overload warning system.

Devices in a high assurance system can also be considered critical and in need of privacy for
security reasons. Intelligence agencies require that data at different classification levels not be stored
on the same disk. Yet there is often a need to handle information from several classification levels.
An MLS file system would need to separate data from partitions running at different classification
levels and represents a shared storage device. The MLS file system would be isolated in its own
partition with carefully defined communication paths between partitions at different classification
levels. An example of a need for a shared storage device would be a military aircraft that must
juggle data from radar, targeting activities and communication with traffic control.

100

Figure 8.3: Enclaves distributed over separate processors.

8.6 Distributed MILS

To improve performance, individual partitions within enclaves can be mapped to separate processors
(see Figure 8.3). An enclave is a group of partitions that are running at the same classification level.
To provide MILS separation, this requires support at many levels. Of the four requirements of MILS
systems, data separation, damage limitation and sanitization are no longer of concern between
partitions on separate processors since there are no shared resources between these partitions.
However, information flow controls must still be enforced.

Support for a distributed MILS system requires that the communication between processors
be managed by the MILS system. If the inter-processor communication medium is open (i.e.,
accessible by non MILS managed components), then the communication must be cryptographically
protected. However, if the medium is closed, then it may be possible to avoid the expense of
encryption. If all processors run a MILS separation kernel, then the kernel can enforce network
communication through an appropriate trusted device driver, as discussed in the previous section.
If some processors in the system are running untrusted operating systems, we can use the TNIU
approach, as discussed in Section 8.2.

Therefore, whether we have open or closed networks, all MILS components, or a mix of MILS and
non-MILS components, we can architect the system to enforce the information flow requirements
of the MILS system.

8.7 Middleware Services Layer

The middleware services layer provides for an extended scope of the separation concepts introduced
by the partitioner. These services are dependent upon the needs of the specific application and are
not constrained by the MILS architecture. They can include services such as resource allocation
of shared data storage devices, object-oriented inter-partition communication, communication ser-
vices between partitions on multiple processors, or real-time data distribution services. Middleware
services are concerned about end-to-end data processing, and not just the single microprocessor

101

Figure 8.4: System of 4 independent secure enclaves

data processing of the partitioner. At the middleware layer, we begin to enforce the more tradi-
tional concepts of information flow. Each partition/address space in the system, no matter which
microprocessor it is resident on, has a unique security label/classification. The system architect
uses these labels to define the authorized communication between components. The labelling of
the partitions and communication channels is used to satisfy the security policy. The middleware
level is responsible for ensuring end-to-end security, through the following:

1. Labelling. The middleware layer must ensure that messages sent between individual partitions
are correctly labelled with the sender’s security classification and unique identity.

2. Filtering. The middleware layer is responsible for filtering out any messages that are not
appropriately labelled before delivering them to the recipient.

3. Maintaining Information Flow Controls. The system architect designs the system with spe-
cific authorized information flow restrictions, and it is these restrictions that the middleware
layer enforces.

At the middleware layer, we can introduce the concept of authorized information flow. If the
system architect designs the system so that two partitions can communicate, then information flow
between these partitions is authorized. This is true even if the two partitions are labelled with
different security classifications. Middleware services provide secure information flows between
partitions, typically via protocol-specific labelling and filtering. For example, a GIOP-guard would
ensure that CORBA GIOP messages are formatted and routed correctly.

102

Figure 8.5: System of communicating independent secure enclaves

A system can be designed to be a collection of isolated enclaves, where partitions exist within a
single enclave and there is no information flow between enclaves. If all partitions within an enclave
are labelled with the same security classification, then we have a secure system as depicted in
Figure 8.4.

Each partition of this configuration processes information at the security level of its enclave,
and is called a single level secure (SLS) partition. This differs from a high-water mark system,
which is a single level system in which all partitions process data at the same security classification,
a configuration we wish to avoid, because they would all need to process the data at the highest
level for it to be secure. If we wish to allow communication between enclaves, we can graphically
specify that as in Figure 8.5, which will be discussed in more detail later.

8.8 Application Layer

The application layer is responsible for enforcing application layer security policies. Traditionally,
MLS has been defined as data from more than one security classification. In MILS this definition
has been refined into two distinct parts: multi-level secure (MLS) and Multi-Single Level Secure
(MSLS).

An MLS component in a MILS system is one that deals with multiple classifications and trans-
forms the data from one classification level to another. Because of the potential seriousness of

103

violating its security policy, MLS components require the highest level of scrutiny and verification.

MSLS processes or devices also handle multiple data classifications but separate the data into
independent streams with no communication between streams. Consequently, there is little danger
that highly classified data will flow to unclassified entities assuming the MSLS device is functioning
correctly. MSLS devices also need to be carefully verified that they maintain a separation secure
environment, but they need a lower level of verification effort than the MLS components. Examples
of these component types include the following:

1. Collator. A collator receives data from multiple classification levels, processes that data and
transmits data at a single higher classification level. A collator is an example of a MLS
device. This type of system is secure if the middleware layer can ensure that the transmission
of information to the collator is one-way, that there is no feedback or response mechanism to
signal the sender. If the middleware can be designed to truly support one-way communication,
possible covert channels are automatically removed and this type of component is guaranteed
to be secure.

2. Downgrader. A downgrader transmits data at a security classification level that does not
dominate the highest level of input it receives. A downgrader, by definition, is necessar-
ily an MLS component and must be independently evaluated for security. However, in the
MILS architecture, the evaluation of the downgrader can be limited to processing within
the downgrader’s partition. We are already guaranteed data isolation and information flow
control by the MILS architecture, and can take these properties as axioms for the higher
layers. This greatly reduces system verification efforts. Further reduction results from care-
ful system design as discussed in Section 8.2.2 when referring to the secure multi-level file
system/database.

3. Encrypter. An encryption device is one where a plain text data stream is transformed into a
non-readable encrypted stream according to a mathematical algorithm. Typically, data at a
higher classification level is encrypted and sent out over a lower classified device. Thus, an
encrypter is by definition an MLS device.

4. MILS Message Router (MMR). A MILS Message Router will function as a data switch by
taking data from multiple partitions at various classification levels and routing the messages
to the correct destination, which may include additional trusted devices that determine if
the message satisfies the application-level security policy. Messages will be checked to insure
authorization exists for communication between the partitions. Since transformation between
classification levels is not being performed, the MMR is an example of a MSLS device.

The ability to isolate the portions of the system that necessarily process MLS data enables us to
focus our resources and limit our verification efforts, making high assurance components realizable.
The system architect effectively builds into the system a set of software firewalls that are responsible
for implementing the application layer security policy with confidence that the middleware and SK
will ensure that the application layer mechanisms are non-bypassable, tamperproof, always invoked,
and evaluatable.

The MILS architecture now permits us to reuse the layers. We can port a middleware package
from one certified SK to another with greatly reduced additional proof effort. We can avoid the

104

process where each verification effort restarts from scratch; instead we reuse the certified layers in
the architecture.

8.9 A Secure System Using MILS

Consider again the system depicted in Figure 8.3. If partition A in Enclave 2 wishes to send a
message to partition B in Enclave 1, we need to be sure that the message sent does not violate the
security policy. There are two scenarios we need to investigate:

1. A ≤ B. In this configuration, the security level of A is less than that of B. In other
words, information is permitted to flow freely from A to B. Since the MILS system enforces
information flow policies dictated by the system configuration, this flow is controlled by the
SK and the Distributed MILS system.

2. A 6≤ B. In this configuration, the security level of A is not less that the security level of B.
Now, information is not permitted to flow freely from A to B. Given this restriction we have
two choices:

• The first is that A has been evaluated and certified to be trustworthy. This means that it
has been shown that any information A does send to B is not in violation of the security
policy. For example, A could be a cryptographic engine which is certified to encrypt any
messages it sends to B.

• The second is when A is not trustworthy. In this case we need a trusted intermediary (a
guard) to control information flow from A to B. This guard is a trustworthy application
which is responsible for analyzing the content of the communication and determining
whether this communication is in accordance with the system security policy. The
guard has the ability to modify the contents of the message, delete the message or send
a constructed response back through the MMR.

8.10 Example MILS System

We are not limited to having each node of the graphs of Figures 8.4 and 8.5 represent a partition.
For example, in a shared-memory system, the system can be viewed as the directed graph depicted
in Figure 8.6, where partitions are only connected to memory segments and memory segments are
only connected to partitions. Interprocess communication is implemented through reading and
writing of shared memory buffers1. Partitions can read or write a connected memory segment
depending on the direction of the edges.

In this example, the system depicted is a secure crypto communication device. This device
receives data from the red network on the left, through the network interface (RPM). This data
is assumed to be correctly labelled. Based on the labelling the system sends the data to one
of three encryption engines (Type 1 devices), each implementing a single encryption algorithm,

1In general, MILS inter-partition communication may occur through any verified communication channel offered
through the kernel.

105

Figure 8.6: System Graph for Shared Memory Architecture

and maintaining separate encryption keys. The encrypted messages are then transmitted on the
insecure black network. Incoming encrypted messages from the black network are appropriately
sent to the correct decryption engine. The results are then labelled correctly and sent out over the
red network.

The MILS system depicted in this figure forces isolation between partitions. The only authorized
information flow occurs through the shared data segments as depicted in the graph. Input into
the Red Switch (RS) is separated multi-level data, therefore the RS device is an MSLS application
that enforces the system security policy by correctly transmitting data to the appropriate shared
memory buffer for the encryption engines. Similarly the Red Verifier (RV) receives single level
information from the decryption engines and combines it to transmit out on the red network
(appropriately labelled). This device is also necessarily an MSLS device. Given the existence of
a verified MILS SK, the only two components which need verification are RS and RV (possibly
RPM depending on how security labels are managed). Every other component is single level, or
is a separately verified Type-1 encryption device, and does not need security verification. This
reduction in verification effort was capitalized on by the AIM system developed by Motorola, which
uses the MASK separation kernel [179].

106

8.11 MILS Research

8.12 Conclusion

High assurance systems, whether they be security critical or safety critical, require an extensive
amount of analysis. In this paper we have discussed the MILS architecture, a design approach
for high assurance systems that enables manageable analysis through modular design and layered
enforcement of security policies. At the lowest level of enforcement, the MILS architecture supports
the policy of data isolation, information flow, damage limitation and sanitization. Specific higher
level security policies must be enforced by trusted partitions utilizing the resources of lower level
policies. The lower levels support the enforcements mechanisms of the higher levels, working as
partners to support the application level security policy.

The MILS architecture is not just an academic exercise, but rather an approach to system
design that is supported by industry and government. Partitioning kernels, the lowest layer of the
MILS architecture are already being deployed by multiple real-time operating system vendors [36].
Common criteria protection profiles are currently being developed for both the partitioning kernel
[210] and MILS middleware. At the University of Idaho, we are currently developing a testbed for
MILS concepts, which had been built, in its entirety, from COTS components. The testbed consists
of four single board computers and the Integrity and LynxOS-178 RTOS operating systems.

In addition, there is much work currently being done on the necessary formal methods for
efficient mathematical modelling and analysis of high assurance systems. We have already developed
proofs for the separation maintained by an exemplary separation-based microprocessor [208]. Greve
et al. developed a security policy for separation kernels and have shown how it can be used in a
two-level hierarchy [121]. We have evaluated this work and discussed the uses and limitations of
it [34]. Results from our testbed and formal proofs will be forthcoming in publications from the
authors.

107

Chapter 9

Hidden Implementation Dependencies
in High Assurance and Critical
Computing Systems

9.1 Introduction

When developing High Assurance and Critical Computing Systems (HA&CCS), compelling ev-
idence is required that the system under development satisfies certain critical properties while
achieving its functional objectives. Both functional and nonfunctional requirements contribute to
system correctness; a system is correct if it correctly implements every functional requirement while
complying with every nonfunctional requirement.

HA&CCS must involve rigorous development, evaluation, certification, and auditing processes.
The evidence for such rigorous evaluation and certification processes must be collected and main-
tained during the analysis, design, development, and maintenance processes. In the end, these
processes must result in a system implementation along with a set of arguments to support the
claim of system correctness based on collected evidence, with a high level of assurance.

Relationships between artifacts generated by these processes form an essential component of
this evidence, we refer to them as traceability relationships. These enable incremental verifica-
tion and validation of correctness and dependability properties. In addition, they enable analysis
of compliance with required standards (e.g., IEC 61508 [2] and DO-178B [228]) and subsequent
certification audits during the lifespan of a system.

Omissions in requirements, poor understanding of interfaces, and ineffective communication
between stakeholders1 are key causes of safety-related errors in HA&CCS [158, 156, 167, 157, 125,
155, 268, 166, 87]. Such errors may result in critical failures with very costly or catastrophic
consequences. Misunderstandings, omissions, and ineffective communication between stakeholders

1The term stakeholder , in the context of this article, should be understood as a stakeholder of the system model
(set of work product sections), which means: any person involved in the engineering, design, construction, certifica-
tion, operation, maintenance, modification, and auditing of a system. Therefore, stakeholders have a need to know
information about a system, its operational environment, and the model used for its development, e.g., requirements,
environmental constraints, architectural descriptions, and configuration settings.

108

can be attributed to sociological, organizational, cognitive, and/or technical reasons [158, 156, 155].

One way to help avoid some of these misunderstandings and omissions is to give stakeholders the
ability to navigate and visualize a system model along with its associated rationale and other related
information. In other words, we need to have efficient and complete traceability of work product
sections. We define a work product section (wps)2 as a semantically meaningful section or unit
of a work product, where we use work product as defined by the Software Engineering Institute
(SEI®) [244]. In addition, we define traceability of work product sections as the ability of a
stakeholder to manually or mechanically describe and navigate relationships between work product
sections.

Such an approach to offering total information availability necessarily implies the following as-
sumptions: I) Work products are existent, and their sections are uniquely identifiable, addressable,
and stated in a machine-readable format. Also, there are tools for the creation and maintenance
of work products and their sections. II) Traceability relationships between wps(s) can be created
and maintained in a machine-readable format between desired wps(s), and there are tools for their
creation and maintenance. III) There are tools for the visualization, navigation, and retrieval of
work products sections, as well as their associated traceability links. We explain the rationale
behind these assumptions in Section 9.3 of this article.

The problem we still face, even under these three assumptions, is that of enabling stakeholders
to visualize hidden relationships or dependencies in order to aid them with the discovery of hidden
safety hazards. Even when developing HA&CCS following the most rigorous standards, where
traceability of wps(s) is assured by the creation and maintenance of traceability links, there are
still unforeseen dependencies that arise from the complexity of these systems and the high cohesion
of software [158]. Such hidden dependencies, which are very difficult to uncover, may result in
unfounded assumptions of independence between system wps(s), which in turn may turn into
unsafe interactions, which may lead to critical or catastrophic failures.

As demonstrated by the two case studies presented in this article, these assumptions, which
may result from unknown or unconsidered relationships (dependencies) between wps(s), can lead
to critical or catastrophic failures. Effective and complete traceability may help reduce the causes
of critical or catastrophic failures by exposing those hidden dependencies.

In this article, we briefly introduce a framework where Assumptions I, II, and III are valid
(Section 9.3), followed by a technique for the mechanical discovery of hidden implementation de-
pendencies between wps(s). The technique consists of three steps: a) building a formal implemen-
tation model of wps(s) and their associated abstraction levels for a given system under analysis
(Section 9.4), b) enforcing strict partial order properties in the formal implementation model of
wps(s) (Section 9.5), and c) applying the conceptual completeness principle to the formal imple-
mentation model of wps(s) (Section 9.6). We demonstrate how this technique helps uncover hidden
implementation dependencies by applying it to two case studies, which are described in Sections
9.7 and 9.8.

The two case studies are: 1) the Minimum Safe Altitude Warning (MSAW) system and a related
aircraft accident at the Guam International Airport in 1997 in which 228 people died (Section 9.7)
and 2) the Guidance and Control Software (GCS) project data, based on a hypothetical landing

2In this article, we use the term wps to denote one work product section and the term wps(s) to denote more than
one.

109

spacecraft module developed by the National Aeronautics and Space Administration (NASA) for
use by the Federal Aviation Administration (FAA) (Section 9.8).

We do not believe that an implementation of the framework and the application of the tech-
nique described in this article are sufficient conditions for avoiding all accidents due to misun-
derstandings and miscommunication between system model stakeholders. Misunderstandings and
communication problems could still arise from ineffective organizational communication channels
and the hazards associated with enterprise control structures. We do argue that effective tracea-
bility and navigational aids are an essential aspect of a systems-oriented approach to engineering
high assurance and critical computing systems, that they facilitate the flow of information between
stakeholders, and therefore, that they would help minimize errors that may develop into critical or
catastrophic failures.

Section 9.9 reviews related work. An analysis of the scope of this research along with a restate-
ment of our contribution is presented in Section 9.10. Before fully developing our methodology, we
briefly introduce HA&CCS and the main causes of critical errors in them (Section 9.2).

9.2 Errors in High Assurance and Critical Computing Systems

In this section, we introduce HA&CCS and report on studies which show that most safety-related
failures in these kind of systems are not due to errors occurring in single components, but on the
contrary, they are due to complex and unexpected interactions between system components (wps(s)
of the system model). We also present a brief introduction to the concept of emergent properties
and how it relates to the work contributed by this article.

9.2.1 Introduction to HA&CCS

High Assurance Computing Systems (HACS) are systems for which compelling evidence
is required that the system delivers its intended services while satisfying certain required critical
properties [104, 185]. In other words, HACS are systems where rigorous or formal verification
(compelling evidence) of functionality (delivery of intended service) and of emergent properties
(satisfiability of critical properties) are required. Among the required properties which HACS must
satisfy are security, safety, real-time, and dependability properties [104, 185]; these are also required
by critical systems.

Critical systems are systems where great losses or damage, either to life, the environment,
economic stability, the mission, or the system itself, could result from unexpected behavior (adapted
from [134]). Incorrect operation could be, for example, failure to abide within safety restrictions or
failure to deliver minimum critical services when required [56, 57, 149]. There are four approaches to
developing critical systems which stem from different engineering disciplines: dependability, safety,
security, and real-time [233].

We use the term high assurance and critical computing systems (HA&CCS) to refer to
both classes of computing systems. The differences in the literature between labeling of computing
systems as high assurance or critical is that high assurance explicitly requires compelling evidence
of correct functioning while critical states that malfunctions could cause major losses. We believe

110

that high assurance computing systems are, in fact, critical systems, and critical systems require,
given their nature, high assurance of correctness. Both classes of systems must be developed and
maintained using high levels of assurance and quality in organizational, process, and project stan-
dards. They also must be developed, maintained, and operated through utilization of appropriate
state-of-the-art tools and scientific methodologies to their maximum extent in order to ensure cor-
rect operation of the system and absence of damage to humans and the environment. In particular,
the technique described in this paper is concerned with preventing safety-related errors that can
occur in HA&CCS.

9.2.2 A Key Cause of Safety-Related Errors in HA&CCS

In a recent article, Lutz and Mikulski state, as two of five recommendations for improving safety in
spacecraft systems, that it would be necessary to: 1) maintain traceability of operational procedures
back to their originating requirements and 2) integrate requirements engineering within the system’s
maintenance and operational processes [167].

In the early 1990’s, Lutz analyzed, in detail, 209 safety-related errors (having a significant or
catastrophic effect on the mission) in safety-critical embedded systems [166, 165]. These 209 safety-
related errors comprised 54% of the 387 errors discovered during system testing and integration for
the software of the Voyager and Galileo spacecrafts. As a result of this analysis, Lutz reports that
“difficulties with requirements” (e.g., discrepancies, omissions, and misunderstandings) are a key
cause of errors that threatened the missions.

In recent years, Leveson and colleagues at the Massachusetts Institute of Technology (MIT)
conducted an in-depth analysis of reports of catastrophic accidents that occurred with three aircrafts
and five spacecrafts. Leveson describes three categories of common factors existing among accidents
of both classes (spacecraft and aircraft): 1) flaws in the safety culture, 2) ineffective organizational
structure and communication, and 3) ineffective or inadequate technical activities. Within each
category, she describes and explains several systemic factors that contributed to the accidents, three
of which are: limited communication channels and poor information flow, inadequate specifications,
and conflicting and inadequate documentation [158, 156, 159, 155]. Leveson states in her latest
book draft entitled System Safety Engineering: Back To The Future [158], page 271 as of June
2006:

Almost all the software accidents known to the author have resulted from the computer
doing something wrong rather than the computer hardware or software failing to op-
erate at all. In fact, each of the software or hardware components may have operated
according to its specification (i.e., they did not fail), but the combined behavior of the
components led to disastrous system behavior.

The common characteristic in all of these accidents is that they are the result of unexpected inter-
actions between system components. We believe that an essential step in the path to anticipating
these unexpected interactions is to make every possible interaction (dependency) between system
components, requirements, and safety constraints (wps(s)) accessible to stakeholders. The main
objective of this work is to discover and make visible these hidden dependencies between wps(s),
based on a defined initial set of traceability links between wps(s) and their respective levels of ab-

111

straction, and therefore enable stakeholders to observe relationships between components (wps(s))
that could lead to unsafe emergent behavior.

9.2.3 Emergent Properties in Complex Systems

The notion of emergence has been investigated by philosophers since at least the 18th century [89].
Since then, there have been several approaches to the analysis and definition of the concept. The
Stanford Encyclopedia of Philosophy presents a good introduction to the history and definitions
of the concept: “Emergent properties are systemic features of complex systems that could not be
predicted (...) from the standpoint of a pre-emergent stage,...”[278]. The notion of emergence is
intrinsically related to the notion of levels of abstraction in the sense that an emergent property
“emerges” into a new level of abstraction but it cannot be observed at any of the previous levels.
Popper and Eccles, when writing about “Indeterminism; the Interaction of Levels of Emergence”,
state, “Each level is open to causal influences coming from lower and from higher levels” [218],
and Damper states, “...emergence is best considered from the perspective of the understanding
which can stem from viewing complex phenomena and systems at different levels of abstraction, as
opposed to the difficulty or impossibility of so doing” [89]. The safety of a system, as well as most
dependability properties, are necessarily emergent properties of a system.

9.3 A Framework for Effective Traceability

Due to the complexity of today’s high assurance and critical computing systems, it is currently
very difficult for any stakeholder to anticipate and visualize unsafe interactions between system
components (wps(s)). In order to analyze dependability properties in a system model, due to
their emergent (or systemic) characteristic, it is necessary for stakeholders to position themselves
at a different level of abstraction from the one used to model those wps(s) (components) being
analyzed. Moreover, mechanical aid to help cope with this problem is limited due to the current
lack of semantically rich work product representations (also called thick descriptions by Ramesh
and Jarke [219]).

For example, informal requirements are treated as a block of text describing a desired behavior
without a machine-readable statement about the objects or subjects involved in such requirements
and description of physical units, valid ranges, and accuracy associated with all physical measure-
ments are literally hundreds of pages away from where dependent constants or variable values are
defined and used (e.g., in configuration files or in source code).

We believe that, in order to leverage the use of mechanical aids that facilitate the task of humans
in the discovery and analysis of dependencies that could lead to unexpected emergent behaviors, we
need to give stakeholders complete and effective traceability, visualization, and navigational aids.
These functionalities can only be achieved by the implementation of a framework and tools where
multidisciplinary informal and formal methodologies and representations can coexist and interact.

Such a framework is composed of: I) semantically rich and machine-readable representations
for all wps(s) written in any system specification language used in a project (including for example,
requirements, test cases, and configuration files), where unique identification of work products is
available, II) semantically rich and machine-readable languages for the representation of traceability

112

links between desired wps(s), along with tools for the creation and management of those links, and
III) availability of tools for the creation, management, visualization, and navigation of represented
wps(s) by using their associated traceability links.

The implementation of such a framework, including supportive tools for the creation, mainte-
nance, management, and visualization of system and software engineering data, is an enormous
endeavor that cannot be accomplished by an individual nor a small team, but it requires the
cooperative work of the research community and industry in the domain.

Fortunately, the research community and industry are already cooperating toward this goal
and have been working, with different approaches, toward achieving some of the objectives needed.
With the purpose of showing the reader that this is a trend of work and that the goal stated in
this section will very likely be achieved in the near future, we cite some of that work.

One solution to the implementation of this framework that has been gaining momentum in the
research community, and industry as well, is the use of the Semantic Web model [66] and its asso-
ciated open technologies (e.g., OWL, RDF, SVG, URI, XLink, XML, XSL) for the representation
of wps(s) and their associated traceability relations. A wealth of information about the Semantic
Web and its associated technologies, including the corresponding recommendations, can be found
in the World Wide Web Consortium web site [18]. There are also several authors, research groups,
and industry organizations which have developed XML-based representations for wps(s) and their
associated transformation tools. Examples are: JavaML [58, 175], CppML [175, 9], OOML [175],
ZML [251], MathML [1], ELotosML [85], XMI [5], AADL [236], rich requirement representations
and navigation [238, 105], and RML [85]. In addition, XML-based representations for traceability
links have been developed such as TraceML [85, 29] and Xlinkit [205, 202, 203].

With respect to the visualization and navigational aids, there are also a number of research
groups that have developed knowledge visualization tools, both domain specific and generic knowl-
edge visualization. Take for example the CHISEL group and their SHriMP , Creole, and Jambalaya
tools [7], the Bauhaus group and its Bauhaus Toolkit [13], and the Software Engineering Research
Laboratory with the Chimera, InfiniTe, and KAS tools [16].

We believe that it will not be long before we have access to a complete implementation of this
framework, either by using the Semantic Web implementation approach, or a different approach
with similar purposes and objectives, where Assumptions I, II, and III presented in the introduction
of this article hold true and where representation, search, linking, and retrieval facilities for wps(s),
as well as visualization and navigation facilities (for wps(s) and traceability links) are part of the
state of the practice in systems and software engineering organizations.

Hence, for the rest of this article, we assume that such a framework, where Assumptions I,
II, and III hold, has been implemented and is in use. Under these assumptions what is left to
do, and the main contribution of this article, is to develop methodologies for aiding stakeholders
in the discovery of potential causes of failure due to unforeseen, and potentially unsafe, emergent
behavior.

9.3.1 An Expert System for System Models (SyModEx)

For the purposes of our research, we have developed a proof-of-concept expert system named
SyModEx. SyModEx uses Visual Prolog [17] to implement the formalization described in Sec-

113

tion 9.4 of this article, and it is capable of mechanically deriving hidden dependencies using the
technique described in this article. SyModEx is also capable of transforming the underlying seman-
tic network into a graph representation using the dot graph language [111] and the Graph eXchange
Language (GXL) [271, 10]. dot graph files can be read and rendered by the Graphviz graph layout
application [112, 11], among other tools. GXL graph files can be drawn and edited by the SHriMP
artifact navigation tool [193, 7], among other tools. The graphs shown in Figures 9.2 and 9.4–9.6
were created by SyModEx as dot graphs, and the graph layouts have been generated by Graphviz.
The graphs from Figures 9.7–9.9 were created by SyModEx as GXL graphs and drawn using the
SHriMP tool [193]. In a Semantic Web-based implementation of our framework, the semantic rules,
currently expressed as Prolog predicates, would be represented using a language such as RuleML
[15] and processed by a reasoner such as KAON2 [198, 12].

9.4 Formal Traceability

In this section we present a formal theory ΓTheory for the representation of wps(s), their associated
traceability relations, and the structural properties expected for each traceability relation. This
formal theory is based on a restricted version of a dyadic first order predicate calculus [199] and
can also be defined as a mathematical system [243].

We also define a formal model ΓModel which gives a semantic interpretation of the formal syntax
defined by ΓTheory. Based on this model, we loosen the distinction between the syntactic and the
semantic portions of our system by adopting some renaming conventions. We use the symbol Γ to
represent both the theory and the model.

The mathematical system ΓTheory is composed of 1) a formal syntax, 2) a set of axioms, and 3)
a set of inference rules. The formal model ΓModel defines a formal semantics for ΓTheory.

9.4.1 Formal Syntax of the Theory

The formal syntax of ΓTheory is defined by its formal language Σ, which is composed of all well-
formed-formulæ (wff) that can be generated by using the alphabet Λ (Eqn. (9.1)) and the formation
rules presented in Eqn. (9.2).

Λ = S ∪ C ∪K ∪ E ∪ P. (9.1)
S = {s1, s2,· · · , sn} .
C = {l1, l2,· · · , lq} .
K = {¬} .
E = {(,), , } .
P =

{
P 2

1 , P
2
2 ,· · · , P 2

p

}
.

114

ω = P 2
t (σi, σj) ∈ Σ⇔ (σi, σj ∈ S ∪ C) ∧ P 2

t ∈ P. (9.2a)

ω = ¬P 2
t (σi, σj) ∈ Σ⇔ (σi, σj ∈ S ∪ C) ∧ P 2

t ∈ P. (9.2b)
ω ∈ Σ⇔ ω is derived only from the

application of rules (9.2a) and (9.2b). (9.2c)

The alphabet Λ is the set of symbols defined in S, C, P , K, and E, where: S is a finite set of
subject symbols, C is a finite set of characteristic (or property) symbols, P is a finite set of dyadic
(second grade) predicate symbols, E is a set of delimiter symbols, namely: right parenthesis, left
parenthesis, and comma, and K is the singleton consisting of the unary negation operator.

The two formation rules given by Eqn. (9.2a) and Eqn. (9.2b), along with the closure rule
(Eqn. (9.2c)) allow us to build binary predicates, and their negation, as well-formed-formulæ of Σ.
Notice that in this definition, the set of symbols Λ is finite and there are no recursive formation
rules. Therefore, all well-formed-formulæ of the language Σ are atoms and Σ is finite, with |Σ| =
2·p·((n+ q)!/(n+ q − 2)!).

9.4.2 Types of Traceability Links and Predicates of the Theory

There are different types of relationships between wps(s), and there is no de-facto or published
standard for the nomenclature of those relationships.

Pohl describes a taxonomy of traceability link types and lists five first-level and 18 second-
level types of links that were found after analyzing approximately 30 different publications on the
topic of requirements traceability [217]. Pohl’s five first-level traceability link types are: Condition,
Content, Documents, Evolutionary, and Abstraction. In this last category Pohl lists two second-
level traceability link types: Refines and Generalizes, which closely match what we call the partial
implementation relation.

Ramesh and Jarke describe and classify types of requirement traceability links in four high-level
categories which they call Satisfaction, Evolution, Rationale, and Dependency [219]. The category
called Satisfaction corresponds to our partial implementation relation; or for short, implements,
which is analyzed in Section 9.5.

9.4.3 Formal Semantics of the Theory

Based on Assumption I, we assume that for a given project there exists a set of wps(s) which are
uniquely identifiable and addressable; we will call this set S. We also assume that there is a set
of characteristics that can be associated with any wps. For example, we could say that a wps is
critical or that it belongs to a given level of abstraction; we call this set C.

Based on Assumption II, we will assume that types of traceability links are determined and
unique; we construct a set of traceability relationship types T. Predicates in our formal model
ΓModel will correspond to types of traceability relations.

115

The semantics of a predicate calculus are given by 1) an Interpretation plus 2) an Assignment .
An Interpretation consists of the following: a semantic domain, functions from each set of symbols
representing individuals to the semantic domain, and a meaning for each predicate symbol. An
Assignment is a function from the set of variables to the semantic domain [199].

The formal semantics of ΓModel are given by the interpretation I as defined by Eqn. (9.3). An
Assignment function is not needed in ΓModel because the language Σ has no variable symbols.

I = 〈D, fS , fC , fP 〉 . (9.3)
Where : D = S ∪ C and

fS : S → S, fC : C → C, fP : P → T.

Semantic Domain: D is the semantic domain (also called base domain) where S is the set of
all uniquely identifiable and addressable work product sections for a given system model and C is
the set of all characteristics of wps(s).

Work Product Sections Semantic Function: We define the function fS : S → S as: fS(si)
= xi, where si is the i -th symbol of S, and xi is the i -th wps of S.

Levels of Abstraction Semantic Function: For the purposes of this article the set C of
symbols will model only the levels of abstraction selected for a given project. Hence we will de-
fine C ≡ A, where A is the set of abstraction levels for a given project. We define the function
fC : C → C as: fC(li) = αi, where li is the i -th symbol of C, and αi is the i -th level of abstrac-
tion defined in A. Other characteristics (properties) of wps(s) can be formalized using the same
formalism.

Predicate Symbols Semantic Function: For the purposes of this article we define the
set of traceability relationship types as: T = { implements, impDependency , abstractionLevel ,
higherAbstractionLevel } . We define the semantic function fP : P → T as fP (P 2

i) = ti, where ti is
the i -th traceability relationship type of T.

9.4.4 Renaming Conventions

Without loss of generality, and in order to make the nomenclature more representative of the
semantics assigned to each well-formed-formula, we adopt the following renaming conventions for
our formal model Γ.

Work Product Sections Renaming: We will rename each symbol si in S with the identifier
of the wps xi assigned to si by fS .

Abstraction Levels Renaming: We will rename each symbol li in C with the identifier of
its corresponding abstraction level assigned by fC .

Predicates Renaming: We will rename each predicate symbol P 2
i with the unique identifier

of the traceability relationship ti in T assigned to P 2
i by the semantic function fP .

Following our renaming conventions, the well-formed-formula implements (IncreaseVelocity-

116

Code, VehicleAccelConstraint) indicates that the wps named IncreaseVelocityCode partially imple-
ments the wps named VehicleAccelConstraint .

9.4.5 Formal Traceability Links and Axioms of the Theory

Using our formal model, we formalize a traceability link with a binary predicate P 2
t (si, sj) between

two wps(s), indicating that there is a relationship of type t from the wps si to the wps sj (Eqn. (9.4)).

Definition 23. A traceability link is an axiom or theorem of ΓTheory.

P 2
t (si, sj) is a traceability link⇔ ΓTheory � P 2

t . (9.4)

The axioms and theorems of ΓTheory are those predicates that represent a traceability link
in our system model. In other words, a well-formed-formula ω = P 2

t (si, sj) is valid under the
interpretation I if ω exists as a traceability link.

Given a formal model Γ, the set of all axioms and theorems of the form P 2
t (si, sj) of a given

type t defines a traceability relation. Each axiom/theorem defines an ordered pair of a binary
relation t : S ∪ C→ S ∪ C. For example, the set of all implements predicates defines the partial
implementation traceability relation.

9.4.6 Rules of Inference of the Theory

In a formal system, the rules of inference allow us to derive new theorems based on current axioms
and theorems. In our formal system Γ, axioms represent given or known traceability links and
theorems represent derived traceability links.

We define for Γ three groups of inference rules. The inference rules in these groups were
developed with the purposes of formalizing the partial implementation traceability relation and of
discovering hidden dependencies between wps(s). The first group corresponds to the strict partial
order for the partial implementation relation. The second group corresponds to the strict partial
order for abstraction levels and the relationship between wps(s) and abstraction levels. The third
group corresponds to the conceptual completeness principle. These groups will be described in
detail in Sections 9.5 (Groups 1 and 2) and 9.6 (Group 3).

When defining inference, rules we use the symbols xi, yj , zk, αp, αq, αr as variables to represent
individuals of the semantic domain D; we will also use standard logic symbols such as ∀, ∃,∈,→,∧,∨.
These are symbols of the meta-language and are not to be confused with the symbols in the alphabet
Λ of Γ.

9.4.7 Partial Order Relations

Before beginning the next section, we briefly introduce partial orders. A binary relation from a set
A into a set B is a subset R of the Cartesian product A × B. A binary relation RS×S is a strict

117

or irreflexive partial order in S if and only if R is irreflexive and transitive. R is called a weak
or reflexive partial order if it is reflexive and transitive. The former represents a relation of the
< −class and the latter represents a relation of the ≤ −class [161]. Since we are assuming S is a
set, the structure 〈S,RS×S〉 is called a partially ordered set or Poset. We use strict partial orders
to formalize the orders established between abstraction levels and between wps(s) with respect to
the implements traceability relation.

9.5 The Implementation Relation and Levels of Abstraction

In this section, we analyze and formalize the implementation relation between wps(s) and their
corresponding associated levels of abstraction.

9.5.1 The Need for Analyzing the Semantics of the Implementation Relation

After conducting structured interviews with requirements traceability users and analyzing leading
Computer Assisted Software Engineering tools (CASE) for requirements management, Ramesh and
Jarke [219] justify the need for analyzing the semantics of traceability relationships.

An important concern of the study participants was the lack of support in many CASE
tools for the automated identification of derived links. (“I do not have the time to link
every requirement with everything produced at different stages. These links must be
automatically derived whenever possible.”) For example, requirements may be linked
to designs that are intended to satisfy them. Designs, in turn, may be linked to rele-
vant system components. Then, a derived link is created from requirements to system
components. Mechanisms for automated inferencing incorporated in deductive or active
database environments such as ConceptBase can be used to infer “derived links” in a
traceability environment. As a critical first step, the semantics of the different linkages
between objects must be clearly represented.

This section directly addresses this “critical first step” [219] toward mechanically discovering
these linkages by formalizing the semantics of the partial implementation relationship (implements)
between wps(s).

Although the formal model described in Section 9.4 was designed to accommodate the modeling
of any traceability relationship, in this article, we are concerned with analyzing and modeling the
implementation relationship. The semantics of other types of traceability relationships need to be
further analyzed and described in order to be included in our formal model.

9.5.2 The Partial Implementation Relation

Informally, partial implementation between two wps(s) indicates that a wps si is a more re-
fined/detailed description of another wps sj . In order to formalize this traceability relationship
we introduce the implements binary predicate and define partial implementation between a wps si

118

Figure 9.1: The partial implementation relation formalized as a strict partial order between work
product sections.

and a wps sj as an axiom in Γ of the form implements(si, sj). Now, we would like to model the
structural properties of this implements relation with a well-studied mathematical formalism from
which we can infer or enforce desired properties (formalized as inference rules in Γ). We would like
to answer questions such as: Can we model the implements relation with a graph? What about
modeling the implements relation using a tree, partial order, semi-lattice, topological space, or ma-
troid? We analyzed these mathematical structures and believe that the mathematical model which
best fits the current semantics of the implements relation is a strict partial order. Research work
on studying the advantages and disadvantages of enforcing a lattice structure to the implements
traceability relation is underway.

This leads us to our first group of inference rules for our Γ system:

Inference Rule 1. Implements Irreflexive Property. A wps xi does not partially implement
itself.

Inference Rule 2. Implements Asymmetric Property. If a wps xi partially implements
another wps zj, then zj cannot partially implement xi.

Inference Rule 3. Implements Transitive Property. A partial implementation traceability
relation (implements) is transitive.

9.5.3 The Implements Relation and Levels of Abstraction

From an implementation point of view, a system development project can be viewed as the com-
position of two major phases: 1) Analysis and 2) Synthesis.

The analysis phase is usually divided into smaller stages, e.g., System Requirements Analysis,
System Architecture Definition, and Software Requirements Analysis. In each of these stages,
starting from an initial system requirement or intention, the system is incrementally divided into
components that partially implement a wps of a previous stage. The last stages in the analysis
phase are the construction of hardware components and the development of code modules.

119

Figure 9.2: Example of levels of abstraction and of dependencies uncovered by the conceptual
completeness principle. Traceability relations key: implements: solid (black) arrows, imple-
ments(transitive): dashed (green) arrows (not present in this figure), impDependency : dotted
(blue) arrows.

In the synthesis phase, the system is incrementally composed from its parts starting with the
code modules and hardware components by compiling, linking, assembling, deploying, and config-
uration processes.

Each refinement step in the analysis phase and each composition step in the synthesis phase
inserts a set of newly created wps(s) associated with a given level of abstraction, which can also be
called level of refinement. If such an abstraction level is already existent, then the newly created
wps(s) can be associated with (linked to) it. Otherwise, a new level of abstraction is created and
the new wps(s) linked to it.

In order to model these relationships: i) between abstraction levels and ii) between abstraction
levels and wps(s), we will introduce, in Γ, two new binary predicates: higherAbstractionLevel and
abstractionLevel .

Strict Partial Order between Abstraction Levels: In Γ, we construct a strict partial order
between the abstraction levels by using a formal traceability link of the form higherAbstractionLevel
(lp, lq), which indicates that the abstraction level lq is of a higher abstraction level (more abstract
and less refined) than the abstraction level lp.

A simple Student-Faculty example developed for the purposes of describing this concept (and
conceptual completeness) is presented in Figure 9.2. In this example, there are three levels of
abstraction and their ordering is as follows: UMLLevel > AbstractClassLevel > ClassLevel , where
UMLLevel is the most abstract and ClassLevel is the least abstract.

In Figure 9.7 we show a diagram of the strict partial order between abstraction levels we
have established for our Guidance and Control Software (GCS) case study, which we describe in
Section 9.8. In Figures 9.2 and 9.4–9.6, levels of abstraction have been represented by a frame
grouping their corresponding associated wps(s).

120

Work Product Sections of an Abstraction Level: In Γ, and in order to indicate that
a given wps si belongs to a certain level of abstraction lq, we create a formal traceability link
abstractionLevel (si, lq). There is one and only one such link for each wps si.

In addition, wps(s) that are linked by a partial implementation traceability link necessar-
ily belong to different abstraction levels. Furthermore, given a traceability link of the form
implements(si, sj), wps si belongs to a lower level of abstraction than wps sj .

Now we can introduce, in Γ, our second group of inference rules, which correspond to the
formalization of abstraction levels and their relationship with wps(s).

Inference Rules numbered 4–6: Strict Partial Order of Abstraction Levels. These three
inference rules correspond simply to the irreflexive, asymmetric, and transitive properties for the
strict partial order imposed on the set A of abstraction levels.

Inference Rule 7. Existence and Uniqueness of an Abstraction Level for a given wps.
There exists one and only one abstractionLevel traceability link for each wps xi ∈ S.

Inference Rule 8. The Strict Partial Order of Implementation for wps(s) Is Con-
strained to the Strict Partial Order of Abstraction Levels. An implements traceability link
from wps xi to wps yj can only exist if wps yj belongs to a higher level of abstraction than wps xi.

9.5.4 Implementation Meta-Work Products

We define a new structure called a meta-work product. A meta-work product is a subset M of
wps(s) yj of S, such that every yj of M is linked, within a traceability relationship t, to or from a
common wps xi, and that every yj ∈M belongs to the same level of abstraction.

For example, given the implements traceability relation and two comparable abstraction levels
source code modules < low-level design: a meta-work product is the group of source code modules
that collaborate to implement a specific low-level design component.

Definition 24. Given a wps yj ∈ S, the implementation meta-work product Mαr
implements(yj)

is the subset of wps(s) that belong to the same level of abstraction αr, such that for every wps
zk ∈Mαr

implements, there exists a traceability link implements (yj , zk) with source in yj and target in
zk (or inversely), where αr is a given level of abstraction. In other words, Mαr

implements(yj) is the set
of components at a certain level of abstraction αr that a given component yj partially implements.

Mαr
implements(yj) = { zk ∈ S | (9.6) } . (9.5)

Γ � implements (yj , zk) ∨
Γ � implements (zk, yj))

∧ Γ � abstractionLevel (zk, αr) .
(9.6)

Where : yj ∈ S , zk ∈ S
and ∀zk ∈Mαr

implements(yj) : zk 6= yj .

Implementation meta-work products offer a formal clustering technique based on the entities of a
system model defined by its levels of abstraction and the implements traceability relation.

121

9.5.5 Enforcing Partial Order Properties for Implementation Traceability Links

Our experimental system, SyModEx, can mechanically enforce and/or verify partial order properties
for any desired linking relationship type. Based on an original set of links, which we call given, we
enforce and verify a strict partial order for the implements relation between wps(s). We also verify
the strict partial order established between abstraction levels. If a pair of symmetric traceability
links is found, then the implements relation would be inconsistent with the strict partial order
properties, and human intervention would be necessary in order to solve the inconsistency by
removing one of the conflicting traceability links. Nentwich, Emmerich, and Finkelstein provide
methods and a tool for managing inconsistencies in the frame of their Xlinkit approach [204]. Also,
in previous work by Finkelstein et al., the authors describe the use of meta-rules, based on temporal
logic, that indicate what to do in case inconsistencies between wps(s) are found [107].

9.6 The Conceptual Completeness Principle

In this section, we define what we call the conceptual completeness principle, which is a
mechanical dependency derivation rule. This rule, when applied in combination with the inference
rules introduced previously, allows us to determine and derive implicit implementation dependencies
between wps(s) based on a set of explicitly given implementation traceability links and the order
established for abstraction levels. This principle exposes dependencies that are not found using
just transitivity because of the directional nature of the partial implementation relation. These
hidden dependencies will be formalized in our formal model Γ using the predicate impDependency
described in this section.

9.6.1 Definition of Conceptual Completeness

Assume that xi, yj , and zk are wps(s) of S and that xi, yj , and zk belong to three different levels
of abstraction where zk belongs to the most abstract level and xi belongs to the least abstract level
(Eqn. (9.9) and Figure 9.1).

Definition 25. Given a formal model Γ, the conceptual completeness principle is defined by Equa-
tions (9.7) and (9.8).

∀xi,∀yj , ∀zk ∈ S
(Γ � implements(xi, zk)
∧ Γ � implements(xi, yj))→ (9.7)

Γ � impDependency(yj , zk).

∀xi, ∀yj ,∀zk ∈ S
(Γ � implements(xi, zk)
∧ Γ � implements(yj , zk))→ (9.8)

Γ � impDependency(xi, yj).

122

Figure 9.3: The conceptual completeness principle.

Where : abstractionLevel(zk, αr) ∧
abstractionLevel(yj , αq) ∧
abstractionLevel(xi, αp) ∧ (9.9)

higherAbstractionLevel(αr, αq) ∧
higherAbstractionLevel(αq, αp).

The rationale behind this rule is twofold. If wps xi partially implements wps zk, and xi also
partially implements yj , then there is an implementation dependency from yj to zk (Eqn. (9.7) and
Figure 9.3(a)); we call this upward conceptual completeness. And, if wps xi partially implements
zk, and yj partially implements zk, then there is an implementation dependency from xi to yj
(Eqn. (9.8) and Figure 9.3(b)); we call this downward conceptual completeness.

123

Figure 9.3 shows a graphical representation of this rule, and Figure 9.2 illustrates the rule
using the Student-Faculty example. In this example, the two traceability links, represented by
dotted arrows, impDependency (PersonAbstractClass, FacultyUMLClassifier) and impDependency
(PersonAbstractClass, StudentUMLClassifier) indicate that there are two implementation depen-
dencies which have not been explicitly specified as partial implementation links and cannot be
found just with transitivity, but were discovered by conceptual completeness.

Now we define our third and last group of inference rules for Γ.

Inference Rule 9. Upward Implementation Dependency between wps(s). Given three
different wps(s) xi, yj , zk belonging to three different abstraction levels, as described by Eqn. (9.9),
then Eqn. (9.7) holds for xi, yj , zk.

Inference Rule 10. Downward Implementation Dependency between wps(s). Given three
different wps(s) xi, yj , zk belonging to three different abstraction levels, as described by Eqn. (9.9),
then Eqn. (9.8) holds for xi, yj , zk.

9.7 Case Study One: The Minimum Safe Altitude Warning Sys-
tem and the Guam International Airport Accident in 1997.

In this section, we describe a catastrophic aircraft accident at the Guam International Airport
in 1997 which was related to the Minimum Safe Altitude Warning (MSAW) system. We develop
a partial formal implementation model for the MSAW system and apply our technique for the
discovery of hidden dependencies to the formal implementation model.

We only briefly introduce the reader to the accident and its probable causes and refer the reader
to the corresponding NTSB (National Transportation Safety Board) report [200] and Knight et al.’s
article [146] for further information on the accident and the MSAW system.

9.7.1 The Guam International Airport Accident in 1997 and the Minimum Safe
Altitude Warning System

On August 6, 1997 Korean Air Flight 801 crashed at Nimitz Hill, Agana, Guam, about three miles
southwest of the runway. The aircraft was completely destroyed by the impact and following fire.
A total of 228 persons died as a consequence of this accident, and there were 26 survivors [200].

One of the causes that hindered the pilots and air traffic controllers from preventing this acci-
dent was an unsafe configuration setting in the Minimum Safe Altitude Warning (MSAW) system.
MSAW is a ground-based system designed to provide aural and visual alerts to air traffic controllers
(ATCs) if an aircraft has descended, or is predicted to descend, below a prescribed minimum safe
altitude. Unfortunately, due to this misconfiguration, the MSAW system warnings were effectively
only activated for a one nautical mile (nm)-wide ring, between 54 nm and 55 nm from the radar
site. This misconfiguration hampered the air traffic controllers in service from receiving timely
ground proximity warnings from the MSAW system to be forwarded to the pilots of Flight 801
[200].

124

Figure 9.4: Formal implementation model of the GuamAirportEnvCons environmental constraint
(MSAW case study). KEY: implements traceability link: solid (black) arrows; Work product
sections: Ellipses (gray or light blue); Abstraction levels: frames enclosing wps(s).

9.7.2 Abstraction Levels and Formal Implementation Model for the MSAW
Case Study

Figure 9.4 shows a formal implementation model created to represent this unsafe MSAW system
inhibition configuration. In it, we represent the 54 nm MSAW system disable (inhibition) setting as
an operational configuration parameter, labeled DisableConfiguration. We also represent the 55 nm
MSAW system enable setting as an environmental constraint and label it GuamAirportEnvCons.
The defined abstraction levels and their order are as follows: Requirement > Architecture >
Design > Code.

The values of enable at 55 nm and disable at 54 nm were the reason the MSAW system for
approaching aircraft was not able to generate adequate ground proximity warnings the night of
the accident [200]. Notice that in this model (Figure 9.4) the GuamAirportEnvCons and the
DisableConfiguration wps(s) appear to be independent.

9.7.3 Partial Order and Conceptual Completeness Applied to the MSAW Case
Study

Airplane altitudes and descent trajectories are compared by the MSAW system against terrain
altitudes and other information specific to each airport, which are specified in a configuration file
[146]. This information is organized in a series of tables, typically on the order of 200 tables. The
total number of lines in this configuration file, for a typical airport (as described in [146]) is about
25,000 lines, including 18,000 comment lines. The configuration table corresponding to the terrain
map is the largest table with about 7,000 lines [146].

125

Figure 9.5: Formal implementation model of the GuamAirportEnvCons environmental constraint
(MSAW case study) after enforcing strict partial order properties. KEY: implements traceability
link: solid (black) arrows; implements (transitive) traceability link: dashed (green) arrows.

Notice that the size and complexity of this configuration file would preclude most human beings
from noticing the dependency between the Guam Airport environmental constraint (GuamAir-
portEnvCons in Figure 9.4) of 55 nm for the MSAW system original operation and the disable
configuration parameter set to 54 nm (DisableConfiguration in Figure 9.4).

Two quality assurance audits were conducted by FAA personnel of the Guam CERAP facility
before the accident, one in 1995, which noted the inhibition only as an “informational” item, and
a second one in 1997 (in the same year of the accident) which did not notice the safety hazard
imposed by the ARTS IIA MSAW system inhibition settings. Neither of the evaluations indicated
the inhibit configuration setting at 54 nm as a safety hazard [200].

We believe that had the air traffic controllers and the FAA auditors visualized this hidden
dependency while configuring the system and/or while performing the audits, respectively, they
would not have adopted nor kept this unsafe configuration.

Figure 9.5 shows the Minimum Safe Altitude Warning (MSAW) system case study formal im-
plementation model derived from Figure 9.4 by adding all the links generated by the transitive
closure for the implements traceability relation. The newly added links are shown in the graph
using dashed arrows. Originally, there were five given links between wps(s). Figure 9.5 now shows
four newly added links which were derived by transitivity.

Figure 9.6 shows the formal implementation model for the MSAW case study enhanced with
four new links derived by conceptual completeness. The conceptual completeness principle was
applied to this model after enforcing the strict partial order properties (as shown in Figure 9.5).

Notice that in Figure 9.6, in the Design abstraction level, the displayed order of the En-
ableDesignComponent and DisableDesignComponent wps(s) has been switched with respect to
Figure 9.5. Recall that these figures have been mechanically generated by SyModEx and rendered
by Graphviz. The switching of wps(s) in the drawing is due to the fact that the Graphviz layout
algorithm we used, called dot , attempts, whenever possible, to avoid crossings between arrows.

126

Figure 9.6: Formal implementation model of the GuamAirportEnvCons environmental constraint
(MSAW case study) after enforcing partial order and conceptual completeness properties. KEY:
implements traceability links: solid (black) arrows, implements (transitive): dashed (green) arrows,
impDependency : dotted (blue) arrows.

The four new implementation dependency links are represented by the dotted (blue) ar-
rows, and their formal representation is as shown below, where impDep stands for impDependency ,
and the words Component and Configuration were abbreviated as Comp. and Conf., respectively.

impDep (EnableDesignComp,DisableConf)
impDep (DisableDesignComp,EnableArchComp)
impDep (DisableDesignComp,GuamAiportEnvCons)
impDep (DisableConf,GuamAiportEnvCons)

The enhanced formal implementation model shown in Figure 9.6 now indicates that the Guam
Airport environmental constraint (GuamAirpotEnvCons) wps is, in fact, dependent on the Dis-
ableConfiguration architectural wps. This dependency was hidden in both the original model (Fig-
ure 9.4) and the model after enforcing transitivity (Figure 9.5).

After the application of our technique, this formal implementation model indicates that any
modification to the DisableConfiguration wps needs necessarily to account for the environmental
constraint GuamAirpotEnvCons wps.

9.8 Case Study Two: The Guidance and Control System

In this section we introduce the Guidance and Control Software (GCS) project, describe a model
of the abstraction levels used for developing this project, and describe the formal implementation
model corresponding to the Guidance and Control Software system lifecycle data. We also describe
how the application of our technique helps discover hidden implementation dependencies and point

127

out a potential failure mode associated with a hypothetical request for changes to the Temperature
Sensor Processing routine.

9.8.1 Introduction to the Guidance and Control Software Project

The Software Considerations in Airborne Systems and Equipment Certification recommendation
(1992) [228, 4], commonly known as DO-178B, was developed by the RTCA3.

DO-178B provides guidance for the development and certification of software used in airborne
systems. The same recommendation was adopted by EUROCAE4 as ED-12B. The DO-178B/ED-
12B procedures are normally used in conjunction with other safety standards in order to achieve
a Federal Aviation Administration (U.S.A.) and Joint Aviation Authorities (Europe) (FAA/JAA)
airborne system or component certification [255].

In 1995, the National Aeronautics and Space Administration (NASA) Langley Research Center
(U.S.A.) prepared a set of lifecycle documents (including software) following the DO-178B/ED-
12B recommendations for the FAA. These documents, which we will refer to as the Guidance and
Control Software (GCS) project lifecycle data, were prepared only and specifically for use of the
FAA at the 1995 Software Standardization Workshop held in Denver, Colorado, U.S.A., in August
1995. The GCS project lifecycle data are not commercial nor fully vetted products.

The GCS project lifecycle data reflect a DO-178B-based development process and deliverables of
the Guidance and Control Software (GCS) for a hypothetical lander spacecraft module similar to
the NASA Viking Lander. For example, some of the documents in the GCS project lifecycle data
are Software Requirements Data, Software Design Description, and Software Quality Assurance
Records. We developed our GCS case study based on these lifecycle data.

9.8.2 Abstraction Levels for the GCS Case Study

Based on the Software Requirements Data, Software Design Description, and Software Source Code
GCS lifecycle data deliverables, we inferred the levels of abstraction that were implicitly used in the
specification and development of the GCS project. Figure 9.7 shows a graph generated by SyModEx
and drawn by the SHriMP visualization tool of the GCS abstraction levels and the partial order
established between them.

In order to place the GCS control software in its hypothetical work environment, we added the
following abstraction levels: MainSystemRequirement , HardwareRequirements, Sensors, Actuators,
HardwareImplementation, and SystemImplementation (Figure 9.7). The other abstraction levels
are a direct representation of the structure of the GCS software specification.

The links connecting abstraction levels (Figure 9.7) correspond to the higherAbstractionLevel
3The RTCA Inc. [14] was originally created as the Radio Technical Commission for Aeronautics in 1935. Today,

known as RTCA, it is a private and not-for-profit corporation grouping more than 300 organizations worldwide. The
purpose of the RTCA is to develop recommendations for the aviation industry concerning all aspects of aviation
equipment [14].

4The European Organisation for Civil Aviation Equipment (EUROCAE) was formed in 1963 as a private forum
for discussing technical aviation issues. Today, EUROCAE recommendations are used as the basis for certification of
electronic systems and software for use in civil aviation in Europe [8].

128

Figure 9.7: Partial order of the levels of abstraction defined for the Guidance and Control Software
project as shown by the SHriMP tool (GCS case study).

relation and establish a strict partial order; transitive links are not shown in the figure. This
order, as stated by the conceptual completeness principle inference rules in Γ, acts as a meta-model
of dependencies between work products sections. In other words, the nonexistence of a formal
higherAbstractionLevel link between any two given abstraction levels necessarily indicates that we
can prove independence (or rigorously argue independence) between any two wps(s) belonging to
each of these two abstraction levels. This is the result of the restriction introduced in Eqn. (9.9),
which allows us to constrain, based on assumptions about the system and its development process,
the number of dependencies derived by conceptual completeness.

For example, in most systems, we could assume that the Sensors and Actuators abstraction
levels are independent from each other, and in such a case both abstraction levels will not be
comparable with each other in the formal model (i.e., no higherAbstractionLevel traceability link
between them). In the same case, an implements traceability link from a Sensor-S1 wps to an
Actuator-A1 wps will be inconsistent with Inference Rule 8. Furthermore, due to the restriction
established by Eqn. (9.9), the completeness principle will not generate an impDependency link
between Sensor-S1 and Actuator-A1 . Again, such assumptions of independence must be rigorously
justified, or the abstraction levels in question must be considered partially ordered with respect to
each other in the formal model.

129

Figure 9.8: Formal implementation model of the Guidance and Control System (GCS case study).

9.8.3 Formal Implementation Model for the GCS Case Study

Based on the Software Requirements Data, Software Design Description, and Source Code docu-
ments of the GCS lifecycle data, we created a formal implementation model for the GCS project
wps(s) (Figure 9.8).

Based on the call-tree of the source code, plus the information in the Software Requirements
Data and Software Design Description documents, we inferred the implements relation between
the GCS project wps(s). In a framework where Assumptions I, II, and II are valid, this procedure
could be mechanically performed by tools.

In Figure 9.8, at the LevelThreeSpec abstraction level, only the wps named TSPSpec (Temper-
ature Sensor Processing specification) was included in the graph, in order to improve clarity of the
model. This should not be considered, in any way, a limitation; rather the SHriMP artifact navi-
gation tool has been designed with the functionality of node filtering, as well as connector filtering,
which allow stakeholders to navigate and visualize only those wps(s), or links, of current interest.

9.8.4 The GCS Temperature Sensor Processing Routine

In the GCS lifecycle data Software Requirements Data document, the Temperature Sensor Process-
ing specification (TSPSpec in Figure 9.8) describes the purpose of, and the process for, calculating
the atmospheric temperature. The atmospheric temperature is used by other processes to adjust

130

the response of the gyroscopes and accelerometers. This TSPSpec wps is implemented by the tsp
source code routine (also shown in Figure 9.8).

Two hardware sensors, a thermocouple pair and a solid state sensor, provide raw bit data to
the tsp routine by means of the THERMO-TEMP and SS-TEMP inputs, respectively. Based on
these two raw bit input values, the tsp routine calculates the atmospheric temperature and saves
the output into the ATMOSPHERIC-TEMP public variable, represented in Figure 9.8 by wps
AtmosphericTemp. It also sets a TS-STATUS variable to a value recognized as healthy or faulty .
The thermocouple pair is more accurate than the solid state sensor, but its range of measurement
is smaller. The task of the tsp routine is to decide which sensor to use, convert the raw bit values
into temperature values, and store the result in ATMOSPHERIC-TEMP .

9.8.5 A Hypothetical Request for Changes to the Temperature Sensor Process-
ing Routine

Assume that a change to the Temperature Sensor Processing routine is requested as part of an
organizational move to the International System of Units. Temperature values previously expressed
in degrees Celsius now need to be changed to Kelvin.

We start by searching for the part of the specification where the temperature is calculated. By
following the Software Requirements Data document, we find the TSPSpec wps as the specification
of concern and, following the given traceability links shown in Figure 9.8, we know that the routine
called tsp implements the TSPSpec wps. We analyze both TSPSpec and tsp and verify that tsp is
effectively a direct implementation of the process described in TSPSpec.

The tsp routine uses linear and parabolic functions to calculate the temperature based on the
raw bit inputs. The slope of the linear functions is determined by using four parameters for each
input, which specify two points in a planar space. Those parameters are: in the solid state case
T1, M1, T2 , and M2 , and in the thermocouple sensor case T3, M3, T4 , and M4 .

We observe that there are no direct changes to make in the code of the tsp routine itself since
all values have been parameterized. As a second step, we search in code for the definition of the
parameters which have been directly used in the tsp routine. We find that the actual values for
these parameters are not specified anywhere in the source code. These parameters are part of what
are called run parameters and are set as part of the initial configuration of the GCS by an external
application (the GCS Simulator).

Here we might wrongly assume that our modification job is concluded. The TSPSpec does
not specify that the calculated atmospheric temperature needs to be checked for validity. Any
value within the ranges of the previously indicated run parameters will be considered valid by the
tsp routine, and we might wrongly assume that any value generated by the tsp routine is a valid
temperature value.

The conflict resides in the fact that, after the requested change, the atmospheric temperature
has now a range of validity which differs from the range specified for the run parameters T1, T2
or T3, T4 used to calculate the slopes. Recall that these run parameters have not been adjusted
because we did not know about their dependency on the atmospheric temperature calculated by
tsp. However, the range of the atmospheric temperature is checked before its use in the gyroscope
sensor processing (gsp) and the accelerometer sensor processing (asp) routines. If the temperature

131

Figure 9.9: Dependencies to and from the TSPSpec wps (GCS case study). Observe the dependency
with the AtmosTempDescription data dictionary entry. Only impDependency traceability links to
and from TSPSpec are displayed.

falls outside the predefined valid range (-200 to 25), values which are represented in our formal
model by wps AtmosTempLowerBConst and wps AtmosTempUpperBConst (Figure 9.8), the GCS
control software will, in the case of a simulated environment, report an error. In the case of a real
setting it may result in the loss of the mission.

There is no mention in the TSPSpec specification, nor in the tsp code or comments, that
the valid ranges for the atmospheric temperature differ from those ranges indicated for the run
parameters used to calculate the slopes. In neither tsp nor TSPSpec is there mention that the
atmospheric temperature calculated by tsp is checked for range validity by other routines: gsp and
asp. There is also no mention in either the Gyroscope Sensor Processing specification (GSPSpec) or
the Accelerometer Sensor Processing specification (ASPSpec) that the temperature will be checked
for range validity after its value has been determined and saved by tsp. The reason why critical
variable values are checked for range validity only before their use is due to a design decision
which has been stated elsewhere and has not been propagated to each of the affected specifications.
With a change in units to the run parameters, the values of the boundaries corresponding to
interrelated constants and variables in the code must be modified. Neither a formal model of
given nor transitive partial implementation traceability links would make this dependency explicit.
However, after the application of our methodology for the discovery of hidden dependencies, this
dependency is explicitly shown and with only one navigational step.

Figure 9.9 shows a formal model of the GCS case study after applying the completeness principle.

132

In this model, only the impDependency links to and from the TSPSpec wps are shown; all the other
links have been filtered out by the SHriMP visualization tool.

With this enhanced model in hand, which directly shows the dependencies to and from the TSP-
Spec wps, we can directly observe that there is effectively a dependency between the range values
established for the atmospheric temperature by AtmosTempUpperBConst and AtmosTempLower-
BConst and the TSPSpec wps, even though this dependency is not clear from the specification
or the source code. Observe the highlighted link from the AtmosTempDescription wps to TSP-
Spec. Also observe (in Figure 9.9), a link from AtmosTempUpperBConst to TSPSpec and a link
from AtmosTempLowerBConst to TSPSpec. The visualization of these dependencies would help
stakeholders ensure that all affected wps(s) are examined when making this change.

9.9 Related Work

For the purposes of this related work section, we classify the domain of discovering traceability links
and hidden dependencies into three areas depending upon the discovery approach: statistically-
based, formal (logic-based), and others. Works based on these three approaches are described
in the first three subsections of this section. In the fourth subsection we describe Leveson and
colleagues’ work on Intent Specifications and its use of traceability. In the fifth and last subsection
we describe the relationship between our approach to discovering hidden dependencies and Formal
Concept Analysis.

9.9.1 Statistical Approaches to the Discovery of Traceability Links

Information retrieval-based approaches [120] to the discovery of traceability links have received
the most attention from the research community over the years. These techniques attempt to
recover traceability links after assuming that the required traceability information is not present,
not reliable, or outdated and needs to be recovered or reconstructed (e.g., legacy code and code
without links to design or requirements).

At the Research Centre on Software Technology, University of Sannio, Benevento, Italy, Antoniol
and colleagues have used statistically-based information retrieval methods for recovering traceability
links between source code and designs, and also between source code and textual documentation
[44, 49, 43, 50, 42, 46, 48, 47, 45, 51, 108].

Antoniol, Canfora, Casazza, De Lucia, and Merlo used vector space information retrieval and
probabilistic approaches to recover traceability links from C++ and Java source code to user
manuals and functional descriptions, respectively, based on the assumption that names of identifiers
in the source are similar to those in other software documentation [44, 42, 46, 47].

Antoniol, Casazza, and Cimitile devised a Bayesian approach (using previous knowledge of
traceability links) to discover and propose traceability links to an analyst for approval and applied
the method to recover traceability links from Java source code to functional specifications [50].

Another application of statistically-based distance measures from the Research Centre on Soft-
ware Technology has been the comparison of low-level designs extracted form C++ source code
with corresponding, but not updated, software design documents in order to help analysts with the

133

upkeep of design documents [48, 45, 51, 108].

In the Department of Computer Science at the University of Kentucky, Lexington, Kentucky,
U.S.A., Huffman Hayes and colleagues have also been working on statistical approaches to tracea-
bility link discovery [129, 128].

Huffman Hayes, Dekhtyar, and Osborne compared three statistical information retrieval meth-
ods to recover traceability links from requirements to other wps(s). Their three methods are:
vanilla vector retrieval, retrieval with key-phrases, and thesaurus retrieval. They found that the
latter method outperforms other keyword-based methods and also outperforms, in terms of number
of recovered links (recall), a senior analyst performing manual recovery [128].

In a later paper by Huffman Hayes, Dekhtyar, and Karthekeyan Sundaram, the authors amalga-
mate these statistical methods into a tool called RETRO (REquirements TRacing On-target) [129].
A similar tool is the KAS tool being developed at the Software Engineering Research Laboratory
(SERL) [16].

At the DePaul Center for Applied Requirements Engineering, DePaul University, Chicago, Illi-
nois, U.S.A., Cleland-Huang and colleagues are also using statistically-based information retrieval
approaches for the discovery of traceability links [80, 79, 239].

Settimi et al. applied four text-based information-retrieval algorithms to recovering traceability
links between requirements, UML models, and source code [239]. The four algorithms were: a
vector space model method with and without the use of a thesaurus and a pivot normalization
score method, a method based on the vector space method with an adjustment for document size,
also with and without the use of a thesaurus.

The results of their analysis are dissimilar to those of Huffman Hayes and colleagues. They
found that their thesaurus-based approaches did not improve the recall metric and diminished the
precision metric. They also found that both pivot normalization methods under-performed with
respect to their unadjusted vector space counterparts. The best results were obtained when recalling
links from requirements to UML Use Case Diagrams, showing that statistically-based approaches
are extremely sensitive to the way keywords are used. Another interesting result reported in their
paper is that none of the algorithms performed well when recalling links from requirements to
source code. This case is consistent with what we observed in both case studies introduced in the
present article. Our methodology discovers this kind of hidden dependencies because it formally
transports implementation dependencies across all levels of abstraction.

Other researchers have used information retrieval methods for the recovery of traceability links.
For example, researchers at their respective Departments of Computer Science at Kent State Uni-
versity, Kent, Ohio, U.S.A. and Wayne State University, Detroit, Michigan, U.S.A. have used Latent
Semantic Indexing [168, 178].

In order to address precision and recall problems encountered by most information retrieval
methods [80], Cleland-Huang et al. developed three improvements that were included in a prob-
abilistic algorithm for the retrieval of traceability links between requirements and UML Class
Diagrams [80]. The three enhancements were developed by the authors after analyzing the main
causes of imprecision and insufficient recall of the previously applied statistical search algorithms.
The enhancements are called: hierarchical, clustering, and graph pruning. The authors applied
the probabilistic network retrieval algorithm, alone and in combination with each of the three pre-

134

viously mentioned enhancement strategies, to three different data sets. Only for one of the three
data sets, named IBS, the traceability link retrieval results improved for each and all of the three
enhancements. After further analysis of the IBS data set, the authors say: “...the artifacts were
structured into useful contextual groupings that provided contextual clues” [80].

Independently from the results achieved by these three enhancement strategies proposed by
Cleland-Huang et al., which were mixed results, the strategies themselves stress the importance of
our approach. For example, the case with the IBS data set is another positive case that verifies
our hypothesis that the semantic structure of a system model is a very important clue to finding
hidden dependencies. In fact, our formal abstraction levels may be considered a formalization of the
hierarchical enhancement introduced by Cleland-Huang, et al., and our implementation meta-work
products abstraction resembles a formalization of the clustering technique proposed by the same
authors [80].

In our work, we assume there is a predefined set of implementation traceability links in place
that analysts and engineers have defined a priori . If this predefined or initial set is not present, even
though its presence is mandated by standards, or is insufficient, it could be created or enhanced by
using these statistical techniques and their associated tools. Then, based on this enhanced set, our
technique mechanically discovers other hidden relationships that these statistical techniques may
not completely find. For this reason, statistically-based approaches and our formal approach are
not opposite but complementary and should be used in combination when needed.

We believe that Cleland-Huang would agree with us in the assertion that these approaches
should be used in combination. In a recent position paper, she describes what she calls Goal Centric
Traceability (GCT) [77]. GCT is a framework targeted at improving traceability of nonfunctional
requirements [77], which can be seen as requirements or constraints on emergent properties. In the
paper, Cleland-Huang states that both formal and statistically-based techniques, which she calls
explicit and dynamic, respectively, are to be used depending upon the criticality of the requirement
being traced.

The issue of determining the criticality of wps(s) has also been a target of our interest. In
a previous article, we described work on using the Extensible Markup Language (XML) [6] and
the Extensible Stylesheet Language Transformations (XSLT) [3] in order to propagate criticality of
requirements into other lower abstraction level wps(s) [85].

9.9.2 Other Formal Approaches to Traceability

Pinheiro and Goguen developed a tool for tracing requirements called TOOR [215, 116]. In their
approach, as in ours, traceability relationships are treated as mathematical relations between what
they call objects (referred to as wps(s) in this article). In both approaches, traceability relations
are defined by axioms in a logic system. In the TOOR tool, axioms are implemented by modules
written in the Functional and Object-Oriented Programming System (FOOPS) [69, 115]. In our
SyModEx system axioms and theorems are implemented by Prolog predicates.

However, Pinheiro and Goguen’s work on TOOR focused on developing a tool for requirements
traceability. The work described in this article focuses on analyzing and defining the semantics of
the partial implementation traceability relation and on devising a technique for the discovery of
dependencies that have not been explicitly stated. Our partial order and completeness principles

135

defined for the implements traceability relation may have been implemented as TOOR relations
using FOOPS modules instead of our Prolog-based implementation. In fact, the TOOR tool allows
for traceability relations to be defined as transitive by creating a FOOPS module. Nevertheless,
TOOR does not recognize the presence of levels of abstraction and does not implement a complete-
ness principle with the purpose of discovering hidden dependencies between wps(s) in a system
model.

Another formal approach to traceability is the work of Nentwich, Emmerich, Finkelstein and
colleagues at the University College London, London, United Kingdom [204, 205, 202, 203, 107].
Nentwich, Emmerich, and Finkelstein search for inconsistencies between wps(s) using a tool called
Xlinkit [202]. Their work is also based on a predicate calculus and uses XML as a representation
vehicle for work products. The difference with our approach is that their work focuses on pointing
out inconsistencies between wps(s) and specifying how to act when inconsistencies are found, based
on a set of meta-rules, which are represented using XML as well. The work described in this article
focuses on mechanically completing traceability relations based on a set of rules. We assume that
an initial set of links is present and consistent. In other words, the Xlinkit approach and ours
are complementary; their approach focuses on consistency of traceability links and ours focuses on
partial completeness.

9.9.3 Other Approaches to Traceability

An information management-oriented approach to traceability is the work of Anderson, Sherba, and
Van Lepthien at the University of Colorado, Boulder, Colorado, U.S.A. [259, 241, 41]. These authors
and their colleagues developed a framework and prototype tool, InfiniTe, for the discovery, creation,
and management of traceability among software artifacts. Their approach is called information
integration and is based on four processes: discovery, creation, maintenance, and evolution, along
with supporting tools for the management of relationships between software artifacts. In their
approach, they use Integrators. Integrators can create new traceability links by “chaining” existent
links [41]. Sherba, Anderson, and Faisal describe a particular instance of an Integrator used to
chain traceability links to a new derived link, which in fact corresponds to a transitive relation
[241].

The differences between Anderson, Sherba, and Van Lepthien’s approach and ours are similar
to the differences between Pinheiro and Goguen’s approach and ours. Anderson, Sherba, and Van
Lepthien’s approach focuses on the development of a framework and tools to support traceability;
we focus on gaining a deep understanding of each traceability relation and on clearly defining the
semantics behind them. Furthermore, the completeness principle developed for the discovery of
hidden dependencies presented in this article is a completely new methodology. As with the TOOR
tool and FOOPS modules, our partial order and completeness principle axioms may be implemented
using Integrators for the InfiniTe prototype.

A different approach from Cleland-Huang and colleagues, which is based on the publish-subscribe
paradigm, uses change events to notify related artifacts upon the occurrence of changes [78]. This
approach is focused on managing the evolution and change of traceability links during the main-
tenance process and does not address the issue of mechanically generating new links to uncover
hidden dependencies.

Yu and Rajlich define a hidden dependency as a relationship between two apparently indepen-

136

dent object-oriented source code structures (e.g., classes, methods, and parameters) [276]. They use
an abstract system dependence graph that represents the hierarchical structure of a class hierarchy
(up to the method level) enhanced by data-flow dependencies. Henrard and Hainaut devised a sim-
ilar approach but based on a variable dependency graph generated from COBOL source code [132].
These approaches are somewhat similar to our technique for the discovery of hidden dependencies.
However, they are not formal and they are constrained to source code data-flow dependencies only.

Egyed and colleagues have developed a methodology for the discovery of traceability links
which is based on source code signatures and is the closest to our approach that we have found in
the literature. Egyed [99, 98] and Egyed and Grünbacher [100] report on the application of this
approach to a UML-based Inter Library Loan case study (ILL). Egyed and colleagues’ methodology
and TraceAnalyzer tool start with a set of traceability links generated by source code profiling,
the authors used Rational PureCoverage® (now IBM® Rational PurifyPlus®). The source code
signatures (set of classes) were collected during the execution of a set of test scenarios. The set
of profiled (observed) traceability links is then enriched with a series of manually hypothezised
traceability links. The union of these two sets of links closely corresponds to our given set of formal
traceability links.

After a series of graph transformations, which Egyed calls Atomize, Normalize, Generalize,
Refine, and Generalize Specific, the TraceAnalyzer tool generates a set of dependencies based on
the idea that two UML model elements are mutually dependent if they share a common source
code footprint [99]. Egyed’s rationale and ours are very similar but the methodology and results
are different. For example, in page 129 [99] Egyed states that due to its conservative approach,
TraceAnalayzer did not mark code elements {1, 3, 5, 7} as dependent with model element [c2].
After attempting to replicate Egyed’s ILL case study traceability data, our technique marked as
dependent to the [c2] model element the three code elements that were marked by Egyed ({0, 8,
9}) and code elements {1, 3, 5, 7} as well. This serves as verification that our technique makes the
safe assumption that, in case of doubt, any two wps(s) need to be deemed dependent; which is, as
demonstrated in our introduction, a must for HA&CCS.

In addition, our technique is more general and applicable to all wps(s) at all levels of abstrac-
tion. For example, our methodology accounts for the case when two related requirements transport
their relationship downward to architecture and design wps(s) even without the presence of source
code, which makes it applicable at any stage of system development. Furthermore, the method-
ology introduced in this article is better suited to the analysis of nonfunctional requirements and
emergent properties, and recognizes and formalizes the existence of different levels of abstraction,
as well as the existence of implementation meta-work products, as semantic structures of a formal
implementation model.

9.9.4 The Intent Specifications and SpecTRM Approach

Leveson and colleagues at the Massachusetts Institute of Technology, Cambridge, Massachusetts,
U.S.A., have developed a safety and human-centered approach to the design and specification of
HA&CCS [152, 154, 153, 160, 195]. The methodology which has been named SpecTRM (Specifi-
cation Toolkit and Requirements Methodology) can be considered composed of several techniques
all embedded in a human-centered and safety-driven analysis and development process [152]. The
foundation techniques are Intent Specifications and the SpecTRM-RL requirements specification
language.

137

Intent Specifications is a methodology for the specification of system requirements which was
developed with humans and safety in mind. An intent specification describes a system at five
different levels of abstraction. In the first level (System Purpose), the goals, main requirement,
and constraints of the system are described. Also in the first level, safety and environmental
constraints are specified. In the second level (System Design Principles) the components and
design principles of the system are specified. In the third level (Black-Box Behavior), the behavior
of system components is specified using a black-box approach. In the fourth level (Physical and
Logical Function), detailed design descriptions of software and hardware components are specified.
The last level (Physical Realization) corresponds to the system implementation itself. Each entity
in each level of an intent specification is uniquely identifiable and also linked for traceability to and
from lower and higher specification level entities [154].

The five levels of an Intent Specification can be considered a meta-model for the levels of
abstraction used in this article. In addition, the traceability links between entities in an intent
specification can be considered partial implementation links in our approach.

SpecTRM-RL is a language for specifying the black-box behavior of subsystems or components
with a high level of abstraction. SpecTRM-RL uses a graphical notation and AND/OR tables for
specifying behaviors as state machines. SpecTRM-RL was designed with readability in mind and
has been shown to be understandable by engineers with different backgrounds. Specifications rep-
resented in SpecTRM-RL are executable, and a wide range of techniques can be applied to them to
help engineers with the development, verification, and safety analysis processes, for example: com-
pleteness and consistency analysis [153], simulation and animation, state machine hazard analysis,
software deviation analysis, and fault tree analysis, among others [160, 195].

The SpecTRM approach and methodologies are being successfully applied to specify, among
others, air traffic management systems [152, 160]. The SpecTRM toolkit is an implementation of a
framework such as the one described in the introduction of this article where wps(s) are uniquely
identifiable and traceable. Hence, our technique for the discovery of hidden dependencies could be
included in the SpecTRM approach as another safety analysis tool.

9.9.5 Formal Concept Analysis and Our Conceptual Completeness Principle

In another track of our research endeavors, we are using, in combination with our set theory and
predicate calculus approach, a mathematical formalism called Formal Concept Analysis (FCA)
[113]. In fact, the presence of a meta-work product in a given abstraction level αr will indicate
the presence of an intent or an extent , in FCA nomenclature, after the application of the partial
order and conceptual completeness principles and by considering the union of the implements and
impDependency traceability relations. This intent/extent belongs to the formal context generated
by the implements relation between the abstraction level αr and any other comparable abstraction
level. Such a relationship is what inspired us to name our technique the conceptual completeness
principle.

Tilley, et al. surveyed the use of FCA for software engineering activities and reported that most
of the research in this area focuses on the application of FCA to concept discovery in legacy systems
and refactoring of class hierarchies in object-oriented code [258]. An emerging trend is the use of
FCA for analyzing formal requirements. As an example, Tilley has used concept lattices to visualize
formal specifications (requirements and design) written in the Z language [257, 256]. In our work,

138

we take the application of FCA to systems development a step further. We use FCA to analyze
the structural properties of a whole system model, from requirements to system implementation,
as a network of wps(s) connected by their corresponding traceability links [82].

9.10 Conclusions and Scope

The enormous complexity of today’s systems, with their associated growing number of disparate
engineering disciplines needed, along with the usually vast amount of textual documentation and
information involved in the development, maintenance, and operation of a system, precludes any en-
gineer, manager, operator, and/or auditor (stakeholder of the system model) from having complete
detailed knowledge of a system and its underlying model. Therefore, an effective and mechanized
approach to traceability between wps(s) is imperative in order to offer stakeholders the ability to
navigate through related/dependent wps(s).

The contributions of the work reported in this article are threefold. Firstly, we describe an
integral framework which offers a systems-oriented and effective solution to the traceability problem
and thus enables the analysis of emergent properties. Secondly, we offer a much needed analysis
and a formal model for the semantics of the partial implementation traceability relation. Thirdly,
we describe a formal technique for the discovery of hidden implementation dependencies between
system components which could lead to critical or catastrophic errors if left undetected. We expand
on the last two of these contributions below.

Even though the importance of traceability relationships has been remarked upon extensively
by authors who have analyzed the problem (for example [219, 216, 119]), we have not found a formal
analysis of the structural properties for any of the traceability relationship types described in the
literature. In this article, we analyzed the implementation relation between wps(s) and formalized
it as a partial order (Section 9.5). This analysis and formal model are the first steps toward formal
descriptions of the semantics for all traceability relations. The need for such analysis was clearly
stated by Ramesh and Jarke [219].

The practical benefits of formal descriptions and clear semantics, in addition to the benefits
described in this article, are twofold. First, they will make possible an agreed nomenclature for
traceability relations, which would also facilitate communication among practitioners and between
industry and the research community. Second, such enhanced communication and agreement would
facilitate the adoption of traceability tools by industry, as well as enable the inter-operation between
traceability tools. We envision the development of a standard for the nomenclature and semantics
of traceability relations with the consequent practical benefits to industry and the research and
academic communities.

With respect to our discovery of hidden dependencies methodology, its main drawback is the
occurrence of dependencies that may not present a safety risk (false positives). For example, in
Figure 9.9, not all links imply the occurrence of a safety risk; each dependency needs to be analyzed
in order to determine its implications for the safety, or possibly other dependability properties, of
a system. Notice that such a case does not imply that the dependencies are not there, only that
they may not indicate an unsafe interaction. We are currently working toward alleviating the
problem of false positives based on the idea that after independence between wps(s) has been
rigorously justified (or proved) it can be formalized in Γ as a formal traceability link using the

139

unary negation operator and recorded as such. Further research is needed in this area to assess
under which conditions argued (or proved) and recorded independences remain invariant to changes
in the formal implementation model.

Furthermore, our approach is the only one known to the authors that makes the following safe
assumption: work product sections must be deemed related or dependent unless we can rigorously
argue or formally prove their independence. Given the nature of HA&CCS, and given that hidden
or unknown dependencies and interactions have been shown to be a major cause of critical and
catastrophic failures, we cannot afford to miss relations and dependencies that could lead to critical
or catastrophic behavior.

We would like to remark that the conditions and events presented in the Minimum Safe Altitude
Warning (MSAW) system case study were not, by any means, the only cause for the accident. As
described by the National Transportation Safety Board [200] the MSAW-related aircraft accident
at the Guam International Airport was the consequence of a series of interrelated conditions and
events. These conditions and events contributed to the accident and hindered the Flight 801 pilots,
air traffic controllers, and FAA auditors from detecting problems and thus from preventing the
accident.

The formal framework and technique described in this article do not ensure that stakeholders
will receive and/or clearly understand necessary information about a system model. There are
risks associated with organizational structures and communication channels which could prevent
essential information from reaching a stakeholder. Furthermore, assuming such information is
available in a timely manner and that navigational aids are available, as described by Assumptions
I, II, and III presented in the introduction of this article, there are still risks associated with
stakeholders correctly understanding the information. These issues also need to be considered
and addressed when designing methodologies for the specification, creation, management, and
navigation of HA&CCS formal implementation models.

We do not believe that our approach should replace statistically-based information retrieval
approaches but that both approaches should be used in combination if necessary. Information
retrieval approaches are necessary to recover traceability links when no traceability information
has been recorded or when the recording and management of such information is not economically
justified. Notice that this is not the case for the high assurance and critical computing systems
object of this study. We recognize, though, that if a portion of a system can be unequivocally
argued and justified to be non-critical, then it could receive a different treatment with respect
to its traceability requirements. The issue then becomes how to unequivocally separate the non-
critical portions of a HA&CCS, for which we believe our approach may also be appropriate. This
is an active track in our research agenda, but further work is needed in this area.

The formal model and technique for the discovery of hidden dependencies described in this
article, lend leverage to the discovery of unsafe emergent behaviors by allowing stakeholders to
directly observe, with only one navigational step, places where unexpected, and possibly unsafe,
interactions between system components may occur.

We do believe that, under the assumptions made in the introduction, this formal approach and
technique would have empowered engineers and stakeholders with information necessary to make
better decisions with respect to the involved configuration value modifications described in the
MSAW case study and the hypothetical modification described for the GCS case study.

140

Chapter 10

Security Policy Refinement and
Enforcement for
the Design of Multi-level Secure
Systems

10.1 Introduction

In recent years, security has become a growing concern in software engineering research, especially
software architecture research. As defined in the IEEE standards, security is one of the soft-
ware system attributes that serve as quality or non-functional requirements (NFR). Other NFRs
include performance, verification, acceptance, portability, reliability, maintainability, and safety
[226]. NFRs refer to the whole software and thus cannot be presented in software architecture as
components or functions offered by the system [35]. The overall software architecture and NFRs
are closely related and should be studied together during architectural development. In the liter-
ature, much of the research focuses on how to satisfy NFRs such as reliability and performance
[226, 60, 75, 90, 109, 225], instead of security. There has been some work on security architec-
ture modelling [91, 196], but not on providing security architecture design guidance for architects.
Banerjee, et al. discuss a software system’s architecture and its trustworthiness (security, reliability,
availability, fault-tolerance, and survivability) in general [59]. However, they provide no additional
detailed guidance. Some researchers [235, 279] focus on how to satisfy security of computation at
the level of programming languages, but not on satisfying security of complex systems at a more
abstract level.

The notion of enforcing security policies at the architectural level is attractive because it allows
security concerns to be recognized early in the development process and can be given sufficient
attention in subsequent stages. By controlling system security during architectural refinement,
we can decrease software production costs and speed up the time to market. This approach also
enhances the role of the software architects by requiring that their decisions apply to functional
decomposition, as well as to security fulfillment. As some researchers have pointed out [35, 60, 90]
, effective refinement must be technology- and domain-specific. Also, Garlan [114] points out that

141

refinement patterns must be explicit about what kinds of properties they are preserving in the
refined design. In our work, the type of systems for which our design refinement patterns are valid
are multi-level secure (MLS) systems. We focus specifically on achieving confidentiality for secure
systems. In our previous paper [288], we presented a set of architectural refinement patterns. This
paper extends the previous work by providing a policy refinement language to specify refinement
rules for each pattern, as presented in Section 10.3, and proposes the hierarchy of refinement
patterns in Section 10.4. This extension takes us one step further towards the formal verification
of the proposed refinement patterns.

This paper is organized as follows: Section 10.2 introduces concept of MLS systems and software
architecture; Section 10.3 proposes architectural refinement patterns that can be applied to design
MLS systems, and a policy refinement language to specify the refinement rules of each pattern.
Section 10.4 briefly discusses the hierarchy of patterns. An example of MLS system design is
presented in Section 10.5 to illustrate the approach. Section 10.6 is the conclusion and future work.

10.2 Background

10.2.1 Multi-level Security and MILS Architecture

Traditionally, the model of a secure system includes the concept of multi-level security (MLS).
Given a set of subjects, each with a clearance level, and a set of objects, each with a classification
level, the idea behind the MLS concept is that the system will be processing objects at different
classification levels, and the access to these objects is restricted, by security policy, to subjects
with particular clearance. Classic security models, such as the Bell-LaPadula (BLP) model [62],
have been used to specify the secure behavior of such MLS systems. The BLP model requires that
information does not flow downward by imposing the following requirements.

The Simple Security Property. A subject is allowed a read access to an object only if the
subject’s clearance level is identical to or higher than the object’s classification level.

The *-Property. A subject is allowed a write access to an object only if the subject’s clearance
level is identical to or lower than the object’s classification level.

In this paper, we use security level to represent both the classification level and the clearance
level.

The problem with full MLS systems is that they must be rigorously analyzed for security before
they can be certified. Every portion of the MLS system must be analyzed to ensure that it properly
handles labelled data and that there is no possible violation of the security policies. Even with a
trusted computing base (TCB) architecture or reference monitor [40], there is often too much to
evaluate.

The Multiple Independent Levels of Security/Safety (MILS) architecture was developed to re-
solve the difficulty of certification of MLS systems by separating out the security mechanisms and
concerns into manageable components [33]. These components are classified based on the way they
process data:

• SLS Single-Level Secure component that only processes data at one security level.

142

• MSLS Multiple Single-Level Secure component that processes data at multiple security levels
but always maintains separation between classes of data. An MSLS process or device separates
the data into independent streams with no communication between streams. A device that
processes messages one at a time (such as an I/O device driver) may be such a device.

• MLS Multi-Level Secure component that deals with data at multiple security levels and
transforms the data from one level to another according to internal MLS security policies
of this component. Because of the potential seriousness of violating its security policies, an
MLS component requires the highest level of scrutiny and verification. Typically this can
be a device that will downgrade information from a higher level of security to a lower level
through either filtering or the application of encryption technology.

A MILS system isolates processes into separate execution spaces, either physically or logically
separated, which define a collection of data objects, code and system resources. These individual
partitions can be evaluated separately, if the underlying separation architecture is implemented
correctly. This divide-and-conquer approach will exponentially reduce the proof effort for secure
systems. The MILS architecture is MLS if it enables the enforcement of the MLS security policies
to regulate the communication between the applications and the resources, which are application
specific and not part of the MILS architecture.

10.2.2 Software Architecture

Software architecture is usually described by components, connectors, and architectural configura-
tions [190]. The following concepts are derived from Medvidovic and Taylor [190].

A component in an architecture is a unit of computation or a data store. It may be as small as
a single procedure or as large as an entire application. Each component may require its own data
or execution space, or it may share them with other components. The features of a component
include interfaces, semantics, constraints, NFRs, etc.

A connector is an architectural building block used to model interactions between different
components and rules that govern those interactions. It may be a message routing device, shared
variable, buffer, dynamic data structure, client-server protocol, pipes, and so on. Connectors are
characterized by their interfaces, semantics, constraints, NFRs, etc.

A component’s interface is a set of interaction points between the component and the external
world. It specifies the services (messages, operations, and variables) a component provides or that
are required of other components in an architecture. In our approach, we augment the interface
with security levels for each service.

A connector’s interface is a set of interaction points between the connector and the components
or other connectors attached to it. A connector does not perform any application-specific compu-
tations, and it exports as its interface those services it expects of its attached components. In our
approach, we also augment the interface with security levels for each service.

Architectural configurations are connected graphs of components and connectors that describe
architectural structure. In this paper, we use directed graphs to represent the architectures through-
out the refinement process.

143

10.3 Policy Refinement Language and Refinement Patterns

When designing secure systems, we want to avoid separately constructing abstract and concrete
architectures and then proving that the concrete architecture enforces the security policies of the
abstract one. Instead, the concrete architecture should enforce the security policies by construc-
tion, requiring no explicit proofs in its derivation. This can be accomplished through a series of
small, local refinements, each of which involves the application of a refinement pattern. The local
refinements are combined to form the larger composite concrete architecture, which is guaranteed
to correctly implement the abstract architecture, meaning that the security policies are not violated
by the concrete architecture. In this way, the architecture can be refined to be increasingly more
concrete until the implementation architecture is achieved and the original security policies have
been refined and are now enforced by the components and connectors of the concrete architecture.

In our paper, we do not focus on how to do functional requirements (FR) refinement, which
has already been researched for many years with many approaches described in the literature (e.g.,
[197] and [214]). Instead, we focus on how to augment architectural refinement with security
concerns. We present a set of refinement patterns for designing MLS systems to allow architects to
decompose, aggregate, and eliminate components, connectors, and ports (interaction points of an
interface). Each refinement pattern is represented by a pair of directed graphs representing the pre-
and post-architecture of the refinement. In the graphs, a box represents a component, an arrow
represents a connector, and a dot represents a port. The refinement rules that must be satisfied to
make each refinement pattern correct are specified using a proposed policy refinement language.

A component/connector is said to be trusted if it is or will be designed to enforce security
policies, while an untrusted component/connector enforces no security policies. The security policies
enforced by components/connectors describe not what they should do (e.g., send some data), but
how they should do it (e.g., send data embedded in legal CORBA messages and with correct security
labels). In our work, a security policy is defined as a tuple p=(Intra, Inter, Domain). The Intra
and Inter define two sets of different types of rules of a security policy, a set of intra-level rules
and a set of inter-level rules. Intra-level rules are rules that are not related to information flow
between security levels. For example, “Messages from Database must be CORBA reply messages”
is such an intra-level rule. This rule is not on cross-level information flow, but on message types.
Inter-level rules are security rules that are related to cross-level information flows. For example, “A
top-secret message cannot flow to a secret component unless it is downgraded” is such an inter-level
rule. Domain is a set of services associated with ports.

An SLS policy is a policy that only has intra-level rules while the Inter set is empty. An MSLS
policy is a policy that may have intra-level rules, but must also have an inter-level rule that there
is no cross-level information flow. An MLS policy is a policy that may have intra-level rules, but
must also have inter-level rules to regulate cross-level information flows. A component/connector
that enforces an SLS, MSLS, or MLS policy is called an SLS, MSLS, or MLS component/connector
correspondingly. In the final concrete architecture, if a connector enforces security policies, it must
be application independent.

Definition (Correct Refinement) During the design of an MLS system, the refinement of
the architecture (components, connectors, ports, or a combination of these entities) is correct if
and only if the security policies after the refinement do not violate the security policies before the
refinement.

144

Ref ::= Decomp {,RConds} | Aggeg {,RConds}
Decomp ::= Product(policy id, plist) | Cascade(policy id, plist)

| Feedback(policy id, plist) | ConnDec(policy id,plist)
Aggeg ::= ComAgg(plist,policy id)| ComConnAgg(plist,policy id)

plist ::= policy id {, policy id}
Rconds ::= Property | Relation

Property ::= pProperty(policy id){,pProperty(policy id)} | True
Relation ::= pRelation {, pRelation}

pProperty ::= isSLS | isMSLS | isMLS
pRelation ::= IntraR | InterR | SLR

IntraR ::= Intra(policy id) { Rop Intra(policy id)} Eop IntraSet
IntraSet ::= Intra(policy id)| ∅

InterR ::= Inter(policy id) { Rop Inter(policy id)} Eop InterSet
InterSet ::= Inter(policy id) | Compl(Inter(policy id))| ∅

SLR ::= SL(policy id) { Rop SL(policy id)} Eop SLSet
SLSet ::= SL(policy id) | ∅

Rop ::= ∩ | ∪ | �
Eop ::= = | 6=

Figure 10.1: Policy Refinement Language BNF

The refinement may add some new policies, but the new policies should not violate the original
ones. This means that the security policies after the refinement should be as strict as or stricter
than those before the refinement.

In the following subsections, we first present a policy refinement language, which will be used
to specify the refinement rules of each pattern. Then, we propose a basic set of refinement patterns
for decomposition, aggregation, and elimination of components, connectors, and ports.

10.3.1 Policy Refinement Language

In order to prove that the refinement patterns are correct, we need to provide correct refinement
rules for the patterns so that we can verify that the security policy is preserved by applying these
patterns. To achieve this, we propose a policy refinement language to formally specify the refinement
rules of each pattern. The Backus Normal Form (BNF) of our Policy Refinement Language (PRL)
is presented in Fig. 10.1. Intra and Inter are functions that extract the intra-level rules and the
inter-level rules of a policy. SL extracts the security levels of services on which a security policy has
effects. In this work, the security levels TS, S,C, U represent Top Secret, Secret, Confidential, and
Unclassified, respectively from high to low. Compl returns the complimentary set of rules of a set of
rules. For example, the complimentary rule of an inter-level rule, “Downgrading messages from TS
to U”, is an inter-level rule “Upgrading messages from U to TS”. For the relation operator Rop, ∪
and ∩ have semantics of set union and intersection, and “�” has the semantics of set concatenation.

145

Table 10.1: Component Decomposition Patterns for Designing MLS Systems
Decomposition Policy Types of Components

Patterns Cm Cm1 Cm2

SLS MSLS MLS SLS MSLS MLS
Product SLS

√ √

MSLS
√ √
√ √

√ √

MLS
√ √

√ √

Cascade SLS
√ √

√∗ √∗
MSLS

√ √
√∗ √∗

MLS
√ √

√ √
√ √

Feedback SLS
√ √

√∗ √∗
MSLS

√ √
√∗ √∗

MLS
√ √

√ √
√ √

∗ Extra inter-level rules added in these cases

10.3.2 Decomposition Patterns

In the refinement process, it is typical to divide an architectural entity into smaller parts through
decomposition. Decomposition can be applied to components, connectors, and ports.

Component Decomposition Patterns

A component can be decomposed into two components that are composed through product, cascade,
or feedback [184, 277]. These three types of component decomposition are depicted in Fig. 10.2(a-
c), respectively. For each component decomposition pattern, depending on the type of security
policy (SLS, MSLS, or MLS policy) enforced by the initial component, Cm, there are different
combinations of possible types of policies enforced by the subcomponents, Cm1 and Cm2, as
summarized in Table 10.1. In this section, we discuss the refinement rules of some of the patterns
as examples. The refinement rules of all component decomposition patterns are listed in [285]

Product Pattern. The first component decomposition pattern discussed is Product (Fig. 10.2(a)).
In this pattern, Cm is constructed by the parallel composition of Cm1 and Cm2. Suppose
that the policies enforced by components Cm, Cm1, and Cm2 are p, p1, and p2 correspond-
ingly. Functions In and Out extract the services associated with the input and output ports
of a component/connector which enforce policies. The pattern Product(p, p1, p2) is defined as:

146

Cm1

pre

post

Cm2

…

…

Cm
… …

…

…

(a)

Cm1

pre

post

Cm2
… … …

…

Cm
… …

(b)

Cm1

pre

post

Cm2
… … …

…

Cm
… …

(c)

Figure 10.2: Component Decomposition Patterns (a) Product (b) Cascade (c) Feedback

Product(p, p1, p2) ≡ (In(p) = In(p1)∪In(p2)) ∧ (Out(p) = Out(p1)∪Out(p2)) ∧ (In(p1)∩In(p2) =
∅) ∧ (Out(p1) ∩Out(p2) = ∅).

For the Product pattern, we discuss one example case in which the component Cm enforces an
MSLS policy. In this case, there are three different refinement rules (Product Rule 2-1, 2-2, and
2-3) that can be applied to make the refinement of Cm into two subcomponents, Cm1 and Cm2,
be correct.

1. Product Rule 2-1:Product(p, p1, p2), isMSLS(p), isSLS(p1), isSLS(p2), Intra(p1) =
Intra(p), Intra(p2) = Intra(p), SL(p1) ∩ SL(p2) = ∅.
The refinement is correct when Cm1 and Cm2 both enforce SLS policies and each component
enforces intra-level rules for one different security level, where Cm is an MSLS component
processing data at just two different security levels.

2. Product Rule 2-2:Product(p, p1, p2), isMSLS(p), isSLS(p1),
isMSLS(p2), Intra(p1) = Intra(p), Intra(p2) = Intra(p),
SL(p1) ∩ SL(p2) = ∅.
The refinement is correct when one of the components (e.g., Cm1) enforces an SLS policy
while another (e.g., Cm2) enforces an MSLS policy. In this case, usually Cm is an MSLS
component processing data at more than two security levels, Cm1 enforces intra-level rules
for one security level, and Cm2 enforces intra-level rules for other security levels and the
inter-level rule that there is no cross-level information flow.

3. Product Rule 2-3:Product(p, p1, p2), isMSLS(p), isMSLS(p1),
isMSLS(p2), Intra(p1) ∪ Intra(p2) = Intra(p), Intra(p1) ∩ Intra(p2) = ∅, Inter(p1) =
Inter(p), Inter(p2) = Inter(p), SL(p1) = SL(p), SL(p2) = SL(p).

The refinement is correct when both Cm1 and Cm2 enforces MSLS policies. In this case, Cm1

and Cm2 enforce different part of the intra-level rules of Cm for all security levels of Cm,
and enforces the inter-level rule that there is no cross-level information flow. There is another
refinement rule which can make the refinement correct. Cm1 or Cm2 enforces all intra-level
rules in Cm but for only some of the security levels (more than one), and enforces an inter-
level rule that there is no cross-level information flow. The pattern with this refinement rule
is not a basic pattern, which will be discussed in Section 10.4.

147

In all of the Product decomposition cases, we decompose the original component into two sub-
components. The decomposition can separate the security concerns by separating the processing
of difference security levels. When this happens, the result is a more secure system. However,
sometimes the decomposition does not separate security levels. In that case we still need to enforce
inter-level rules as discussed above. In either case, the security policies enforced by the subcompo-
nents, when composed, can not violate that of the main component.

Cascade Pattern. The second decomposition pattern is Cascade (Fig. 10.2(b)). In this
pattern, Cm is constructed through serial composition of Cm1 and Cm2. Suppose that the
policies enforced by component Cm, Cm1, connector between Cm1 and Cm2, and component
Cm2 are correspondingly p, p1, p2, and p3. Policy p2 is application independent. The pattern
Cascade(p, p1, p2, p3) is defined as: Cascade(p, p1, p2, p3) ≡ (In(p) = In(p1)∪ In(p3)−Out(p2)) ∧
(Out(p) = Out(p1) ∪Out(p3)− In(p2)) ∧ (In(p1) ∩ In(p3) = ∅) ∧ (Out(p1) ∩Out(p3) = ∅).

For the Cascade pattern, we discuss one example case in which the component Cm enforces an
SLS policy. In this case, there are two different refinement rules (Cascade Rule 1-1 and 1-2) that
can be applied to make the refinement be correct.

1. Cascade Rule 1-1:Cascade(p, p1, p2, p3), isSLS(p), isSLS(p1), isSLS(p2), isSLS(p3), Intra(p1)�
Intra(p2) � Intra(p3) = Intra(p), SL(p1) = SL(p), SL(p3) = SL(p).

The refinement is correct when Cm1, Cm2, and the connector between them all enforce SLS
policies and they together enforce the intra-level rules of Cm.

2. Cascade Rule 1-2:Cascade(p, p1, p2, p3), isSLS(p), isMLS(p1), isSLS(p2), isMLS(p3),
Intra(p1) � Intra(p2) � Intra(p3) = Intra(p), Inter(p1) = Compl(Inter(p3)).

The refinement is correct when both Cm1 and Cm2 enforce MLS policies which are com-
plimentary to each other, and the original intra-level rules are enforced by Cm1, Cm2, and
the connector between them. In this case, both Cm1 and Cm2 need to enforce additional
inter-level rule specific and maintain the original SLS policy of Cm. Such a refinement could
occur if one of these two MLS components enforces an inter-level rule to down-grade while
the other enforces a complimentary inter-level rule to up-grade. A typical example of ap-
plying this refinement rule of the Cascade pattern is shown in Fig. 10.3. In this example,
Cm is an abstract SLS communication component that takes in messages at TS level and
transfers the messages to output them also at TS. A possible correct refinement of Cm would
involve encrypted communication over an insecure channel (connector Cn). We could have
Cm1 be an encryption device which takes in TS messages, encrypts them with a key for
TS messages, then outputs U messages, and Cm2 be a decryption device which takes in U
messages, decrypts them with TS keys, then outputs TS messages. Obviously, Cm1 and Cm2

are both components that enforce MLS policies and with their composition, the transfer of
TS messages is secure, with no message leakage to lower levels.

Feedback Pattern. The final decomposition pattern is Feedback (Fig. 10.2(c)). In this pat-
tern, Cm is constructed by two communication components Cm1 and Cm2. Suppose that the
policies enforced by component Cm, Cm1, connector between Cm1 and Cm2, component Cm2, con-
nector between Cm2 and Cm1 are correspondingly p, p1, p2, p3, and p4. Policies p2 and p4 are appli-
cation independent. The pattern Feedback(p, p1, p2, p3, p4) is defined as: Feedback(p, p1, p2, p3, p4)
≡ (In(p) = In(p1)∪In(p3)−Out(p2)−Out(p4)) ∧ (Out(p) = Out(p1)∪Out(p3)−In(p2)−In(p4))
∧ (In(p1) ∩ In(p3) = ∅) ∧ (Out(p1) ∩Out(p3) = ∅).

148

Cm1

pre

post

Cm2

Cm

TS TS

TS TS

U U
Cn

Figure 10.3: Component Decomposition Cascade Pattern Example

Cm
Cn1 Cn2

pre

post

Cn

Figure 10.4: Connector Decomposition ConnDec Pattern

The correct refinement cases summarized in Table 10.1 are similar to those for Cascade pattern
and are omitted here to save space. However, it is important to note that some security policies
are not preserved under feedback composition [184, 277, 183]. We discussed feedback composition
in our previous work [288].

Connector and Port Decomposition Patterns

As mentioned in Section 10.2, in the final concrete architecture, a connector does not perform
any application specific computations. Therefore, during the architectural refinement, for any
connector that enforces application specific security policy, we should refine this connector using
ConnDec pattern (Fig. 10.4). In pattern ConnDec, connector Cn is decomposed into connectors
Cn1 and Cn2 and component Cm. After the ConnDec refinement, all application specific security
policies enforced by Cn are enforced by component Cm and no application specific security policy
is enforced by connectors Cn1 and Cn2. Suppose that the policies enforced by Cn, Cn1, Cm,
and Cn2 are correspondingly p, p1, p2, and p3. Policies p1 and p3 are application independent.
The pattern ConnDec(p, p1, p2, p3) is defined as: ConnDec(p, p1, p2, p3) ≡ (In(p) = In(p1)) ∧
(Out(p) = Out(p3)) ∧ (In(p2) = Out(p1)) ∧ (In(p3) = Out(p2)).

For the ConnDec pattern, there is one refinement rule to make the refinement correct.

ConnDec Rule: ConnDec(p, p1, p2, p3), Intra(p1) � Intra(p2) � Intra(p3) = Intra(p), Inter(p1) �
Inter(p2) � Inter(p3) = Intra(p).

The refinement is correct when the connectors Cn1 and Cn2 and the component Cm together
enforce the intra-level rules and inter-level rules of Cn, and Cm must enforce the application specific
rules.

When a connector enforces application independent security policy, it is correct to refine this
connector into a serial composition of two connectors if the two connectors together enforce the
application independent security policies (not pictured here).

149

pre

post

Cn12.ip

Cn1.op

Cn1.opCn1

Cn2

Cn1.ip

Cn2.ip

Cn1.op

Cn1.op

Cn1

Cn2

(a)

pre

post

Cn2.op

Cn1.op

Cn.ip Cn.opCn

Cn12.ip

Cn1

Cn2

(b)

Figure 10.5: Port Decomposition Patterns

Cm

Cn1 Cn2

pre

post
Cn

(a)

Cm1

pre

post

Cm12

Cm2

(b)

Figure 10.6: Component/Connector Aggregation Patterns (a) ComAgg (b) ComConnAgg

For port decomposition, we decompose a port into multiple ports, splitting the services of the
original port to associate them with the new ports. When a port of a component decomposes,
nothing changes in the component and no security policy will be violated. For the connector to this
port, in one case, such a port decomposition causes the connector to decompose (Fig. 10.5 (b)). In
this case, we need to refine the security policies enforced by the connector Cn to ensure they are
enforced by Cn1 and Cn2. Possible inter-level rules enforced by Cn1 and Cn2 should not violate
those enforced by Cn.

In another case, a port decomposition does not cause the connector to decompose (Fig. 10.5(a)).
In this case, connectors Cn1 and Cn2 remain the same, meaning the security policies enforced by
these two connectors remain the same.

10.3.3 Aggregation Patterns

During the process of architectural refinement, we may find it is necessary to merge two more
abstract entities into a single lower level entity. If two components are not connected directly, when
we merge them as one component, we say we aggregate them. If two components are connected
directly, we can consider them as part of a bigger component, but not an aggregation. Aggregation
can be applied to components, connectors, and ports.

ComAgg Pattern. The component aggregation pattern we provide in this paper is ComAgg
(Fig. 10.6(a)). Suppose that the policies enforced by components Cm1, Cm2, and Cm12 are p1,
p2, and p correspondingly. The pattern ComAgg(p1, p2, p) is defined as: ComAgg(p1, p2, p) ≡
(In(p) = In(p1) ∪ In(p2)) ∧ (Out(p) = Out(p1) ∪Out(p2)).

150

Table 10.2: Component Aggregation Patterns for Designing MLS Systems
Policy Type Policy Type
Cm1 Cm2 Cm12

SLS MSLS MLS
SLS SLS

√
√∗

SLS MSLS
√∗

SLS MLS
√∗

MSLS MLS
√

MLS MLS
√

∗ Extra inter-level rules added in these cases

For the ComAgg pattern, depending on the types of security policy enforced by the initial
component, Cm1 and Cm2, the possible type of policy enforced by the new component, Cm12, is
different, as summarized in Table 10.2. In this section, we discuss the refinement rules of some
example cases of the ComAgg pattern, and the refinement rules of all cases are listed in [?].

In the example case, either Cm1 or Cm2 is an MSLS component while the other is an MLS
component. In this case, there are two different refinement rules (ComAgg Rule 4-1 and 4-2) that
can be applied to make the aggregation of two components into a new one be correct.

1. ComAgg Rule 4-1:ComAgg(p1, p2, p), isMSLS(p1), isMLS(p2), isMLS(p), Intra(p1) ∪
Intra(p2) = Intra(p), Inter(p1) ∩ Inter(p2) = Inter(p), SL(p1) ∩ SL(p2) 6= ∅.
Cm12 should be an MLS component that enforces all intra-level rules of Cm1 and Cm2, and
the MLS inter-level rules of Cm12 should not violate those of Cm1 and Cm2. When there
is a conflict between the MLS inter-level rule and the MSLS inter-level rule of the original
components (e.g., according to the MLS inter-level rule, there is cross-level information flow
between TS and S, but according to the MSLS inter-level rule, there should be no cross-level
information flow), we require the stricter rule be enforced. This means that Cm12 must
enforce the MSLS inter-level rule instead of the MLS inter-level rule when conflict occurs.

2. ComAgg Rule 4-2:ComAgg(p1, p2, p), isMSLS(p1), isMLS(p2), isMLS(p), Intra(p1) ∪
Intra(p2) = Intra(p), Inter(p1) ∪ Inter(p2) = Inter(p), SL(p1) ∩ SL(p2) = ∅.
Cm12 should be an MLS component that enforces all intra-level rules of Cm1 and Cm2.
And since there is no conflict between the MLS rule and the MSLS rule of the original two
components, Cm12 should enforces all the MLS and MSLS inter-level rules of both original
components.

It is important to note that in ComAgg, though the two original components do not interact
directly with each other, they both interact with their environment, and in some cases, their
aggregation may cause a subtle situation that needs to be examined closely, as we discussed in
greater detail in our previous work [288].

ComConnAgg Pattern. In addition to ComAgg pattern, we propose a ComConnAgg pattern
(Fig. 10.6(b)) to aggregate component and connectors. In this pattern, connectors Cn1 and Cn2 and
component Cm are aggregated to a new connector Cn. Suppose that the policies enforced by Cn,

151

pre

post

Cn12.ip

Cn1.op

Cn1.opCn1

Cn2

Cn12.ip Cn12.opCn12

(a)

pre

post

Cn2.op

Cn1.op

Cn12.ip

Cn1

Cn2

(b)

Cn1.ip

Cn2.ip

Cn1.op

Cn1.op

Cn1

Cn2

Figure 10.7: Port Aggregation Patterns

Cn1, Cm, and Cn2 are p, p1, p2, and p3 correspondingly. This pattern can be applied only when all
these policies are application independent. The pattern is defined as: ComConnAgg(p1, p2, p3, p)
≡ (In(p) = In(p1)) ∧ (Out(p) = Out(p3)). This aggregation is correct if and only if Cn is trusted
to enforce all the security policies of Cn1, Cn2, and Cm, as specified by the ComConnAgg Rule:

ComConnAgg Rule: ComConnAgg(p1, p2, p3, p),
Intra(p1) � Intra(p2) � Intra(p3) = Intra(p),
Inter(p1) � Inter(p2) � Inter(p3) = Inter(p).

Also, two connectors composed serially can be aggregated to one connector if the new connector
does not violate any security policies of the two original connectors.

Port Aggregation Patterns. For port aggregation, we merge the services of multiple ports to
associate them with a new port. When the ports of a component are aggregated, nothing changes
in the component and the security policy is not violated. For the connectors to these ports, in one
case, such a port aggregation causes the connectors to aggregate as well (Fig. 10.7 (a)). In this
case, Cn12 should enforce all the security policies of Cn1 and Cn2. Only when the two connectors
Cn1 and Cn2 are processing data at the same security level will no inter-level rule be enforced by
Cn12; otherwise, there should always be inter-level rules enforced by Cn12, and they should not
violate the inter-level rules of Cn1 and Cn2.

In another case, ports aggregation does not cause connectors with these ports to aggregate
(Fig. 10.7 (b)). In this case, after the port aggregation, connectors Cn1 and Cn2 remain the same,
meaning all security policies of these two connectors remain the same.

10.3.4 Elimination Patterns

Simply stated, for a connector with no semantics, meaning no functionality is provided by it, we
can eliminate this connector without violating any security policy. Elimination of a component is
correct if the component has no connection to other components. Also, elimination of a port is
correct if it has no connection to its environment.

152

Table 10.3: Example Level1 Patterns
Patterns Policy Types Level0 Rules
Product MSLS MSLS MSLS Product Rule 2-2

(p) (p1) (p2) ComAgg Rule 1-2
Product MLS MSLS MLS Product Rule 3-1

(p) (p1) (p2) ComAgg Rule 1-2
Cascade MSLS SLS MSLS Product Rule 2-1/2-2

(p) (p1) (p3) Cascade Rule 1-1
ComAgg Rule 1-2/2

Cascade MLS MSLS MLS Product Rule 3-2
(p) (p1) (p3) Cascade Rule 3-1

ComAgg Rule 1-2
ComAgg Rule 5

Feedback MLS MSLS MLS Product Rule 3-2
(p) (p1) (p3) Feedback Rule 3-1

ComAgg Rule 1-2
ComAgg Rule 5

ComAgg MSLS MSLS MSLS Product Rule 2
(p) (p1) (p2) ComAgg Rule 2

10.4 Hierarchy of Refinement Patterns

In this section, we propose the hierarchy of the refinement patterns. In our work, the Level0 pattern
set consists of all the patterns presented in the previous section. It is a set of refinement patterns
on which other refinement patterns can be built. Intuitively, the architects can build their own
patterns in any Leveli+1 set based on the patterns from Level0 set to Leveli set. In the policy-
based architectural refinement verification system that we will develop as a future work, we will
first prove that the refinement rules of the patterns in Level0 are correct and provide these rules
as the axioms of the verification system. The refinement rules of patterns in Level1 and above are
theorems that need to be proved based on the axioms provided. In this way, the verification of
patterns in Leveli+1 can reuse the verification of patterns in lower level sets, and verification efforts
can be reduced.

Some examples of Level1 patterns, but not exhaustive, are presented in Table 10.3, and their
refinement rules are listed in [285]. For each example Level1 pattern, the Level0 Rules column in
Table 10.3 indicates the Level0 rules that can be applied to verify its refinement rule. We discuss
one example Level1 pattern, Cascade (MSLS → SLS + MSLS) to informally justify that the
refinement rule of this pattern can be verified based on the rules of Level0 patterns. We leave the
formal verification of the listed Level1 patterns as our future work.

The Cascade (MSLS → SLS + MSLS) pattern says that when Cm is an MSLS component,
either Cm1 or Cm2 could be an MSLS component while the other is an SLS component (Fig. 10.8).
This pattern is not a Level0 pattern, but a Level1 pattern since such a decomposition pattern can
be achieved by applying a set of refinement patterns sequentially as depicted in Fig. 10.9.

The rule Cascade−L1 Rule1(MSLS) : Cascade(p, p1, p2, p3), isMSLS(p), isSLS(p1), isMSLS(p3),
Intra(p1) � Intra(p2) � Intra(p3) = Intra(p),

153

pre

post

Cm
TS TS

S S

Cm1

TS

TS

S
S

Cm2 TSTS

Figure 10.8: Cascade Level1 Pattern (MSLS→SLS+MSLS)

Cm
TS TS

TS TS

S S

Cm2TS TS TSTS

Product Rule 2-1

Cascade Rule 1-1

Cm1

TS TS

S
S

Cm2

TSTS

ComAgg Rule 1-2

S S

Figure 10.9: Achieved through Applying a Set of Level0 Refinements

Inter(p3) = Inter(p) can be verified through applying a set of Level0 rules, Product Rule 2-1,
Cascade Rule 1-1, and ComAgg Rule 1-2, sequentially.

10.5 A MILS Application Design Example

In this section, we present the process of designing a MILS application system to illustrate how
to design an MLS system by applying the refinement patterns described in the previous sections.
The system is simple enough to avoid complexity for the purposes of discussion but sufficient to
illustrate the concepts of our approach. The security policies of this example are specified informally
in written text and we justify each step of the refinement by informally verifying that the refinement
rule of the applied pattern is satisfied. In the future work, we will use a policy specification language
to specify policies so that it can be formally verified that the refinement rules of each step are
satisfied. The specifications of the system are: A distributed MILS application system that allows
users with different security levels (TS and S) to store and retrieve data on an MLS database
using legal CORBA messages (i.e., legal means read, write methods for users and reply method for
database). Assume user U1 is at TS level while U2 is at S level and the database DB is remotely
accessible by both users. The security policy is: 1. inter-level rule: store/retrieve data obeying

154

U1 DB U2

CnU1-DB

CnDB-U1
CnDB-U2

CnU2-DB

Figure 10.10: Abstract Architecture of the Application Example

U1

X1

DB

X4
X3

X2

U2

CnU1-X1

CnU2-X2
CnX1-DB CnX2-DB

CnDB-X3
CnX3-U1

CnDB-X4
CnX4-U2

Figure 10.11: Architecture of the Example System after Step 1

BLP model; 2. intra-level rule: all messages sent should be legal CORBA messages.

The abstract architecture of this system is depicted in Fig. 10.10. In this abstract architec-
ture, connector CnU1−DB, CnU2−DB, CnDB−U1 , and CnDB−U2 enforce security policies listed in
Table 10.4, No. 1, 2, 3, and 4 respectively.

Following are several refinement steps in the process of the application system design which
illustrate how to obtain a correct concrete system architecture that preserves the original security
policies.

Step 1. In the abstract architecture, connectors CnU1−DB, CnU2−DB, CnDB−U1 , and CnDB−U2

enforce application specific policies, we apply the connector decomposition pattern ConnDec to each
connector to put the application specific policies onto components. After the refinement, the new
architecture is depicted in Fig. 10.11 and the policies enforced by the added components are listed
in Table 10.4, No. 5 to 8. The new connectors between components do not enforce security policy.
The new components can be considered as guards for application specific communications between
users and DB. It is obvious that the ConnDec Rule is satisfied by the policies before and after
ConnDec pattern is applied to each original connector.

Step 2. We apply component aggregation pattern ComAgg to merge two guards X1 and X3

into a single bi-directional guard as we did with the other two guards, X2 and X4. In the new
architecture (Fig. 10.12), the policy enforced by component X13, No. 9, do not violate the policies
enforced by X1 and X3, therefore, the ComAgg Rule 3 is satisfied. Similarly, the policy enforced
by component X24, No.10, does not violate the policies enforced by X2 and X4, and the ComAgg
Rule 3 is also satisfied.

Step 3. We further apply ComAgg pattern to merge X13 and X24 to a component X which
processes data at different security levels, and the new architecture is depicted in Fig. 10.13(a). It
is straightforward that the security policies enforced by X13 and X24 (before refinement) and the
security policy enforced by X (No. 11, after refinement) satisfy the refinement rule ComAgg Rule
5-2. Therefore, this step of refinement is correct.

Step 4. Since DB is not at the same location as U1 and U2, we apply component decomposition

155

Table 10.4: Application Policies Enforcement Table
Com/ No. Policy
Conn Intra-level Rules Inter-level Rules

CnU1−DB 1 Message is legal CORBA mes-
sage.

U1 read and write DB according
to BLP.

CnU2−DB 2 Message is legal CORBA mes-
sage.

U2 read and write DB according
to BLP.

CnDB−U1 3 Message is legal CORBA mes-
sage.

CnDB−U2 4 Message is legal CORBA mes-
sage.

X1 5 Message is legal CORBA mes-
sage.

U1 read/write TS data and read
S data.

X2 6 Message is legal CORBA mes-
sage.

U2 read/write S data and write
TS data.

X3 7 Message is legal CORBA mes-
sage.

X4 8 Message is legal CORBA mes-
sage.

X13 9 Message between U1 and DB is
legal CORBA message.

U1 read/write TS data and read
S data.

X24 10 Message between U2 and DB is
legal CORBA message.

U2 read/write S data and write
TS data.

X 11 Message between U1/U2 and
DB is legal CORBA message.

U1 read/write TS data and read
S data; U2 read/write S data
and write TS data.

X ′ 12 Message between U1/U2 and
DB is legal CORBA message.

U1 read/write TS data and read
S data; U2 read/write S data
and write TS data.

13 Downgrade TS/S message to U
by encrypting with TS/S key;
upgrade U message to TS/S by
decrypting with TS/S key.

X ′′ 14 Message between U1/U2 and
DB is legal CORBA message.

U1 read/write TS data and read
S data; U2 read/write S data
and write TS data.

TNIU 15 Downgrade TS/S message to U
by encrypting with TS/S key;
upgrade U message to TS/S by
decrypting with TS/S key.

MMR 16 Forward different types of mes-
sages to the correct type check-
ing components.

Messages from different parti-
tions must be labelled correctly
with security levels of the par-
titions.

GG 17 Message received must be legal
CORBA message.

U1 read/write TS data and read
S data; U2 read/write S data
and write TS data.

DB 18 Reply with legal CORBA mes-
sage.

Reply to requests with data at
proper classification levels.

156

CnX24-U2

U1 X13 U2

CnU1-X13
CnU2-X24

CnX13-DB CnX24-DB

CnDB-X13
CnX13-U1

CnDB-X24

DB X24

Figure 10.12: Architecture of the Example System after Step 2

CnU1-X

X DB

U1

U2

CnX-DB-TS

CnX-U1

CnU2-X

CnX-U2

CnDB-X-TS

CnX-DB-S

CnDB-X-S

(a)

X’

CnX’-X’

CnX’-X’

X’

(b)

Figure 10.13: Architecture of the Example System after (a) Step 3 (b) Step 4

Feedback pattern to decompose X by putting two same component X ′ at two different locations.
Additional inter-level rules need to be enforced by X ′ to down-grade/up-grade. As long as the
assumption that the encrypted messages are not leaked by the insecure network, the combination of
the X ′, an insecure network, and X ′ will provide a secure communication, as shown in Fig. 10.13(b).
The refinement rule Feedback Rule 3-2 is satisfied by the policies before and after the refinement.

Step 5. We continue the refinement by applying the component decomposition pattern Feed-
back to decompose X ′ into a composition of X ′′ and TNIU (Trusted Network Interface Unit) to
separate guarding from secure communication, as shown in Fig. 10.14(a). The component TNIU
enforces the MLS policy, No. 15, to downgrade/upgrade all messages it receives before forwarding
them so that it can provide secure communications between different locations. Component X ′′

enforces the security policy No. 14, which performs the secure guarding and does not violate the
security policies No. 12 and 13 of X ′. Connectors CnX′′−TNIU and CnTNIU−X′′ can transfer
messages using direct process calls. The Feedback Rule 3-2 is satisfied during the refinement.

Step 6. We apply decomposition pattern Feedback to decompose X ′′ into two other generic se-

CnGG-MMR

X’’

CnX’’-TNIU

CnTNIU-X’’

TNIU

GG

MMR

CnMMR-GG

(a) (b)

Figure 10.14: Part of Architecture of the Example System after (a) Step 5 (b) Step 6

157

U1 MMR

GG

TNIU TNIU MMR

GG

DBU2

Figure 10.15: Final Concrete Architecture of the Example System

2(CnU2-DB)

3(CnDB-U1)

4(CnDB-U2)

1(CnU1-DB)

6(X2)

7(X3)

8(X4)

5(X1)

10(X24)

9(X13)
11(X) 12(X’)

13(X’)
New

14(X’’)

15(TNIU)

16(MMR)

17(GG’)

18(DB’)

Figure 10.16: Trace of Security Policies Refinement and Enforcement

cure building blocks, MMR and GG, depicted in Fig. 10.14(b). In our work, MMR (MILS Message
Router) does the component identification, message labeling and routing of typed messages. The
GG (GIOP Guard, a guard for checking legal CORBA messages) does CORBA message checking.
Specifically, MMR is an MSLS component that enforces the security policy No. 16, and GG is
an MLS component enforces security policies No. 17. Connectors CnMMR−GG and CnGG−MMR

can transfer messages using direct process calls. In this step of refinement, Feedback − L1 Rule1
is satisfied.

Final. After all these steps, we take one additional refinement step by applying port aggregation
patterns to aggregate the ports and connectors between the MMR and DB to achieve the final
concrete architecture shown in Fig. 10.15. The security levels associated with the ports of the
connectors between MMR and DB are TS and S.

Through informally justifying that the refinement rule of the applied refinement pattern is
satisfied for each step of refinement, we can informally guarantee that this concrete architecture
is a correct design of the application example, if components MMR, GG, TNIU , and DB are
designed to enforce the security policies in Table 10.4.

The trace of how the original security policies are refined and enforced during the design process
is presented in Fig. 10.16. The numbers in the figure represent the respective security policies in
Table 10.4.

By walking through the design of this application example, we can see that our refinement pat-
terns provide guidance for the design of MLS systems by being applied to each step of architectural
refinement, and the refinement rule of each applied pattern can be a criterion to justify that the
refinement is correct.

158

10.6 Conclusions and Future Work

In this paper, we extend our previous work of a set of correct architectural refinement patterns
for the design of MLS systems. We present a policy refinement language, PRL, to specify the
refinement rules of patterns, and propose the hierarchy of the patterns. The rules for the patterns
in level0 are the axioms in the policy-based architectural refinement verification system, while the
rules for the patterns in higher levels are theorems that can be proved based on the axioms and
that can be reused by architects to verify the correctness of the refinement of application policies.

Our current work only provides an informal framework of policy-based architectural refinement
technique for the design of MLS system. As future work, we will work on the formal verification
of our approach. We will provide the formal definition of correct security policy refinement for the
design of MLS system, and provide the formal semantics of PRL. Based on these, the refinement
rules of each refinement pattern will be proved to be correct, as well as the pattern hierarchy. Then,
we will extend an existing policy specification language to specify MLS system application policies,
so that when we apply our refinement pattern to each step of the design of an example system,
we can formally verify that the refinement rule of the pattern is satisfied, which means that the
policies are refined correctly and enforced during the MLS systems design.

159

Part III

Bibliography of cited work and
Abstracts of Publications

160

Bibliography

[1] Mathematical markup language (mathml) 2.0. Recommendation REC-xml-20040204.

[2] Functional safety of electrical/ electronic/ programmable electronic safety-related systems.
Technical Report IEC 61508, International Electrotechnical Commission, Jan. 1998. Parts 1
to 7.

[3] Xsl transformations (XSLT). Recommendation REC-xslt-19991116, Nov. 1999.

[4] Final annual report for clarification of DO-178B. Technical Report DO-248B, Dec. 2001.

[5] Xml metadata interchange specification (XMI). Technical Report 2.1, Mar. 2001.

[6] Extensible markup language (xml) 1.0. Recommendation REC-xml-20040204, W3C, Feb.
2004.

[7] CHISEL, Mar. 2006.

[8] EUROCAE website, Mar. 2006.

[9] FrontEndArt, 2006.

[10] Graph eXchange Language, Feb. 2006.

[11] The Graphviz: Graph visualization software, Mar. 2006.

[12] KAON2, 2006.

[13] Project Bauhaus, 2006.

[14] RTCA website, Mar. 2006.

[15] RuleML, 2006.

[16] Software Engineering Research Laboratory, 2006.

[17] Visual Prolog, Feb. 2006.

[18] W3C, 2006.

[19] ISO/IEC 10181-4. Information-technology - Open systems interconnection - Security frame-
works in open systems-Security frameworks in open systems - Part 4: Non-repudiation. Tech-
nical report, ISO/IEC, 1996.

161

[20] ISO/IEC DIS 13888-1. Information-technology - Security techniques - Non-repudiation - Part
1: General model. Technical report, ISO/IEC JTC1/SC27 N1503, November 1996.

[21] ISO/IEC DIS 13888-3. Information-technology - Security techniques - Non-repudiation - Part
2: Using asymmetric techniques. Technical report, ISO/IEC JTC1/SC27 N1505, November
1996.

[22] ISO/IEC 5th CD 13888-2. Information-technology - Security techniques - Non-repudiation
- Part 3: Using asymmetric techniques. Technical report, ISO/IEC JTC1/SC27 N1505,
November 1996.

[23] M. Abadi and R. Needham. Prudent Engineering Practice for Cryptographic Protocols. In
Proc. IEEE Symposium on Research in Security and Privacy, pages 122–136, 1994.

[24] A. Al-Muhaitheef. The Firewall Mobile Customs Agents: A Distributed Firewall Architecture.
PhD thesis, Dept. of Computer Science, University of Idaho, Aug. 2002.

[25] J. Alves-Foss. Mechanical Verification of Secure Distributed System Specifications. PhD
thesis, Department of Computer Science, University of California, Davis, 1991.

[26] J. Alves-Foss. The architecture of secure systems. In Hawa’ii International Conference on
System Sciences, pages 307–316, Jan. 1998.

[27] J. Alves-Foss. Multi-Protocol Attacks and the Public Key Infrastructure. In Proc. National
Information Systems Security Conference, pages 566–576, October 1998.

[28] J. Alves-Foss. Cryptographic protocol engineering: Building security from the ground up. In
Proc. International Conference on Internet Computing 2000, pages 371–377, Jun. 2000.

[29] J. Alves-Foss, D. Conte de Leon, and P. Oman. Experiments in the use of XML to enhance
traceability between object-oriented design specs. and source code. In Proc. Of the 35th
Hawaii Intl. Conf. On System Sciences, pages 3959 – 3966, 2002.

[30] J. Alves-Foss, W.S. Harrison, P. Oman, and C. Taylor. The MILS architecture for high
assurance embedded systems. International Journal of Embedded Systems, 2(3/4):239–247,
2006.

[31] J. Alves-Foss and K. Levitt. Verification of secure distributed systems in higher order logic:
A modular approach using generic components. In Proc. IEEE Symposium on Research in
Security and Privacy, pages 122–135, 1991.

[32] J. Alves-Foss and C. Taylor. An analysis of the GWV security policy. In ACL2 Workshop
2004, 2004.

[33] Jim Alves-Foss, W. Scott Harrison, Paul Oman, and Carol Taylor. The MILS architecture
for high-assurance embedded systems. International Journal of Embedded Systems, in press,
2007.

[34] Jim Alves-Foss, Carol Taylor, and Paul W. Oman. A multi-layered approach to security in
high assurance systems. In Proc. Hawaii Systems Sciences Conference, 2004.

[35] Vincenzo Ambriola and Alina Kmiecik. Architectural transformations. In SEKE ’02: Proceed-
ings of the 14th international conference on software engineering and knowledge engineering,
pages 275–278, New York, NY, USA, 2002. ACM Press.

162

[36] Ben Ames. Real-time software goes modular. Military & Aerospace Electronics, 14(9), Sept.
2003. URL: http://www.ghs.com/download/articles/GHS RTOS modular 090103.pdf.

[37] Y. Amir, Y. Kim, C. Nita-Rotaru, and G. Tsudik. On the performance of group key agreement
protocols. In Proc. 22nd IEEE Conference on Distributed Computing Systems, Jul. 2002.

[38] Y. Amir, Y. Kim, C. Nita-Rotaru, and G. Tsudik. On the performance of group key agreement
protocols. ACM Transactions on Information and System Security, 7(3):457–488, 2004.

[39] J. P. Anderson. Computer security technology planning study. Technical Report ESD-TR-
73-51, USAF Electronic Systems Div., Bedford, Mass., Oct. 1972.

[40] James P. Anderson. Computer security technology planning study. Technical report, Fort
Washing, PA, 1972.

[41] Kenneth M. Anderson, Susanne A. Sherba, and William Van Lepthien. Towards large-scale
information integration. In Proc. 24th Int’l Conf. on Software Engineering (ICSE’02), pages
524–534, May 2002.

[42] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, and Andrea De Lucia. Information
retrieval models for recovering traceability links between code and documentation. In Proc.
16th Int’l Conf. on Software Maintenance (ICSM’00), page 40, Oct. 2000.

[43] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, and Andrea De Lucia. Maintaining
traceability links during object-oriented software evolution. Software Practice and Experience,
31(4):331–355, Apr. 2001.

[44] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lucia, and Ettore Merlo.
Recovering traceability links between code and documentation. IEEE Trans. Softw. Eng.,
28(10):970–983, Oct. 2002.

[45] Giuliano Antoniol, Gerardo Canfora, and Andrea De Lucia. Maintaining traceability dur-
ing object-oriented software evolution: a case study. In Proc. 15th Int’l Conf. on Software
Maintenance (ICSM’99), pages 211–219, Aug. 1999.

[46] Giuliano Antoniol, Gerardo Canfora, Andrea De Lucia, Gerardo Casazza, and Ettore Merlo.
Tracing object-oriented code into functional requirements. In Proc. 8th Int’l Workshop on
Program Comprehension (IWPC’00), pages 79–86, Jun. 2000.

[47] Giuliano Antoniol, Gerardo Canfora, Andrea De Lucia, and Ettore Merlo. Recovering code
to documentation links in object-oriented systems. In Proc. 6th Working Conf. on Reverse
Engineering (WCRE’99), pages 136–144, Oct. 1999.

[48] Giuliano Antoniol, Bruno Caprile, Alessandra Potrich, and Paolo Tonella. Design-code trace-
ability for object-oriented systems. Annals of Software Eng., 9(1-2):35–58, Mar. 2000.

[49] Giuliano Antoniol, Bruno Caprile, Alessandra Potrich, and Paolo Tonella. Design-code trace-
ability recovery: Selecting the basic linkage properties. Science of Comput. Program., 40(2-
3):213–234, Jul. 2001.

[50] Giuliano Antoniol, Gerardo Casazza, and Aniello Cimitile. Traceability recovery by modeling
programmer behavior. In Proc. 7th Working Conf. on Reverse Engineering (WCRE’00),
pages 240–247, Nov. 2000.

163

http://www.ghs.com/download/articles/GHS

[51] Giuliano Antoniol, Alessandra Potrich, Paolo Tonella, and Roberto Fiutem. Evolving object-
oriented design to improve code traceability. In Proc. 7th Int’l Workshop on Program Com-
prehension (IWPC’99), pages 151–160, May 1999.

[52] ARINC. ARINC Specificaiton 653: Avionics Application Software Standard Interface. Aero-
nautical Radio, Inc., Jan. 1997.

[53] Common Criteria Recognition Arrangement. Common Criteria for Information Technology
Security Evaluation Version 2.1, 1999.

[54] Giuseppe Ateniese, Michael Steiner, and Gene Tsudik. Authenticated group key agreement
and friends. In 5th ACM Conference on Computer and Communications Security, pages
17–26, San Francisco, CA, Nov. 1998. ACM Press.

[55] T. Aura. Strategies against replay attacks. In Proceedings of the 10th IEEE Computer Society
Foundations Workshop, pages 59 – 68, Rockport, MA, June 1997. IEEE Computer Society
Press.

[56] Algirdas Avižienis, Jean Claude Laprie, Brian Randell, and Carl Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE Trans. Dependable and Secure
Comput., 1(1):11–33, 2004.

[57] Alguirdas Avižienis, Jean Claude Laprie, and Brian Randell. Fundamental concepts of
computer systems dependability. In Proc. Workshop on Robot Dependability, Seoul, Korea
(South), May 2001.

[58] Greg J. Badros. JavaML: a markup language for Java source code. Computer Networks,
33(1–6):159–177, 2000.

[59] Somo Banerjee, Chris A. Mattmann, Nenad Medvidovic, and Leana Golubchik. Leveraging
architectural models to inject trust into software systems. In SESS ’05: Proceedings of the
2005 workshop on software engineering for secure systems building trustworthy applications,
pages 1–7, New York, NY, USA, 2005. ACM Press.

[60] K. Suzanne Barber, Tom Graser, and Jim Holt. Enabling iterative software architecture
derivation using early non-functional property evaluation. In ASE ’02: Proceedings of the 17th
IEEE international conference on automated software engineering, page 172, Washington,
DC, USA, 2002. IEEE Computer Society.

[61] K. Becker and U. Willie. Communication complexity of group key distribution. In Proc. 5th

Conference on Computers and Communication Security, pages 1–6, 1998.

[62] D. E. Bell and L. LaPadula. Secure computer systems: Unified exposition and multics in-
terpretation. MITRE technical report, MITRE Corporation, Bedford Massachusetts, 2997:ref
A023 588, 1976.

[63] D. E. Bell and L. J. LaPadula. Secure computer systems: Unified exposition and multics
interpretation. Technical Report MTR-2997, The MITRE Corporation, Bedford, MA, Jul.
1975.

[64] M. Bellare and P. Rogaway. Entity authentication and key distribution. CRYPTO 93, 773,
1994.

164

[65] M. Bellare and P. Rogaway. Practice-oriented provable security. In Proc. of First International
Workshop on Information Security, volume 1561, pages 1–15, 1999.

[66] Tim Berners-Lee. The Semantic Web, 2002.

[67] Ray Bird, Inder Gopal, Amir Herzberg, Phil Janson, Shay Kutten, Refik Molva, and Moti
Yung. Systematic Design of a Family of Attack-Resistant Protocols. IEEE Journal on Selected
Areas in Communications, 11(5):679–693, June 1993.

[68] D. Boneh. The Decision Diffie-Hellman problem. In Proc. Third Algorithmic Number Theory
Symp, volume LNCS Vol. 1423, pages 48–63. Springer-Verlag, 1998.

[69] Paulo Borba and Joseph A. Goguen. Refinement of concurrent object oriented programs. In
Stephen Goldsack and Stuart Kent, editors, Formal Methods in Object Technology. Springer-
Verlag, Nov. 1995.

[70] M. Burmester and Y. Desmedt. A secure and efficient conference key distribution system. In
Advances in Cryptology - EUROCRYPT’94, pages 275–286, May 1994.

[71] M. Burmester and Y. G. Desmedt. Efficient and secure conference-key distribution. In
Security Protocols: International Workshop, pages 119–129, Apr. 1996.

[72] Michael Burrows, Martin Abadi, and Roger Needham. A logic of Authentication. Technical
report, Digital Systems Research Center, February 1989. Parts and versions of this material
have been presented in many places including ACM Transactions on Computer Systems, 8(1)
18:36, Feb.1990. All references herein are to the SRC Research Report 39 as revised Feb. 22,
1990.

[73] U. Carlsen. Cryptographic protocol flaws. In Proc. IEEE Computer Security Foundations
Workshop VII, pages 192–200. IEEE Computer Press, June 1994.

[74] Y. Challal, A. Bouabdallah, and H. Bettahar. H2A: Hybrid hash-chaining scheme for adaptive
multicast source authentication of media-streaming. Computers & Security, 24(1):57–68,
2005.

[75] Lawrence Chung, Brian A. Nixon, and Eric Yu. An approach to building quality into software
architecture. In CASCON ’95: Proceedings of the 1995 conference of the centre for advanced
studies on collaborative research, page 13. IBM Press, 1995.

[76] John A. Clark and Jeremy Jacob. A Survey of Authentication Protocol Literature: Version
1.0. University of York, Department of Computer Science, November 1997.

[77] Jane Cleland-Huang. Toward improved traceability of non-functional requirements. In Proc.
3rd Int’l Workshop on Traceability in Emerging Forms Softw. Eng.: In conj. with (ASE’05),
pages 14–19, Nov. 2005.

[78] Jane Cleland-Huang, Carl K. Chang, and Mark J. Christensen. Event-based traceability for
managing evolutionary change. IEEE Trans. Softw. Eng., 29(9):796–810, Sep. 2003.

[79] Jane Cleland-Huang, Raffaella Settimi, Oussama BenKhadra, Eugenia Berezhan, and Selvia
Christina. Goal-centric traceability for managing non-functional requirements. In Proc. 27th
Int’l Conf. on Software Engineering (ICSE’05), pages 362–371, May 2005.

165

[80] Jane Cleland-Huang, Raffaella Settimi, Chuan Duan, and Xuchang Zou. Utilizing supporting
evidence to improve dynamic requirements traceability. In Proc. 13th IEEE Int’l Requirements
Engineering Conference (RE’05), pages 135–144, Aug.–Sep. 2005.

[81] D. Conte de Leon. Formalizing traceability among software work products. Master’s thesis,
Dept. of Computer Science, University of Idaho, Dec. 2002.

[82] D. Conte de Leon. Completeness of Implementation Traceability for the Development of
High Assurance and Critical Computing Systems. PhD thesis, Dept. of Computer Science,
University of Idaho, Dec. 2006.

[83] D. Conte de Leon and J. Alves-Foss. Hidden implementation dependencies in high assurance
and critical computing systems. IEEE Transactions on Software Engineering, 32(10):790–811,
Oct. 2006.

[84] D. Conte de Leon, J. Alves-Foss, and P. Oman. Implementation-oriented secure architectures,
paper st14-01. In HICSS, Jan. 2007.

[85] Daniel Conte de Leon and Jim Alves-Foss. Experiments on processing and linking semantically
augmented requirement specifications. In Proceedings of the 37th Annual Hawaii International
Conference on System Sciences (HICSS’04), 2004.

[86] R. Corin, S. Malladi, J. Alves-Foss, and S. Etalle. Guess what? Here is a new tool that finds
some new guessing attacks. In Proc. Workshop on Issues in the Theory of Security (WITS),
2003.

[87] Bill Curtis, Herb Krasner, and Neil Iscoe. A field study of the software design process for
large systems. Comm. ACM, 31(11):1268–1287, 1988.

[88] J. Dai and J. Alves-Foss. A formal authorization policy model. In Proc. Software Engineering
Research and Applications, Jun. 2003.

[89] R. I. Damper. Emergence and levels of abstraction. Int’l Journal of Systems Science,
31(7):811–818, Jul. 2000.

[90] Mark Denford, John Leaney, and Tim O’Neill. Non-functional refinement of computer based
systems architecture. In ECBS ’04: Proceedings of the 11th IEEE international conference
and workshop on the Eengineering of computer-based systems, page 168. IEEE Computer
Society, 2004.

[91] Yi Deng, Jiacun Wang, Jeffrey J. P. Tsai, and Konstantin Beznosov. An approach for mod-
eling and analysis of security system architectures. IEEE Transactions on Knowledge and
Data Engineering, 15(5):1099–1119, 2003.

[92] D. Denning and G. Sacco. Timestamps in key distribution protocols. Communications of the
ACM, 24(8):553–536, August 1981.

[93] T. Dierks and C. Allen. The TLS protocol Version 1.0. IETF - Network Working Group, The
Internet Society, RFC 2246, January 1999.

[94] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on Informa-
tion Theory, 22(6):644–652, Nov. 1976.

166

[95] DoD. Department of Defense Trusted Computer System Evaluation Criteria. Department of
Defense, 1985.

[96] D. Dolev, S. Even, and R. Karp. On the Security of Ping-Pong Protocols. Information and
Control, 55(1-3):40–56, 1982.

[97] D. Dolev and A.C. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, 29(2), 1983.

[98] Alexander Egyed. A scenario-driven approach to traceability. In Proc. 23rd Int’l Conf. on
Software Engineering (ICSE’01), pages 123–132, May 2001.

[99] Alexander Egyed. A scenario-driven approach to trace dependency analysis. IEEE Trans.
Softw. Eng., 29(2):116–132, 2003.

[100] Alexander Egyed and Paul Grünbacher. Towards understanding implications of trace depen-
dencies among quality requirements. In Proc. 2nd Int’l Workshop on Traceability in Emerging
Forms Softw. Eng.: In conj. with (ASE’03), Oct. 2003.

[101] F. J. Thayer Fábrega, J. C. Herzog, and J. D. Guttman. Why is a security protocol correct?
IEEE Computer Symposium on Security and Privacy, pages 160–171, 1998.

[102] F. J. Thayer Fábrega, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving security
protocols correct. Journal of Computer Security, 7(2,3):191–230, 1999.

[103] F. Javier Thayer Fábrega, Jonathan C. Herzog, and Joshua D. Guttman. Mixed Strand
Spaces. In Proceedings of the 12th IEEE Computer Security Foundations Workshop, volume
27(2), pages 10–14. IEEE Computer Society Press, June 1999.

[104] M.S. Feather, A.P. Nikora, C.L. Heitmeyer, and N.R. Meade. Workshop on software engi-
neering for high assurance systems. In 25th Int’l Conf. on Software Engineering (ICSE’03),
Portland, OR, U.S.A., May 2003.

[105] Mariusz A. Fecko and Christopher M. Lott. Improving the requirements engineering process
for an electronic clearinghouse. In Proc. 10th IEEE Int’l Requirements Engineering Confer-
ence (RE’02), pages 52–60, Essen, Germany, Sep. 2002.

[106] A. Fekete, N. Lynch, and A. Shvartsman. Specifying and using a partitionable group com-
munication service. In Proceedings of the 16th Conference on Principles of Distributed Com-
puting, pages 21–24, Santa Barbara, CA, Aug. 1997.

[107] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh. Inconsistency handling
in multiperspective specifications. IEEE Trans. Softw. Eng., 20(8):569–578, 1994.

[108] Roberto Fiutem and Giuliano Antoniol. Identifying design-code inconsistencies in object-
oriented software: a case study. In Proc. 14th Int’l Conf. on Software Maintenance (ICSM’98),
pages 94–102, Nov. 1998.

[109] Xavier Franch and Pere Botella. Putting non-functional requirements into software architec-
ture. In IWSSD ’98: Proceedings of the 9th international workshop on software specification
and design, page 60, Washington, DC, USA, 1998. IEEE Computer Society.

[110] A. Freier, P. Kartion, and P. Kocher. The SSL Protocol: Version 3.0. Netscape Communica-
tions, InC., Mar. 1996.

167

[111] Emden R. Gansner, Eleftherios Koutsofios, and Stephen C. North. Drawing graphs with dot ,
Feb. 2002.

[112] Emden R. Gansner and Stephen C. North. An open graph visualization system and its
applications to software engineering. Software Practice and Experience, 30(11):1203–1233,
Sep. 2000.

[113] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis, Mathematical Foundations.
Springer-Verlag, Berlin, Germany, 1999.

[114] David Garlan. Style-based refinement for software architecture. In Joint proceedings of the
second international software architecture workshop (ISAW-2) and international workshop on
multiple perspectives in software development (Viewpoints ’96) on SIGSOFT ’96 workshops,
pages 72–75, New York, NY, USA, 1996. ACM Press.

[115] Joseph A. Goguen. FOOPS: a functional object-oriented programming system, Feb. 1999.

[116] Joseph A. Goguen. TOOR: a system for tracing object-oriented requirements, Feb. 1999.

[117] Li Gong. Variation on the Themes of Message Freshness and Replay or the Difficulty of De-
vising Formal Methods to Analyze Cryptographic Protocols. In Proceedings of the Computer
Security Workshop VI, pages 131–136, Los Alamitos, California, 1993.

[118] Li Gong and Paul Syverson. Fail-stop protocols: An approach to designing secure protocols.
In 5th International Working Conference on Dependable Computing for Critical Applicaitons,
pages 44–55, September 1995.

[119] Orlena Gotel and Anthony Finkelstein. An analysis of the requirements traceability problem.
In Proc. First IEEE Int’l Conf. on Requirements Engineering (ICRE’94), pages 94–101, Apr.
1994.

[120] Ed Greengrass. Information retrieval: A survey. Technical report, UMBC Center for Ar-
chitectures for Data-Driven Information Processing (CADIP), Baltimore, MD, U.S.A., Nov.
2000.

[121] D. Greve, M. Wilding, and M. Vanfleet. A separation kernel formal security policy. In ACL2
Workshop 2003, 2003.

[122] Joshua D. Guttman and F. Javier Thayer Fábrega. Authentication tests. In Proceedings, 2000
IEEE Symposium on Secuirty and Privacy, pages 96–109. IEEE Computer Society Press, May
2000.

[123] Joshua D. Guttman and F. Javier Thayer. Protocol Independence through Disjoint Encryp-
tion. 13th IEEE Computer Security Foundations Workshop, pages 24–34, July 2000.

[124] N. Hanebutte, P. Oman, M. Loosbrock, A. Holland, W. Harrison, and J. Alves-Foss. Soft-
ware mediators for transparent channel control in unbounded environments. In Proc. IEEE
Systems, Man and Cybernetics Information Assurance Workshop, pages 30–35, 2005.

[125] Kimberly S. Hanks and John C. Knight. Improving communication of critical domain knowl-
edge in high-consequence software development: an empirical study. In Proc. 21st Int’l System
Safety Conf. (ISSC’03), Ottawa, ON, Canada, Aug. 2003.

168

[126] D. Harkins and D. Carrel. The Internet Key Exchange (IKE). IETF Network Working Group,
The Internet Society, RFC 2409, November 1998.

[127] W. Scott Harrison, Nadine Hanebutte, Paul Oman, and Jim Alves-Foss. The MILS archi-
tecture for a secure global information grid. Crosstalk: The Journal of Defense Software
Engineering, 2005.

[128] Jane Huffman Hayes, Alex Dekhtyar, and James Osborne. Improving requirements tracing
via information retrieval. In Proc. 11th IEEE Int’l Requirements Engineering Conference
(RE’03), pages 138–147, Sep. 2003.

[129] Jane Huffman Hayes, Alex Dekhtyar, and Senthil Karthikeyan Sundaram. Advancing can-
didate link generation for requirements tracing: The study of methods. IEEE Trans. Softw.
Eng., 32(01):4–19, Jan. 2006.

[130] James Heather, Gavin Lowe, and Steve Schneider. How to prevent type flaw attacks on
security protocols. In Proceedings, 13th Computer Security Foundations Workshop, pages
255–268. IEEE Computer Society Press, July 2000.

[131] Mats P. E. Heimdahl and Constance L. Heitmeyer. Formal methods for developing high
assurance computer systems: Working group report. In Proceedings, Second IEEE Workshop
on Industrial-Strength Formal Techniques (WIFT’98), Oct 1998.

[132] Jean Henrard and Jean-Luc Hainaut. Data dependency elicitation in database reverse en-
gineering. In Proc. 5th European Conference on Software Maintenance and Reengineering
(CSMR’01), pages 11–19. IEEE Computer Society, Mar. 2001.

[133] Tzonelih Hwang, Narn-Yih Lee, Chuan-Ming Li, Ming-Yung Ko, and Yung-Hsiang Chen. Two
attacks on Neuman-Stubblebine authentication protocols. Information Processing Letters,
53(2):103–107, 1995.

[134] Ulla Isaksen, Jonathan P. Bowen, and Nimal Nissanke. System and software safety in critical
systems. Technical report, Dept. of Computer Science, Univ. of Reading, Whiteknights, U.K.,
Dec. 1996.

[135] J. Joy. A content guard for adobe portable document format (pdf). Master’s thesis, Dept. of
Computer Science, University of Idaho, Aug. 2006.

[136] Jan jürjens. Secrecy-preserving Refinement. In Proceedings of International Symposium on
Formal methods, volume 2021 of lncs, pages 135–152. sv, 2001.

[137] M. Just and S. Vaudenay. Authenticated multi-party key agreement. Technical Report SCS-
TR-96-04, Carleton University, Computer Science Department, Ottowa CA, 1996.

[138] M. Just and S. Vaudenay. Authenticated multi-party key agreement. In Advances in Cryp-
tology – ASIACRYPT ’96, pages 36–49, 1996.

[139] P. Karn and W. Simpson. The Photuris session key management protocol. Internet Engi-
neering Task Force, RFC 2522, March 1999.

[140] J. Kelsey, B. Schneier, and D. Wagner. Protocol Interactions and the Chosen Protocol Attack.
In Proc. Security Protocols - 5th International Workshop, pages 91–104. LNCS 1361, 1997.

169

[141] S. T. Kent, D. Ellis, P. Helinek, K. Sirois, and N. Yuan. Internet routing infrastructure
security countermeasures. BBN Report 8173, BBN, January 1997.

[142] Y. Kim, A. Perrig, and G. Tsudik. Simple and fault-tolerant key agreement for dynamic col-
laborative groups. In Proc. 7th ACM Conference on Computer and Communications Security,
Nov. 2000.

[143] Y. Kim, A. Perrig, and G Tsudik. Communication-efficient group key agreement. In Proc. of
IFIP SEC 2001, Jun. 2001.

[144] Y. Kim, A. Perrig, and G. Tsudik. Group key agreement efficient in communication. IEEE
Transactions on Computers, 53(7):905–921, Jul. 2004.

[145] Y. Kim, A. Perrig, and G. Tsudik. Tree-based group key agreement. ACM Transactions on
Information and System Security, 7(1):60–96, Feb. 2004.

[146] John C. Knight, Elisabeth A. Strunk, William S. Greenwell, and Kimberly S. Wasson. Spec-
ification and analysis of data for safety-critical systems. In Proc. 22nd Int’l System Safety
Conf. (ISSC’04), Providence, RI, U.S.A., Aug. 2004.

[147] J. Kohl and C. Neuman. The Kerberos network authentication service (v5). Network working
group, RFC 1510, September 1993.

[148] L. Lamport. Time clocks and the ordering of events in a distributed system. Communications
of ACM, 21(7):558–565, January 1978.

[149] Jean Claude Laprie. Dependability: Basic Concepts and Terminology. Springer-Verlag, Berlin,
Germany, 1992.

[150] H. Lee. Securing Mobile Agents through Evaluation of Encrypted Functionss. PhD thesis,
Dept. of Computer Science, University of Idaho, Aug. 2002.

[151] Hyungjick Lee, Jim Alves-Foss, and Scott Harrison. Securing mobile agents through evalua-
tion of encrypted functions. Web Intelligence and Agent Systems, 2(1):1–19, 2004.

[152] Nacny G. Leveson, Maxime de Villepin, Mirna Daouk, John Bellingham, Jayakanth Srini-
vasan, Natasha Neogi, Ed Bachelder, Nadince Pilon, and Geraldine Flynn. A safety and
human-centered approach to developing new air traffic management tools. Technical report,
Aeronautics and Astronautics Department, MIT, and Eurocontrol Experimental Centre, Dec.
2001.

[153] Nancy G. Leveson. Completeness in formal specification language design for process-control
systems. In 3rd Workshop on Formal Methods in Software Practice, pages 75–87, Portland,
OR, U.S.A., Mar. 2000. ACM Press.

[154] Nancy G. Leveson. Intent specifications: An approach to building human-centered specifica-
tions. IEEE Trans. Softw. Eng., 26(01):15–35, Jan. 2000.

[155] Nancy G. Leveson. Evaluating accident models using recent aerospace accidents, part one:
Event-based models. Technical report, Software Engineering Research Laboratory, Mas-
sachusetts Inst. of Tech., Cambridge, MA, U.S.A., Jun. 2001.

[156] Nancy G. Leveson. The role of software in spacecraft accidents. AIAA J. of Spacecraft and
Rockets, 41(4):564–575, Jul. 2004.

170

[157] Nancy G. Leveson. A systems-theoretic approach to safety in software intensive systems.
IEEE Trans. Dependable and Secure Comput., 1(1):66–86, Jan. 2004.

[158] Nancy G. Leveson. System Safety Engineering: Back to the Future. Draft of Book, Jun. 2006.

[159] Nancy G. Leveson, Mirna Daouk, Nicolas Dulac, and Karen Marais. A systems theoretic
approach to safety engineering. Technical report, Dept. of Aeronautics and Astronautics,
Massachusetts Inst. of Tech., Cambridge, MA, U.S.A., Oct. 2003.

[160] Nancy G. Leveson, Mats Per Erik Heimdahl, and Jon Damon Reese. Designing specification
languages for process control systems: Lessons learned and steps to the future. In 7th ACM
SIGSOFT Symposium on the Foundations of Software Engineering, pages 127–145, Toulouse,
France, Sep. 1999.

[161] Azriel Levy. Basic Set Theory. Springer-Verlag, Berlin, Germany, 1999.

[162] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In
Proceedings of TACAS, volume 1055, pages 147–166. Springer-Verlag, 1996. Also in Software
Concepts and Tools, 17:93-102, 1996.

[163] Gavin Lowe. Some new attacks on cryptographic protocols. In Proceedings of 9th Computer
Security Foundations Workshop, pages 162–170. IEEE Computer Press, March 1996.

[164] Gavin Lowe. A heirarchy of authentication specifications. In 10th Computer Security Foun-
dations Workshop Proceedings, pages 31–43, 1997.

[165] Robyn R. Lutz. Analyzing software requirements errors in safety-critical embedded systems.
Technical report, Iowa State Univ. of Science and Technology, Dept. of Computer Science,
Ames, IA, U.S.A., Aug. 1992.

[166] Robyn R. Lutz. Analyzing software requirements errors in safety-critical embedded systems.
In 1st IEEE Int’l Symp. on Requirements Engineering (RE’93), pages 126–133, San Diego,
CA, U.S.A., Jan. 1993.

[167] Robyn R. Lutz and Ines Carmen Mikulski. Empirical analysis of safety-related anomalies
during operations. IEEE Trans. Softw. Eng., 30(3):172–180, Mar. 2004.

[168] Jonathan I. Maletic, Ethan V. Munson, Andrian Marcus, and Tien N. Nguyen. Using a
hypertext model for traceability link conformance analysis. In Proc. 2nd Int’l Workshop on
Traceability in Emerging Forms Softw. Eng.: In conj. with (ASE’03), Oct. 2003.

[169] S. Malladi. A general scheme to prevent replay attacks on security protocols. Master’s thesis,
Dept. of Computer Science, University of Idaho, Dec. 2002.

[170] S. Malladi. Formal Analysis and Verification of Password Protocols. PhD thesis, Dept. of
Computer Science, University of Idaho, Jun. 2004.

[171] S. Malladi and J. Alves-Foss. How to prevent type-flaw guessing attacks on password proto-
cols. In Proc. Foundations of Computer Security, Jun. 2003.

[172] Sreekanth Malladi, J. Alves-Foss, and Robert B. Heckendorn. On preventing replay attacks
on security protocols. In Proc. International Conference on Security and Management, pages
77–83, Jun. 2002.

171

[173] Sreekanth Malladi, Jim Alves-Foss, and Sreenivas Malladi. Preventing guessing attacks using
fingerprint biometrics. In Proc. International Conference on Security and Management, Jun.
2002.

[174] Sreekanth Malladi, Jim Alves-Foss, and Sreenivas Malladi. What are multi-protocol guessing
attacks and how to prevent them. In Proc. 7th International Workshop on Enterprise Security,
Jun. 2002.

[175] Evan Mamas and Kostas Kontogiannis. Towards portable source code representations using
XML. In Proc. 7th Working Conf. on Reverse Engineering (WCRE’00), pages 172–182,
Brisbane, Australia, Nov. 2000.

[176] D. Manz. A network simulator for group key management algorithms. Master’s thesis, Dept.
of Computer Science, University of Idaho, Dec. 2005.

[177] D. Manz, J. Alves-Foss, and S. Zheng. A network simulator for group key management
algorithms. Journal Information Assurance and Security, 2(4), 2007 in press.

[178] Adrian Marcus and Jonathan I. Maletic. Recovering documentation-to-source-code tracea-
bility links using latent semantic indexing. In Proc. 25th Int’l Conf. on Software Engineering
(ICSE’03), May 2003.

[179] W. Martin, P. White, F. S. Taylor, and A. Goldberg. Formal construction of the mathemati-
caly analyzed separation kernel. In Proc. of the 15th International Conference on Automated
Software Engineering, pages 133–141, 2001.

[180] D. Maughan, M. Schertler, M. Schneider, and J. Turner. Internet Security Association and
Key Management Protocol (ISAKMP). IETF Network Working Group RFC 2408, November
1998.

[181] D. McCullough. Foundations of Ulysses: The theory of security. Technical Report RADC-
TR-87-222, Odyssey Research Associates, Inc., Jul. 1988.

[182] D. McCullough. Noninterference and the composability of security properties. In Proc. IEEE
Symposium on Security and Privacy, pages 177–187, 1988.

[183] D. McCullough. Noninterference and the composability of security properties. In Proc. IEEE
symposium on security and privacy, pages 177–187, 1988.

[184] J. McLean. A general theory of composition for a class of “possibilistic” properties. IEEE
Transactions on Software Engineering, 22(1):53–67, Jan. 1996.

[185] John McLean and Constance Heitmeyer. High assurance computer systems: A research
agenda. Technical report, Center for High Assurance Computer Systems, Naval Research
Laboratory, Washington, DC, U.S.A., 1995.

[186] C. Meadows. The NRL protocol analyzer: An overview. Journal of Logic Programming,
26(2):113–131, 1996.

[187] C.A. Meadows. Analyzing the Needham-Schroeder public-key protocol: A comparison of two
approaches. ESORICS 96, LNCS 1146, pages 351–364, 1996.

[188] Catherine Meadows. A model of computation for the NRL Protocol Analyzer. In Proceedings
of the 7th Computer Security Foundations Workshop, pages 84–89, June 1994.

172

[189] Catherine Meadows. Analysis of the Internet Key Exchange protocol using the NRL protocol
analyzer. In Proceedings, 1999 IEEE Symposium on Security and Privacy, pages 48–61. IEEE
Computer Society Press, May 1999.

[190] Nenad Medvidovic and Richard N. Taylor. A classification and comparison framework for
software architecture description languages. IEEE Transactions on Software Engineering,
26(1):70–93, 2000.

[191] A. Menezes, P. Van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC
Press, Boca Raton, Florida, USA, 5th edition, 1996.

[192] D. Meyers. An attribute grammar for alert aggregation in intrusion detection systems. Mas-
ter’s thesis, Dept. of Computer Science, University of Idaho, May 2007.

[193] Jeff Michaud, Margaret-Anne Storey, and Hausi A. Müller. Integrating information sources
for visualizing Java programs. In 17th Int’l Conf. on Software Maintenance (ICSM’01), pages
250–259, Florence, Italy, Nov. 2001.

[194] C. Mitchell. Limitations of Challenge-Response Entity Authentication. Electronic Letters,
25(17):1195–1196, August 1989.

[195] Francesmary Modugno, Nancy G. Leveson, Jon Damon Reese, Kurt Partridge, and Sean D.
Sandys. Integrated safety analysis of requirements specifications. In Proc. 3rd IEEE Int’l
Symp. on Requirements Engineering (RE’97), pages 148–159, Annapolis, MD, U.S.A., Jan.
1997.

[196] M. Moriconi, Xiaolei Qian, R. A. Riemenschneider, and Li Gong. Secure software architec-
tures. In SP ’97: Proceedings of the 1997 IEEE symposium on security and privacy, page 84,
Washington, DC, USA, 1997. IEEE Computer Society.

[197] Mark Moriconi, Xiaolei Qian, and R. A. Riemenschneider. Correct architecture refinement.
IEEE Transactions on Software Engineering, 21(4):356–3, 1995.

[198] Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for OWL-DL with rules.
In Proc. of the 3rd. Int’l Semantic Web Conference (ISWC 2004), pages 549–563. Springer-
Verlag, Nov. 2004.

[199] Francisco Naishtat. Lógica para Computación. Editorial Universitaria de Buenos Aires (EU-
DEBA), Buenos Aires, Argentina, 1986.

[200] National Transportation Safety Board. Controlled flight into terrain, Korean Air Flight 801,
Boeing 747-300 HL7468, Nimitz Hill, Guam, 06 August 1997. Aircraft Accident Report
NTSB/AAR-00/01, NTSB, Washington, DC, U.S.A., 2000.

[201] R. Needham and M. Schroeder. Using Encryption for Authentication in Large Networks of
Computers. Communications of the ACM, 21(12):993–999, December 1978.

[202] Christian Nentwich, Lucia Capra, Wolfgang Emmerich, and Anthony Finkelstein. Xlinkit: A
consistency checking and smart link generation service. ACM Trans. Internet Tech., 2(2):151–
185, May 2002.

[203] Christian Nentwich, Wolfgang Emmerich, and Anthony Finkelstein. Static consistency check-
ing for distributed specifications. In Proc. 16th Int’l Conf. on Automated Software Eng.
(ASE’01), page 115, Nov. 2001.

173

[204] Christian Nentwich, Wolfgang Emmerich, and Anthony Finkelstein. Consistency management
with repair actions. In Proc. 25th Int’l Conf. on Software Engineering (ICSE’03), pages 455–
464, May 2003.

[205] Christian Nentwich, Wolfgang Emmerich, Anthony Finkelstein, and Ernst Ellmer. Flexible
consistency checking. ACM Trans. Softw. Eng. and Methodology, 12(1):28–63, Jan. 2003.

[206] B. Clifford Neuman and Stuart G. Stubblebine. A note on the use of timestamps as nonces.
Operating Systems Review, 27(2):10-14, April 1993.

[207] K. Nyberg and L. R. Knudsen. Provable security against a differential attack. Journal of
Cryptology, 8(1):27–37, Winter 1995.

[208] Patrick O’Connell. The Idaho Partitioning Machine: A MILS partitioning kernel model in
ACL2. Master’s thesis, Dept. Computer Science, University of Idaho, Dec. 2003.

[209] P. Oman, A. Krings, D. Conte de Leon, and J. Alves-Foss. Analyzing the security and
survivability of real-time control systems. In Proc. IEEE Systems, Man and Cybernetics
Information Assurance Workshop, pages 342–349, Jun. 2004.

[210] The Open Group. The Partitioning Kernel Protection Profile, Jun. 2003. Draft under review.

[211] D. Otway and O. Rees. Efficient and Timely Mutual Authentication. Operating Systems
Review, 21(1):8–10, January 1987.

[212] A. Perrig. Efficient collaborative key management protocols for secure autonomous group
communication. In Proc. CrypTEC ’99, pages 192–202, 1999.

[213] B. Pfitzmann, M. Schunter, and M. Waidner. Cryptographic security of reactive systems.
eNTCS, 32, 1999.

[214] Jan Philipps and Bernhard Rumpe. Refinement of pipe-and-filter architectures. In FM ’99:
Proceedings of the wold congress on formal methods in the development of computing systems-
Volume I, pages 96–115, London, UK, 1999. Springer-Verlag.

[215] Francisco A. C. Pinheiro and Joseph A. Goguen. An object-oriented tool for tracing require-
ments. IEEE Softw., 13(2):52–64, Mar. 1996.

[216] Klaus Pohl. Pro-art: Enabling requirements pre-traceability. In Proc. 2nd IEEE Int’l Conf.
on Requirements Engineering (ICRE’96), pages 76–84, Apr. 1996.

[217] Klaus Pohl. Process-Centered Requirements Engineering. John Willey and Sons, Taunton,
U.K., 1996.

[218] Karl R. Popper and John C. Eccles. The Self and Its Brain. Springer-Verlag, Berlin, Germany,
1977.

[219] Balasubramaniam Ramesh and Matthias Jarke. Toward reference models of requirements
traceability. IEEE Trans. Softw. Eng., 27(01):58–93, Jan. 2001.

[220] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

174

[221] J. Robinson. A high-assurance multi-level secure file server. Master’s thesis, Dept. of Com-
puter Science, University of Idaho, Dec. 2006.

[222] J. Robinson and J. Alves-Foss. A high assurance MLS file server. ACM Operating Systems
Review, 41(1):45–53, Jan. 2007.

[223] J. Robinson, W.S. Harrison, N. Hanebutte, P. Oman, and J. Alves-Foss. Implementing
middleware for content filtering and information flow control. In Proc. Computer Security
Architecture Workshop, pages 47–53, Nov. 2007.

[224] H. L. Rogers. An overview of the CANEWARE program. In Proc. 10th NIST-NCSC National
Computer Security Conference, pages 172–174, 1987.

[225] Nelson S. Rosa, George R. R. Justo, and P. R. F. Cunha. Incorporating non-functional require-
ments into software architectures. In IPDPS ’00: Proceedings of the 15 IPDPS 2000 work-
shops on parallel and distributed processing, pages 1009–1018, London, UK, 2000. Springer-
Verlag.

[226] Nelson S. Rosa, George R. R. Justo, and Paulo R. F. Cunha. A framework for building
non-functional software architectures. In SAC ’01: Proceedings of the 2001 ACM symposium
on applied computing, pages 141–147, New York, NY, USA, 2001. ACM Press.

[227] B. Rossebo, P. Oman, J. Alves-Foss, R. Blue, and P. Jaszkowiak. Using Spark-Ada to model
and verify a MILS message router. In Proc. Int’l Symposium on Secure Software Enginneering,
Mar. 2006.

[228] RTCA. Software considerations in airborne systems and equipment certi-
fication. Technical Report DO-178b/ED-12B, RTCA, Inc., 1993. URL:
http://www.stsc.hill.af.mil/crosstalk/1998/10/schad.asp.

[229] RTCA. Requirements specification for avionics computer resource. Technical Report DO-255,
RTCA, Inc., 2000.

[230] J. Rushby and B. Randell. A distributed secure system. IEEE Computer, 16(7):55–67, 1983.

[231] J. M. Rushby. Proof of separability: A verification technique for a class of security ker-
nels. Proc. International Symposium on Programming, Lecture Notes in Computer Science,
137:352–367, 1982.

[232] J.M Rushby. Design and verification of secure systems. In Proc. ACM Symposium on Oper-
ating System Principles, volume 15, pages 12–21, 1981.

[233] John Rushby. Critical systems properties: Survey and taxonomy. Technical Report CSL-93-
01, Center for High Assurance Computer Systems, Naval Research Laboratory, Washington,
DC, U.S.A., May 1994. Rev. Feb. 1994.

[234] Peter Ryan and Steve Schneider. Modelling and Analysis of Security Protcols. Addison-
Wesley, An imprint of Pearson education Limited, 128 Long Acre, London, WC2E9AN, 2001.

[235] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communication, 21(1), January 2003.

[236] SAE Embedded Computing Systems Committee. Architecture analysis & design language
(aadl). Technical Report 1.0, Society of Automotive Engineering Int’l., Nov. 2004.

175

http://www.stsc.hill.af.mil/crosstalk/1998/10/schad.asp

[237] J. Saltzer and M. Schroeder. The protection of information in computer systems. Proceeding
of the IEEE, 63(9):1278–1308, Sept. 1975.

[238] Scott A. Selberg and Mark A. Austin. Requirements engineering and the Semantic Web.
Technical Report TR 2003-20, The Institute for Systems Research, College Park, MD, U.S.A.,
2003.

[239] Raffaella Settimi, Jane Cleland-Huang, Oussama BenKhadra, Jigar Mody, Wiktor Lukasik,
and Chris DePalma. Supporting software evolution through dynamically retrieving traces to
UML artifacts. In Proc. 7th Int’l Workshop on Principles of Software Evolution: in conj.
with (RE’04), pages 49–54, Sep. 2002.

[240] C.E. Shannon. Communication theory of secrecy systems. Bell System Technical Journal,
28-4:656 – 715, October 1949.

[241] Susanne A. Sherba, Kenneth M. Anderson, and Maha Faisal. A framework for mapping
traceability relationships. In Proc. 2nd Int’l Workshop on Traceability in Emerging Forms
Softw. Eng.: In conj. with (ASE’03), Oct. 2003.

[242] G. J. Simmons. How to (Selectively) Broadcast a Secret. In Proceedings of the 1985 IEEE
Computer Society Symposium on Security and Privacy, pages 108–113, 1985.

[243] Raymond Smullyan. Theory of Formal Systems. Princeton Univ. Press, Princeton, N.J.,
1961.

[244] Software Engineering Institute. Capability maturity model integration for systems engineer-
ing, software engineering, integrated product and process development, and supplier sourcing.
Technical Report CMU/SEI-2002-TR-012, Carnegie Mellon Univ., Pittsburgh, PA, U.S.A.,
Mar. 2002.

[245] J. Son. Covert Timing Analysis in MLS Real-Time Systems. PhD thesis, Dept. of Computer
Science, University of Idaho, Jun. 2008.

[246] J. Son and J. Alves-Foss. Covert timing channel analysis of rate monotonic real-time schedul-
ing algorithm in mls systems. In Proc. IEEE Information Assurance Workshop, pages 361–
368, Jun. 2006.

[247] J. Son and J. Alves-Foss. High level specification of non-interference security policies in
partitioned MLS systems. In Proc. IASTED International Conf. on Communication, Network
and Information Security (CNIS 2007), Sep. 2007.

[248] M. Steiner, G. Tsudik, and M. Waidner. Key agreement in dynamic peer groups. Technical
report, Information Sciences Institute, Jan. 1999.

[249] Michael Steiner, Gene Tsudik, and Michael Waidner. Diffie-Hellman key distribution extended
to groups. In Third ACM Conference on Computer and Communications Security, pages 31–
37. ACM Press, Mar. 1996.

[250] Rita. C Summers. Secure computing : Threats and Safeguards. McGraw-Hill, Hightstown,
NJ, USA, 1997.

[251] Jing Sun, Jin Song Dong, Jing Liu, and Hai Wang. A formal object approach to the design
of ZML. Annals of Software Eng., 13(1-4):329–356, 2002.

176

[252] Paul Syverson. A taxonomy of replay attacks. In Proceedings of the Computer Security
Foundations Workshop (CSFW97), pages 187–191, June 1994.

[253] Paul F. Syverson. On Key Distribution Protocols for Repeated Authentication. Operating
Systems Review, 27(4):24:30, October 1993.

[254] C. Taylor. Techniques for the Survivability of Critical Computer Systems. PhD thesis, Dept.
of Computer Science, University of Idaho, Jun. 2004.

[255] Carol Taylor, Jim Alves-Foss, and Bob Rinker. Merging safety and assurance: The process of
dual certification for software. In Proc. of the Systems and Software Technology Conference,
Salt Lake City, UT, U.S.A., Apr. 2002.

[256] Thomas Tilley. Formal concept analysis applications to requirements engineering and design.
Dissertation, Univ. of Queensland, Brisbane, Australia, Nov. 2003.

[257] Thomas Tilley. Towards an FCA based tool for visualizing formal specifications. In Using
Conceptual Structures: Contributions to ICCS 2003, pages 227–240, Los Angeles, CA, U.S.A.,
2003.

[258] Thomas Tilley, Richard Cole, Peter Becker, and Peter Eklund. A survey of formal concept
analysis support for software engineering activities. In Proc. First Int’l Conf. on Formal
Concept Analysis (IFFCA’03), Feb. 2003.

[259] William Van Lepthien and Kenneth M. Anderson. Unifying structure, behavior, and data
with themis types and templates. In Proc. 15th ACM Conf. on Hypertext and Hypermedia
(HT’04), pages 256–265, Aug. 2004.

[260] L. Wahsheh. Security Policy Design and Implementation in High Assurance Computer Sys-
tems. PhD thesis, Dept. of Computer Science, University of Idaho, Jun. 2008.

[261] L.A. Wahsheh and J. Alves-Foss. Specifying and enforcing a multi-policy paradigm for high
assurance embedded systems. International Journal of High Speed Networks, 15(3):315–327,
Oct. 2006.

[262] L.A. Wahsheh and J. Alves-Foss. Policy-based security for wireless components in high
assurance systems. Journal of Computer Science, 3(9):727–739, 2007.

[263] L.A. Wahsheh and J. Alves-Foss. Using policy enforcement graphs in a separation-based high
assurance architecture. In Proc. IEEE International Conference on Information Reuse and
Integration, pages 183–189, Aug. 2007.

[264] L.A. Wahsheh and J. Alves-Foss. Security policy development: Towards a life-cycle and
logic-based verification model. American Journal of Applied Sciences, 5(9):1117–1126, 2008.

[265] L.A. Wahsheh, D. Conte de Leon, and J. Alves-Foss. Formal verification and visualization of
security policies. Journal of Computers, 3(6), 2008.

[266] B. Wang. Possibilistic information flow analysis and formal verification of multiple single-level
secure execution monitoring mechanisms for high assurance systems. Master’s thesis, Dept.
of Computer Science, University of Idaho, May 2006.

177

[267] B. Wang and J. Alves-Foss. An MSLS-EMM for enforcing confidentiality in malicious en-
vironments. In IASTED International Conf. on Communication, Network and Information
Security (CNIS 2006), pages 126–131, Oct. 2006.

[268] Kathryn Anne Weiss, Nancy G. Leveson, Kristina Lundqvist, Nida Farid, and Margaret
Stringfellow. An analysis of causation in aerospace accidents. In Proc. Digital Avionics
Systems Conf.(DASC-2001), pages 137–147. AIAA, IEEE, Oct. 2001.

[269] C. Weissman. BLACKER: Security for the DDN examples of A1 security engineering trades.
In Proc. IEEE Symposium on Research in Security and Privacy, pages 286–292, 1992.

[270] P. White, W. M. Van Fleet, and C. Dailey. High assurance architecture via separation kernel.
Draft, Oct. 2000.

[271] Andreas Winter, Bernt Kullbach, and Volker Riediger. An overview of the GXL graph
exchange language. Lecture Notes in Comput. Science, 2269:324–336, May 2002.

[272] T.Y.C. Woo and S. S. Lam. A lesson on authentication protocol design. Operating Systems
Review, 28(3):24–37, 1994.

[273] CCITT Recommendation X.400. Message handling system and service overview. Technical
report, CCITT, November 1996.

[274] D. Yang. A threat-scenario-driven modeling approach to the mmr. Master’s thesis, Dept. of
Computer Science, University of Idaho, Aug. 2005.

[275] T. Ylonen. SSH– secure login connections over the Internet. In the Sixth USENIX Unix
Security Symposium, pages 37–42, July 1996.

[276] Zhifeng Yu and Václav Rajlich. Hidden dependencies in program comprehension and change
propagation. In Proc. 9th Int’l Workshop on Program Comprehension (IWPC’01), pages
293–299, Washington, DC, U.S.A., 2001. IEEE Computer Society.

[277] A. Zakinthinos. On The Composition Of Security Properties. PhD thesis, University of
Toronto, Mar. 1996.

[278] Edward N. Zalta, editor. The Stanford Encyclopedia of Philosophy, chapter Emergent Prop-
erties. The Metaphysics Research Lab Center for the Study of Language and Information,
Stanford, CA, U.S.A., Mar. 2006.

[279] Lantian Zheng and Andrew C. Myers. End-to-end availability policies and noninterference.
In CSFW ’05: Proceedings of 18th IEEE computer security foundation workshop, 2005.

[280] S. Zheng. A Communication-Computation Efficient Group Key Algorithm for Large and
Dynamic Groups. PhD thesis, Dept. of Computer Science, University of Idaho, Aug. 2006.

[281] S. Zheng, J. Alves-Foss, and S. Lee. The effect of rebalancing on the performance of a group
key agreement protocol. In Annual IEEE Conference on Local Computer Networks, pages
983–989, Nov. 2006.

[282] S. Zheng, D. Manz, and J. Alves-Foss. A communication-computation efficient group key
algorithm for large and dynamic groups. Journal of Computer Networks, 51(1):69–93, 2007.

178

[283] S. Zheng, D. Manz, J. Alves-Foss, and Y. Chen. Security and performance of group key
agreement protocols. In Proc. IASTED Networks and Communication Systems, pages 321–
327, Mar. 2006.

[284] Shanyu Zheng, Jim Alves-Foss, and Stephen Lee. Exploring average performance of group key
management algorithms over multiple operations. In Proc. IASTED International Conference
on Communications, Internet, and Information Technology (CITT 2005), 2005.

[285] J. Zhou and J. Alves-Foss. Security policy refinement and enforcement in secure computer
systems design. Journal of Computer Security, 16(2):107–131, 2008.

[286] J. Zhou and D. Gollmann. Evidence and non-repudiation. Journal of Network and Computer
Applications, 20(3):267–281, 1997.

[287] Jie Zhou and Jim Alves-Foss. Architecture-based refinements for secure computer systems
design. In Proc. Policy, Security and Trust, 2006.

[288] Jie Zhou and Jim Alves-Foss. Architecture-based refinements for secure computer systems
design. In PST ’06: Proceedings of 4th international conference on privacy, security, and
trust, pages 89–102, October 2006.

179

Abstracts of Publications

The following is an annotated bibliography of the papers, Ph.D. dissertations and Masters Thesis
related to this contract. Although these documents we addressed in earlier sections of this report,
we have included this bibliography, with abstracts to give the reader a fuller understanding of the
material published here.

180

Bibliography

Al-Muhaitheef02a

[Al-Muhaitheef02a] A. Al-Muhaitheef. The Firewall Mobile Customs Agents: A Distributed Fire-
wall Architecture. PhD thesis, Dept. of Computer Science, University of Idaho,
Aug. 2002.

Abstract: The revolution of modern networking necessitates many new
security methods to protect our communications from intruders. For ex-
ample, users of the Internet employ encryption methods to protect their
communications from spoofing or modification, and use tunneling tech-
niques to hide their identities, while network system administrators pro-
tect their local networks by routers and firewalls to filter the communi-
cation passing through. Using different types of security tools in network
communication may result in some conflicts. For example, using an en-
cryption method to protect the integrity and privacy of data may prevent
a firewall from inspecting incoming or outgoing data from the local net-
work. Combining these two methods will result in a strong security system
that protects the local network and the privacy of the connection. How-
ever, it may compromise some security features, like the security of the
encryption key from users other than the encryption channel participants.
In this dissertation, we are defining a new approach to combining these
two techniques by handling a virtual private network through a firewall
by a mobile agent; using an analogy to the real life example of a customs
agent inspector. This agent will work at the end point of the connection
for inspection as a delegate of the firewall and by its signature approve
legitimate packets to pass the firewall without inspection.

Alves-Foss02a

[Alves-Foss02a] J. Alves-Foss, D. Conte de Leon, and P. Oman. Experiments in the use of XML
to enhance traceability between object-oriented design specs. and source code. In
Proc. Of the 35th Hawaii Intl. Conf. On System Sciences, pages 3959 – 3966, 2002.

Abstract: In this paper we explain how we implemented traceability
between a UML design specification and its implementing source code
using XML technologies. In our linking framework an XMI file represents
a detailed-design specification and a JavaML file represents its source
code. These XML-derivative representations were linked using another
XML file, an Xlink link-base, containing our linking information. This

181

link-base states which portions of the source code implement which por-
tions of a design specification and vice-versa. We also rendered those links
to an HTML file using XSL and traversed from our design specification
to its implementing source code. This is the first step in our traceabil-
ity endeavors where we aim to achieve total traceability among software
life-cycle deliverables form requirements to source code.

Alves-Foss04a

[Alves-Foss04a] J. Alves-Foss and C. Taylor. An analysis of the GWV security policy. In ACL2
Workshop 2004, 2004.

Abstract: The use of formal models of security policies are required for
high assurance security systems. One benefit of formal methods is that it
allows for a precise presentation of items, allowing for analysis by others
and subsequent discussion. In this paper we examine the presentation
and use of the formal security policy developed in ACL2 as presented by
Greve, Wilding and Vanfleet in 2003. We found that the ACL2 model
and corresponding textual description left some points ambiguous. We
clarify these points in this paper.

Alves-Foss04b

[Alves-Foss04b] Jim Alves-Foss, Carol Taylor, and Paul W. Oman. A multi-layered approach to
security in high assurance systems. In Proc. Hawaii Systems Sciences Conference,
2004.

Abstract: Past efforts at designing and implementing ultra high assur-
ance systems for government security and safety have centered on the
concept of a monolithic security kernel responsible for a system-wide se-
curity policy. This approach leads to inflexible, overly complex operating
systems that are too large to evaluate at the highest assurance levels (e.
G., Common Criteria EAL 5 and above). We describe a new multilayered
approach to the design and verification of embedded trustworthy systems
that is currently being used in the implementation of real time, embedded
applications. The framework supports multiple levels of safety and mul-
tiple levels of security, based on the principle of creating separate layers
of responsibility and control, with each layer responsible for enforcing its
own security policy.

Alves-Foss06a

[Alves-Foss06a] J. Alves-Foss, W.S. Harrison, P. Oman, and C. Taylor. The MILS architecture
for high assurance embedded systems. International Journal of Embedded Systems,
2(3/4):239–247, 2006.

Abstract: High-assurance systems require a level of rigor, in both design
and analysis, not typical of conventional systems. This paper provides
an overview of the Multiple Independent Levels of Security and Safety
(MILS) approach to high-assurance system design for security and safety
critical embedded systems. MILS enables the development of a system us-
ing manageable units, each of which can be analysed separately, avoiding

182

costly analysis required of more conventional designs. MILS is partic-
ularly well suited to embedded systems that must provide guaranteed
safety or security properties.

ConteDeLeon02b

[ConteDeLeon02b] D. Conte de Leon. Formalizing traceability among software work products.
Master’s thesis, Dept. of Computer Science, University of Idaho, Dec. 2002.

Abstract: The software development process generates a set of software
work products. Those software work products together form a model of
the system being developed and its justification, therefore they need to
be related. The purpose of traceability is to create and maintain those
relationships among software work products in order to help software
practitioners gain better understanding of the system, which improves
overall system quality. Traceability is one of the most difficult and cur-
rent problems in software engineering. It is not a new topic in the re-
search community. However, traceability has not reached a maturity state
in most software organizations or software development projects. In ad-
dition, software contracts usually require compliance with development
standards such as ISO 12207 or IEEE / IEC 12207. Those standards
mandate traceability as a property of a software project. However, there
are currently no means to prove that a software project holds the re-
quired traceability properties. In this work, we aim to solve this problem.
In order to prove a property we need first a formal model and a formal
definition of that property. We formalized traceability among software
work product sections using concepts of set theory and graph theory. We
developed a framework where traceability can be implemented with any
desired level of granularity. We formally defined three new concepts: ob-
ject domain, implementation domain, and implementation traceable soft-
ware project. We developed a formal link specification language, called
TraceML, along with its formal syntax and semantics. We conducted two
proof-of-concept experiments on the implementation of our framework
and formal traceability, which demonstrate that it is possible to use our
approach to improve traceability in the software engineering process.

ConteDeLeon06a

[ConteDeLeon06a] D. Conte de Leon. Completeness of Implementation Traceability for the Devel-
opment of High Assurance and Critical Computing Systems. PhD thesis, Dept. of
Computer Science, University of Idaho, Dec. 2006.

Abstract: High assurance and critical computing systems require com-
pelling evidence that they satisfy certain critical properties while achiev-
ing their functional objectives. Such compelling evidence must be col-
lected and assembled during the analysis, development, and maintenance
processes in order to enable assurance of correctness during the eval-
uation, certification, and auditing processes. During these processes, a
myriad of artifacts and deliverables are created, evolved, and managed,
which are usually referred to as work products. Traceability of work prod-
uct sections is the ability of a stakeholder to manually or mechanically

183

describe and navigate relationships between uniquely identifiable and ad-
dressable sections of work products. Catastrophic failures leading to life,
environmental, and other great damages and losses, can arise from un-
founded assumptions of independence between system requirements, con-
straints, and components (work product sections), which may stem from
misunderstanding and miscommunication between system model stake-
holders. Ensuring effective and complete traceability between work prod-
uct sections may help to avoid misunderstandings among stakeholders
and hence avoid unexpected interactions between work product sections,
which could lead to critical or catastrophic failures. In addition, trace-
ability is the centerpiece of the assurance evidence and the vehicle that
enables the evaluation, certification, and auditing processes mandated
for high assurance and critical computing systems. In this dissertation,
firstly, I construct a formal theory of work product sections and their
associated traceability relations. Secondly, I analyze and formalize the
semantics of the partial implementation traceability relation. Thirdly, I
describe a formal technique for the discovery of potential causes of critical
failures. Fourthly, I introduce a technique for the mechanical completion
of a given set of partial implementation traceability links. Fifthly, I in-
troduce a new implementation-oriented and holistic methodology for the
development of high assurance and critical computing systems. I demon-
strate how this approach to traceability with its associated techniques
may be used to help stakeholders discover potential causes of critical fail-
ures in high assurance and critical computing systems by applying the
techniques to five case studies. In addition, throughout this dissertation,
I present a prototype expert system named SyModEx, which implements
the formal pproach and some of the techniques described in this work.

ConteDeLeon06b

[ConteDeLeon06b] D. Conte de Leon and J. Alves-Foss. Hidden implementation dependencies in
high assurance and critical computing systems. IEEE Transactions on Software
Engineering, 32(10):790–811, Oct. 2006.

Abstract: Critical and catastrophic failures in high assurance and criti-
cal computing systems can arise from unfounded assumptions of indepen-
dence between system components, requirements, and constraints (work
product sections), which can stem from misunderstandings and miscom-
munication between system engineers, managers, and operators and from
inadequate or incomplete traceability between system work products. In
this article, we propose a formal framework for the effective implemen-
tation of traceability between work product sections along with a tech-
nique for discovering potential causes of critical failures in high assurance
and critical computing system models. We introduce a new abstraction
of interrelated work product sections called implementation meta-work
product and describe how our technique finds these meta-work products.
We also demonstrate how this technique can be used to help analysts
discover potential causes of safety-related errors in high assurance and
critical computing systems by applying it to one case study of a known

184

critical error and to one case study where we anticipate potential safety
hazards.

ConteDeLeon07a

[ConteDeLeon07a] D. Conte de Leon, J. Alves-Foss, and P. Oman. Implementation-oriented secure
architectures, paper st14-01. In HICSS, Jan. 2007.

Abstract: We propose a framework for constructing secure sys-
tems at the architectural level. This framework is composed of an
implementation-oriented formalization of a system’s architecture, which
we call the formal implementation model, along with a method for the
construction of a system based on elementary analysis, implementation,
and synthesis steps. Using this framework, security vulnerabilities can be
avoided by constraining the architecture of a system to those architectures
that can be rigorously argued to implement all corresponding functional
and security requirements, and no other. Furthermore, the framework
enables the verification and validation of system correctness by enforc-
ing traceability of final system components to their corresponding design,
architecture, and requirement work products

Corin03a

[Corin03a] R. Corin, S. Malladi, J. Alves-Foss, and S. Etalle. Guess what? Here is a new tool
that finds some new guessing attacks. In Proc. Workshop on Issues in the Theory
of Security (WITS), 2003.

Abstract: If a protocol is implemented using a poor password, then
the password can be guessed and verified from the messages in the pro-
tocol run. This is termed as a guessing attack. Published design and
analysis efforts always lacked a general definition for guessing attacks.
Further, they never considered possible type-aws in the protocol runs or
using messages from other protocols. In this paper, we provide a simple
and general definition for guessing attacks. We explain how we imple-
mented our definition in a tool based on constraint solving. Finally, we
demonstrate some new guessing attacks that use type-flaws and multiple
protocols which we found using our tool.

Dai03a

[Dai03a] J. Dai and J. Alves-Foss. A formal authorization policy model. In Proc. Software
Engineering Research and Applications, Jun. 2003.

Abstract: This paper presents a formal model that interprets autho-
rization policy behaviors. The model establishes a connection of applying
authorization policies on an administration domain with dissecting the
domain into the authorized, denied, and undefined divisions. This con-
nection enables us to analyze authorization policy development problems
such as policy merge, inconsistency, ambiguity, and redundancy by exam-
ining the domain elements mapped into each of the divisions. In addition,
three distinct authorization values are assigned to the divisions based on
the permission of access control, and are used to calculate partition index

185

of each rule or policy for measurement purpose. The entire measurable
model provides a method to analyze and develop correct and conflict free
authorization policies.

Hanebutte05a

[Hanebutte05a] N. Hanebutte, P. Oman, M. Loosbrock, A. Holland, W. Harrison, and J. Alves-Foss.
Software mediators for transparent channel control in unbounded environments. In
Proc. IEEE Systems, Man and Cybernetics Information Assurance Workshop, pages
30–35, 2005.

Abstract: Establishing verifiably secure communications is a daunting
task, especially in unbounded computing networks such as the Internet
and the global information grid. The multiple independent levels of se-
curity (MILS) architecture has been developed to facilitate this task.
Wrappers, filters and mediators, both hardware and software, have been
proposed as MILS mechanisms to enforce communication security poli-
cies such as data isolation and sanitation. This paper describes two ex-
perimental projects showing how software mediators can be implemented
using CORBA in two different environments: a standard Unix TCP/IP
network with multiple workstations, and a single board computer run-
ning the integrity operating system with a separation kernel supporting
multiple isolated execution environments. The first example shows how
protocol mediators can enforce communication-related security policies
on standard networks, while the second shows that same functionality
implemented on a MILS-based architecture. The projects show how trans-
parent communication security policies can be implemented with existing
technologies and without any modifications to the operating system ker-
nels.

Harrison05a

[Harrison05a] W. Scott Harrison, Nadine Hanebutte, Paul Oman, and Jim Alves-Foss. The MILS
architecture for a secure global information grid. Crosstalk: The Journal of Defense
Software Engineering, 2005.

Abstract: Multiple Independent Levels of Security and Safety (MILS)
is a joint research effort between academia, industry, and government to
develop and implement a high-assurance, real-time architecture for em-
bedded systems. The goal of the MILS architecture is to ensure that all
system security policies are non-bypassable, evaluatable, always invoked,
and tamper-proof. Using these formally proven security policies guaran-
tees information flow control, data isolation, predictable process control,
damage limitation, and resource availability. As applications are not con-
sidered trustworthy components, information flow control needs to be
performed by entities external to the applications. This approach allows
for the integration of legacy applications that do not necessarily have
security integrated into them. Therefore, the MILS architecture creates
an environment that adds safeguards to previously insecure applications,
allowing the integration of possibly insecure applications into a secure
environment. To accomplish this in the MILS architecture, guards are

186

placed between communicating entities to act as message content filters
and enforce information flow control. This article discusses issues concern-
ing design and implementation of MILS components for message routing
and guarding on a secure Global Information Grid facilitating net-centric
warfare and defense.

Joy06a

[Joy06a] J. Joy. A content guard for adobe portable document format (pdf). Master’s thesis,
Dept. of Computer Science, University of Idaho, Aug. 2006.

Abstract: The accidental release of private data is a recurring problem
in modern document publishing. Two primary forms of accidental disclo-
sure are failed redaction, where underlying text is intentionally obscured
but still retrievable, and metadata leaks, where hidden metadata fields
should have been stripped before publishing. Security guards have been
traditionally used as a protection tool when moving data between classi-
fication domains. One of the primary functions of a guard is to act as a
filter to prevent the unintended exposure of data between domains. This
thesis describes a type of guard for content and is intended to help au-
thors of documents avoid unintentionally releasing private data into the
public realm. The problems of failed redaction and metadata exposure are
examined through case study documents in Adobe PDF. Implementation
of the content guard takes the form of a plug-in for Adobe Acrobat. The
plug-in methodology proved to be successful in alerting the end user to
potential exposure resulting from hidden data and is a promising path
for future work.

Laude04a

[Laude04a] M. Laude. Middleware guard: A security component in the mils architecture with
corba/giop. Master’s thesis, Dept. of Computer Science, University of Idaho, Aug.
2004.

Abstract: The Multiple Independent Levels of Security (MILS) archi-
tecture provides a platform for high assurance applications based on sep-
aration of functionality. Communication between partitions within the
MILS system is the responsibility of the MILS Message Router (MMR)
and the MMR relies upon message-filtering processes called guards to
enforce application-level security policies. In theory, there will be a guard
for every application-level protocol used by high assurance applications in
the MILS system. The MILS General Inter-ORB Protocol (GIOP) Guard
is one such guard, providing application-layer filtering of Common Ob-
ject Request Broker Architecture (CORBA) GIOP messages. This thesis
explores the background and design of the GIOP Guard, and the imple-
mentation of a testbed for prototyping and analyzing the MILS GIOP
Guard using Linux TCP/IP networking. This testbed is being used to
gain insight into GIOP, build a prototypical Guard, and explore the re-
lationship between the MILS components.

187

Lee02a

[Lee02a] H. Lee. Securing Mobile Agents through Evaluation of Encrypted Functionss. PhD
thesis, Dept. of Computer Science, University of Idaho, Aug. 2002.

Abstract: Mobile agent technology is a new paradigm of distributed
computing that can replace the conventional client-server model. How-
ever, it has not become popular due to some practical problems, such as
security. The fact that computers have complete control over all the pro-
grams makes it very hard to protect mobile agents from untrusted hosts.
In this dissertation we propose a security approach for mobile agents
which protects the mobile agents from malicious hosts. Our new approach
prevents privacy attacks and integrity attacks on mobile agents from ma-
licious hosts. Many people have proposed good security approaches, but
most of them do not prevent both integrity and privacy attacks. We re-
view a few security approaches for mobile agents, discuss their weaknesses
and strengths, and propose a new approach that can fix many of their
problems. One interesting approach is mobile cryptography proposed by
Sander and Tschudin. It encrypts mobile agents and the encrypted mobile
agents are executable without decryption. Implementing mobile cryptog-
raphy requires an interesting type of cryptosystem called homomorphic
encryption; which allows direct computation on encrypted data, but no
such homomorphic encryption schemes have been previously proposed.
Our new security approach is an extension of mobile cryptography, and
it removes many problems found in the original idea of mobile cryptog-
raphy while preserving most of the benefits. Although the original idea
of mobile cryptography allowed direct computations without decryption
on encrypted mobile agents, it did not provide any practical ways of im-
plementation due to the fact that no homomorphic encryption schemes
have been published. Our approach provides a practical idea for imple-
menting mobile cryptography by suggesting a hybrid method that mixes
a function composition technique and a homomorphic encryption scheme
that we have found. Like the original mobile cryptography, our approach
will encrypt both code and data including state information in a way
that enables direct computation on encrypted data without decryption.
We believe that our approach is a viable and practical means to address
security problems such as integrity and privacy attacks on mobile agents.

Lee04a

[Lee04a] Hyungjick Lee, Jim Alves-Foss, and Scott Harrison. Securing mobile agents through
evaluation of encrypted functions. Web Intelligence and Agent Systems, 2(1):1–19,
2004.

Abstract: The mobile agent technology is a new paradigm of dis- trib-
uted computing that can replace the conventional client-server model.
However, it has not become popular due to some problems such as secu-
rity. The fact that com- puters have complete control over all the pro-
grams makes it very hard to protect mobile agents from untrusted hosts.
In this paper we propose a security approach for mobile agents, which

188

protects mobile agents from malicious hosts. Our new approach prevents
privacy attacks and integrity attacks to mobile agents from malicious
hosts. Many people have proposed good security approaches, but most
of them do not prevent both integrity and privacy attacks. We review
a few security approaches for mobile agents, discuss their weaknesses
and strengths, and pro- pose a new approach that can x many of their
problems. One interesting approach is mobile cryptography proposed by
Sander and Tschudin. It encrypts mobile agents and the encrypted mobile
agents are executable without de- cryption. Implementing mobile cryp-
tography requires an interesting types of cryptosystem called homomor-
phic en- cryption scheme, which allows direct computation on en- crypted
data, but none of such a homomorphic encryption scheme is known yet.
Our new security approach is an extension of mobile cryptography, and
it removes many problems found in the original idea of mobile cryptog-
raphy while preserving most of the benets. Although the original idea of
mobile cryp- tography allowed direct computations without decryptions
on encrypted mobile agents, it did not provide any practi- cal ways of im-
plementation due to the fact that no homo- morphic encryption schemes
are found for their approach. Our approach provides a practical idea for
implementing mobile cryptography by suggesting a hybrid method that
mixes a function composition technique and a homomor- phic encryption
scheme that we have found. Like the orig- inal mobile cryptography, our
approach will encrypt both code and data including state information in
a way that enables direct computation on encrypted data without de-
cryption. We believe that our approach is a viable and practical means
to address security problems such as in- tegrity and privacy attacks to
mobile agents.

Lee04b

[Lee04b] Hyungjick Lee, Jim Alves-Foss, and W. Scott Harrison. The use of encrypted
functions for mobile agent security. In Proceedings of the 37th Annual Hawaii
International Conference on System Sciences (HICSS’04), 2004.

Abstract: Mobile agent technology is a new paradigm of distributed
computing that can replace the conventional client-server model. How-
ever, it has not become popular due to some problems such as security.
The fact that computers have complete control over all the programs
makes it very hard to protect mobile agents from untrusted hosts. In this
paper we propose a security approach for mobile agents, which protects
mobile agents from malicious hosts. Our new approach prevents privacy
attacks and integrity attacks to mobile agents from malicious hosts. This
approach is an extension of mobile cryptography, as proposed by Sander
and Tschudin, and it removes many problems found in the original idea of
mobile cryptography while preserving most of the benefits. Although the
original idea of mobile cryptography allowed direct computations without
decryptions on encrypted mobile agents, it did not provide any practical
ways of implementation due to the fact that no homomorphic encryption
schemes are found for their approach. Our approach provides a practical

189

idea for implementing mobilecryptography by suggesting a hybrid method
that mixes a function composition technique and a homomorphic encryp-
tion scheme that we have found. Like the original mobile cryptography,
our approach will encrypt both code and data including state informa-
tion in a way that enables direct computation on encrypted data without
decryption.

Malladi02a

[Malladi02a] Sreekanth Malladi, Jim Alves-Foss, and Sreenivas Malladi. What are multi-protocol
guessing attacks and how to prevent them. In Proc. 7th International Workshop
on Enterprise Security, Jun. 2002.

Abstract: A guessing attack on a security protocol is an attack where
an attacker guesses a poorly chosen secret (usually a low-entropy user
password) and then seeks to verify that guess using other information.
Past efforts to address guessing attacks in terms of design or analysis con-
sidered only protocols executed in isolation. However, security protocols
are rarely executed in isolation and reality is always a case of mixed-
protocols. In this paper, we introduce new types of attacks called multi-
protocol guessing attacks, which can exist when protocols are mixed. We
develop a systematic procedure to analyze protocols subject to guessing
attacks and use this procedure to derive some syntactic conditions to
be followed, in order for a protocol to be secure against multi-protocol
guessing attacks. We then use the strand space framework to prove that
a protocol will remain secure, given that these conditions are followed,
by modeling the conditions within the framework. We illustrate these
concepts using the Mellovin and Berritt protocol (EKE) as an example.

Malladi02b

[Malladi02b] Sreekanth Malladi, J. Alves-Foss, and Robert B. Heckendorn. On preventing replay
attacks on security protocols. In Proc. International Conference on Security and
Management, pages 77–83, Jun. 2002.

Abstract: Replay attacks on security protocols have been discussed for
quite some time in the literature. However, the efforts to address these
attacks have been largely incomplete, lacking generality and many times
in fact, proven unsuccessful. In this paper we address these issues and
prove the efficacy of a simple and general scheme in defending a protocol
against these attacks. We believe that our work will be particularly useful
in security critical applications and to protocol analyzers that are unable
to detect some or all of the attacks in this class.

Malladi02c

[Malladi02c] Sreekanth Malladi, Jim Alves-Foss, and Sreenivas Malladi. Preventing guessing
attacks using fingerprint biometrics. In Proc. International Conference on Security
and Management, Jun. 2002.

Abstract: Security protocols involving the use of poorly chosen secrets,
usually low-entropy user passwords, are vulnerable to guessing attacks.

190

Here, a penetrator guesses a value in place of the poorly chosen secret and
then tries to verify the guess using other information. In this paper we
develop a new framework extending strand space theory in the context
of these attacks to analyze the effect using fingerprint biometrics in those
protocols. In particular, we will prove the efficacy of biometrics in pre-
venting some known forms of guessing attacks which differ in the way the
guess is verified. Interestingly, our approach shows a remarkable increase
in security of selected protocols, subject to off-line guessing attacks. We
illustrate these concepts on some examples.

Malladi02d

[Malladi02d] S. Malladi. A general scheme to prevent replay attacks on security protocols. Mas-
ter’s thesis, Dept. of Computer Science, University of Idaho, Dec. 2002.

Abstract: Replay attacks on security protocols have been discussed for
quite some time in the literature. However, the efforts to address these
attacks have been largely incomplete, lacking generality and many times
in fact proving unsuccessful. In this thesis we address these issues and
prove the efficacy of a simple and general scheme in avoiding these large
class of attacks. We believe that our work will be particularly useful in
security critical applications and to general protocol analyzers that are
unable to detect some or all of the attacks in this class.

Malladi03a

[Malladi03a] S. Malladi and J. Alves-Foss. How to prevent type-flaw guessing attacks on password
protocols. In Proc. Foundations of Computer Security, Jun. 2003.

Abstract: A message in a protocol is said to have a type-flaw if it was
created with some intended type, but is later received and treated as a
different type. A type-flaw guessing attack is an attack where a password
is guessed and verified by inducing type-flaws in a protocol. Heather et
al. [HLS00] prove that attacks that use type-flaws can be prevented if
honest agents tag messages with their intended types. However, their
tagging scheme cannot be used in a password protocol since it allows a
guess to be directly verified using the tags inside password encryptions.
In this paper we prove that, by following a modification of Heather el
al.’s scheme, most type-flaw guessing attacks can still be prevented.

Malladi04a

[Malladi04a] S. Malladi. Formal Analysis and Verification of Password Protocols. PhD thesis,
Dept. of Computer Science, University of Idaho, Jun. 2004.

Abstract: Cryptographic protocol analysis has been carried out vigor-
ously over the last decade. Several papers were published which describe
formal analysis techniques to analyze and verify protocols. However, pass-
word protocols (which are a special class of cryptographic protocols) re-
mained largely ignored. The issue here is, many analysis and protection
techniques for cryptographic protocols are inapplicable for password pro-
tocols, since they enable guessing attacks. In this dissertation, we present

191

newly found attacks called multi-protocol guessing attacks on password
protocols which are possible in the absence of techniques to prevent
protocol-interactions. We explain the development of a new constraint-
based analysis tool to automatically find type-flaw and multi-protocol
guessing attacks which can exist in the absence of techniques to pre-
vent type-flaws and protocol-interactions. We formally prove that most
type-flaw guessing attacks can be prevented by retaining type-tags inside
all encryptions except password encryptions. We demonstrate that well-
established result on preventing type-flaw attacks, cannot prevent attacks
arising due to type-flaws in constructed keys and function applications
such as hashing and signatures. We also show that the proof methodol-
ogy adopted itself is flawed since it proves that type-tagging is effective in
presence any set of inference rules. Finally, we prove that a new scheme
that we call NUT is strong enough to prevent type-flaw attacks even in
presence of constructed keys and function applications. Our proof avoids
the flaw in previous attempts by carefully pointing out exactly why and
how it is valid only under those set of inference rules which decompose a
set of terms to add subterms of those terms.

Manz05a

[Manz05a] D. Manz. A network simulator for group key management algorithms. Master’s
thesis, Dept. of Computer Science, University of Idaho, Dec. 2005.

Abstract: The field of Group Key Management is of primary impor-
tance for securing communication amongst a group of people who have
no prior shared knowledge. Often in cryptography, a secret key must be
possessed by all parties who wish to communicate securely. These keys
are often predetermined. However, group key algorithms enable groups
to establish a shared session key without possessing predetermined keys.
We created a simulation to mimic real networks in order to test and run
several Group Key Management algorithms. We used Network Simulator
Version 2 (NS-2) to create real-world simulations of the environments in
which Group Key Management algorithms operate. This thesis describes
our simulations, including the network topologies, and the actual code
for the experiments. Further research into Group Key Management sim-
ulation requires a realistic evaluation of performance costs (bandwidth
utilization and timing), such as is examined in this thesis. There has
been little along the lines of realistic simulators of Group Key Manage-
ment algorithms. Our simulator aims to provide a practical simulation of
network hardware on which four Group Key Management algorithms can
operate. This simulator allows us to have a realistic evaluation of four
prevalent Group Key Management algorithms: EGK, TGDH, STR, and
CCEGK. Additionally, a thorough discussion of the experimental results
is placed in context with our theoretical predictions.

Manz07a

[Manz07a] D. Manz, J. Alves-Foss, and S. Zheng. A network simulator for group key man-
agement algorithms. Journal Information Assurance and Security, 2(4), 2007 in

192

press.

Abstract: The need for rapidly configurable, secure communication
among groups of participants has resulted in the study of group key
agreement protocols. The study of these protocols has been primarily
theoretical. In this paper, we present the results of simulation studies
of the methods provided by four group-key agreement protocols, EGK,
TGDH, STR and CCEGK. The results of the simulation clarify the theo-
retical metrics, but also provide insight into the actual relative impact of
the metrics, specifically the impact of synchronization. Overall CCEGK
performed better in all categories than the other three protocols.

Meyers07a

[Meyers07a] D. Meyers. An attribute grammar for alert aggregation in intrusion detection sys-
tems. Master’s thesis, Dept. of Computer Science, University of Idaho, May 2007.

Abstract: The development of a common model for describing intru-
sion events is one of the key issues in designing a distributed intrusion
detection system (DIDS). In a DIDS, heterogeneous sensors (host-based,
anomaly-based, signature-based, etc.) exchange alert messages over the
network. IDMEF (Intrusion Detection Message Exchange Format) is an
XML-based encoding for alerts that achieves interoperability between
heterogeneous sensors, but with a severe increase in the bandwidth for
message exchange. In light of the problem of alert flooding, any band-
width overhead makes IDMEF infeasible for most DIDSs. This thesis
demonstrates that reducing alerts through low-level aggregation, before
message exchange, offsets the XML overhead and makes IDMEF accept-
able. The proof-of-concept experiments in this thesis use Snort and the
Snort-IDMEF plugin under Solaris. Four types of events are studied: port
scans, SNMP requests, SQL injections, and DDoS attacks. Results show
an average reduction rate for these types of alerts to be 64thesis is to
provide a descriptive formalism for aggregation by means of attribute
grammars for the IDMEF report language. Defining aggregation seman-
tics through a common report language separates the formalism from the
implementation and is IDS independent. In addition, the grammatical
constraints are expressed in XSLT/XPath and checked by an XSLT pro-
cessor, which provides access to a growing number of open source tools
and resources related to XML technology.

Oman04a

[Oman04a] P. Oman, A. Krings, D. Conte de Leon, and J. Alves-Foss. Analyzing the security
and survivability of real-time control systems. In Proc. IEEE Systems, Man and
Cybernetics Information Assurance Workshop, pages 342–349, Jun. 2004.

Abstract: Many problems found in complex real-time control systems
can be transformed into graph and scheduling problems, thereby inher-
iting a wealth of potential solutions and prior knowledge. This paper
describes a transformation from a real-time control system problem into
a graph theoretical formulation in order to leverage existing knowledge of

193

graph theory back into the real world network being analyzed. We use a
five-step transformation that converts an example electric power SCADA
system into a graph model that allows for solutions derived from graph
algorithms. Physical and logical characteristics of the SCADA system are
represented within the model in a manner that permits manipulation of
the network data. System vulnerabilities are identified and compared via
graph algorithms prior to transformation back into the real-time control
system problem space. The SCADA system analysis serves as an example
of exploiting graph representations and algorithms in order to encapsulate
and simplify complex problems into manageable and quantifiable models

Robinson07a

[Robinson07a] J. Robinson. A high-assurance multi-level secure file server. Master’s thesis, Dept.
of Computer Science, University of Idaho, Dec. 2006.

Abstract: High assurance computing systems, where the level of criti-
cality can result in loss of life, financial disruption or other negative high-
impact incidents produce a need for certifiable, verifiable and evaluatable
system development process. The Common Criteria is such a certification
process used to evaluate systems requiring a high level of assurance for
security functionality. The Common Criteria has seven Evaluation As-
surance Levels, where the amount of rigor in regards to testing, design,
specification and verification increases with each level. At the highest
level, formal methods are required to state a formal security policy, a
high level functional model of the system and to prove the formal model
satisfies the security policy. In this thesis, we demonstrate a formal model
of a multi-level secure file server designed to operate within the Multiple
Independent Levels of Security (MILS) architecture. The model meets
the Common Criteria EAL5+ formal methods requirement and serves as
an example application of the MILS architecture. The MILS architecture
is enabling technology for high assurance systems such as the Global In-
formation Grid [Har05]. The file server design incorporates concepts from
existing research in multi-level file servers and relational databases, no-
tably to promote confidentiality and integrity of information, while utiliz-
ing separation and non-interference. The model uses a virtual file system
that binds together multiple single-level file systems into a virtual multi-
level entity. The model is implemented in the formal methods tool ACL2
and is verified to show that it adheres to the formal specifications and
security policy.

Robinson07b

[Robinson07b] J. Robinson and J. Alves-Foss. A high assurance MLS file server. ACM Operating
Systems Review, 41(1):45–53, Jan. 2007.

Abstract: In this paper, we present the design of a high assurance file
server model developed to operate within the Multiple Independent Lev-
els of Security framework. The file server model is a multilevel application
that utilizes separation to mediate information flow by adhering to a se-
curity policy formulated from a modified version of the Bell and LaPadula

194

Model and the GWVr2 policy, which is a separation kernel based policy
developed for high assurance architectures. This paper focuses on the de-
sign aspects of the file server model and the underlying architecture. The
purpose of this file server design is to develop a formal model to meet
the formal methods requirement of Common Criteria, which is a system
design and specification guideline for high assurance systems. The model
is also an example application for the Multiple Independent Levels of
Security architecture.

Robinson07c

[Robinson07c] J. Robinson, W.S. Harrison, N. Hanebutte, P. Oman, and J. Alves-Foss. Imple-
menting middleware for content filtering and information flow control. In Proc.
Computer Security Architecture Workshop, pages 47–53, Nov. 2007.

Abstract: This paper discusses the design and implementation of a mid-
dleware guard for purposes of content filtering and information flow con-
trol in the Multiple Independent Levels of Security (MILS) architecture.
The MILS initiative is a joint research effort between academia, industry,
and government to develop and implement a high assurance real-time
architecture for embedded systems. The MILS architecture incorporates
a separation kernel with formal system security policies that are evaluat-
able, non-bypassable, tamper-proof, and always invoked. Vendor specific
high-level applications are assumed to be untrustworthy components; in-
formation flow control needs to be performed by middleware entities ex-
ternal to the applications. In the MILS architecture, a MILS Message
Router and guards are placed between communicating entities to act as
message content filters and enforce information flow control. As the MILS
architecture does not restrict the protocols that can be employed for com-
munications between applications, a distinct guard is needed for filtering
messages within each protocol. Incorporating protocol specific guards in
MILS embedded systems aids in the formal certification of those sys-
tems or the high-assurance safety critical formally-proven applications.
The guards enable formally-proven security policies that guarantee in-
formation flow control, data isolation, predictable process control, dam-
age limitation, and resource availability. An example is provided using
a multi-level secure file server that uses a GIOP guard for fine-grained
access control. The inclusion of a GIOP guard reduces the complexity
and the effort necessary for system certification.

Rossebo06a

[Rossebo06a] B. Rossebo, P. Oman, J. Alves-Foss, R. Blue, and P. Jaszkowiak. Using Spark-Ada
to model and verify a MILS message router. In Proc. Int’l Symposium on Secure
Software Enginneering, Mar. 2006.

Abstract: The concept of information classification is used by all nations
to control information distribution and access. In the United States this
is referred to as Multiple Levels of Security (MLS), which includes desig-
nations for unclassified, confidential, secret, and top secret information.

195

The U. S. Department of Defense has traditionally implemented MLS
separation via discrete physical devices, but with the transformation of
military doctrine to net-centric warfare, the desire to have a single device
capable of Multiple Independent Levels of Security (MILS) emerged. In
this paper we present a formal model of a MILS message router using
SPARK-ADA. The model is presented as a case study for the design and
verification of high assurance computing systems in the presence of an
underlying separation kernel. We utilized the correctness-by-design ap-
proach to secure system development and discuss the limitations of that
approach for the type of system we model.

Son06a

[Son06a] J. Son and J. Alves-Foss. Covert timing channel analysis of rate monotonic real-
time scheduling algorithm in mls systems. In Proc. IEEE Information Assurance
Workshop, pages 361–368, Jun. 2006.

Abstract: The modern digital battlesphere requires the development
and deployment of multi-level secure computing systems and networks. A
portion of these systems will necessarily be operating under real-time pro-
cessing constraints. High assurance systems processing national security
information must be analyzed for possible information leakages, including
covert channels. In this paper we provide a mathematical framework for
examining the impact the rate-monotonic real-time scheduling algorithm
has on covert timing channels. We prove that in some system configura-
tions, it will not be possible to completely close the covert channel due
to the rate-monotonic timing constraints. In addition, we propose a sim-
ple method to formulate a security metric to compare covert channels in
terms of the relative amount of possible information leakage.

Son06b

[Son06b] J. Son and J. Alves-Foss. Covert timing channel capacity of rate monotonic real-
time scheduling algorithm in MLS systems. In IASTED International Conf. on
Communication, Network and Information Security (CNIS 2006), pages 13–19, Oct.
2006.

Abstract: Real-time systems must satisfy timing constraints. In our pre-
vious work, we showed that a covert timing channel cannot be completely
closed in some system configurations due to the timing constraints im-
posed by the Rate- Monotonic (RM) real-time scheduling algorithm. In
this paper, we construct a probabilistic model to measure two quantities
of a covert timing channel in RM based systems: channel capacity and
quantity of specific information. We show how these two metrics can be
calculated from our probabilistic model and why they are useful metrics
in evaluation of a covert (timing) channel.

Son07a

[Son07a] J. Son and J. Alves-Foss. High level specification of non-interference security policies
in partitioned MLS systems. In Proc. IASTED International Conf. on Communi-
cation, Network and Information Security (CNIS 2007), Sep. 2007.

196

Abstract: We provide a formal framework for specifying the secure be-
haviors of a Separation Kernel (SK) with Inter-Partition Communication
(IPC) capability which satisfy two requirements: 1) the Multi-Level Se-
cure (MLS) partitioned components (called partitions) running on a SK
must communicate with each other through designated communication
channels, 2) IPC operations must satisfy information flow security poli-
cies such as Non-Interference. Using this framework, we present a formal
model of an IPC-capable SK architecture which satisfies Non-Interference
security policies.

Son08a

[Son08a] J. Son. Covert Timing Analysis in MLS Real-Time Systems. PhD thesis, Dept. of
Computer Science, University of Idaho, Jun. 2008.

Abstract: Mathematical analysis of possible covert timing channels is a
requirement for certification of high assurance Multi-Level Secure (MLS)
systems. In this dissertation, we present a mathematical approach for
analysis of covert timing channels in MLS real-time systems. This ap-
proach includes an analytical model which can specify the types of real-
time tasks running, the real-time scheduling algorithm in use, and real-
time constraints imposed on task executions. Using this analytical real-
time system model, we characterize timing vulnerabilities present in real-
time systems, present a methodology for measuring covert timing channel
capacity, and devise countermeasures to remove or mitigate the impact
of covert timing channels. Finally, we present a precise mathematical
model for evaluating how performance overhead/delays of real-time sys-
tems vary with respect to the different degrees of security measures being
applied.

Taylor04a

[Taylor04a] C. Taylor. Techniques for the Survivability of Critical Computer Systems. PhD
thesis, Dept. of Computer Science, University of Idaho, Jun. 2004.

Abstract: This dissertation presents techniques developed for the sur-
vivability of critical systems from cyber based attacks. The work covers
all three areas of survivability including: Attack Recognition, Attack
Resistance and Attack Recovery. The dissertation is a compilation of six
published, referred papers and one paper submitted for publication. Each
paper targets a different aspect of the problem of critical system assur-
ance. The techniques researched include a progressive set of solutions
including: intrusion detection for Attack Recognition, software certifi-
cation and formal methods for Attack Resistance and risk analysis for
Attack Recovery. The research represents a broad approach to solving
critical system survivability which matches the true nature of the prob-
lem. Survivability of critical systems is multi-faceted and not solvable by
a single solution. While the dissertation makes a technical contribution to
the security of critical systems, it will likely take contributions from many
disciplines to create lasting, effective solutions to the system survivability
problem.

197

Wahsheh06a

[Wahsheh06a] L.A. Wahsheh and J. Alves-Foss. Specifying and enforcing a multi-policy paradigm
for high assurance embedded systems. International Journal of High Speed Net-
works, 15(3):315–327, Oct. 2006.

Abstract: One fundamental key to successful implementation of secure
high assurance computer systems is the design and implementation of
security policies. For systems enforcing multiple concurrent policies, the
design and implementation is a challenging and difficult task. To simplify
this task, we present an Inter-Enclave Multi-Policy (IEMP) paradigm for
information access of the Multiple Independent Levels of Security and
Safety (MILS) approach to high assurance system design for security-
and safety-critical multi-enclave systems. The IEMP paradigm manages
multiple security policies (i.e., controls the conflicts and cooperation of
policies of different enclaves) within heterogeneous systems. IEMPs are
policies about policies that ensure the enforcement of end-to-end manda-
tory information flow security policies, where the management and evo-
lution of policies can be separated from applications. Although the ap-
proach was initially designed for use in the MILS architecture, based on
the concept of a separation kernel, it is applicable to a much broader
range of architectures.

Wahsheh07a

[Wahsheh07a] L.A. Wahsheh and J. Alves-Foss. Policy-based security for wireless components in
high assurance systems. Journal of Computer Science, 3(9):727–739, 2007.

Abstract: To enable the growth of wireless networks in high assur-
ance computer systems, it is essential to establish a security engineering
methodology that provides system security managers with a procedural
engineering process to develop computer security policies. Our research
demonstrates how wireless communication technology is deployed using
the Multiple Independent Levels of Security (MILS) architecture for high
assurance computer system design of security and safety-critical multi-
enclave systems to provide a framework for supporting the enforcement
of diverse security multi-policies. The established wireless inter-enclave
multi-policy paradigm manages multiple wireless security policies within
heterogeneous systems. Applying the policy refinement rules presented in
this work for a security enforcement procedure of an application system
will reduce the proof effort for secure components.

Wahsheh07b

[Wahsheh07b] L.A. Wahsheh and J. Alves-Foss. Using policy enforcement graphs in a separation-
based high assurance architecture. In Proc. IEEE International Conference on
Information Reuse and Integration, pages 183–189, Aug. 2007.

Abstract: As the use of computer systems becomes more commonly em-
ployed, managing security becomes more complex. One fundamental key
to effective enforcement of security standards is the support of security

198

policies. We present a novel graph-based approach to the specification
of security policies and verification of designs that enforce the policies.
This methodology provides system security managers with a procedural
engineering approach that will ensure that security policy enforcement is
addressed during the process of refining of the high-level system design
down to a low-level implementation. We present an inter-enclave multi-
policy paradigm using Policy Enforcement Graphs for information access
of the Multiple Independent Levels of Security and Safety (MILS) ap-
proach to high assurance system design for security-and safety-critical
multi-enclave systems. Our methodology is structured and allows for pol-
icy evolution development.

Wahsheh08a

[Wahsheh08a] L. Wahsheh. Security Policy Design and Implementation in High Assurance Com-
puter Systems. PhD thesis, Dept. of Computer Science, University of Idaho, Jun.
2008.

Abstract: One fundamental key to successful implementation of secure
high assurance computer systems is the design and implementation of
security policies. For distributed systems enforcing multiple concurrent
policies, the design of correct implementation mechanisms is a challenging
and difficult task. To simplify this task, this dissertation introduces a for-
mal security policy framework that establishes a coherent security policy
assurance methodology that is efficiently and effectively applied to in-
crease the overall security in high assurance computer systems. Although
the novel methodology is designed for use in the Multiple Independent
Levels of Security (MILS) architecture, a high assurance computer system
design for security and safety-critical multi-enclave systems, it is appli-
cable to a much broader range of architectures The framework includes
a security policy that defines rules that regulate information access, a
security model that provides a representation of the policy which enables
reasoning about the system, and a security enforcement mechanisms that
applies the actions imposed by the policy and stated in the model. The
framework consists of fiver interrelated phases: policy specification, pol-
icy integration, policy verification, policy validation, and policy imple-
mentation. Multiple independent policies are specified as formulaes that
describe relationships between sets of entities based on predicate logic
with a solid mathematical foundation. These multiple policies are then
integrated into a single system policy by applying an inter-enclave multi-
policy classification paradigm for information access. Then,. a resolution
theorem prover is used to verify system correctness with respect to poli-
cies in their life-cycle strategies. A graph-based visualization tool is then
used to validate4 policies and provide system security managers with a
process that enables policy reviews and visualizes interactions between
systems’s entities. Finally a policy implementation model id developed to
securely control information access.

199

Wahsheh08b

[Wahsheh08b] L.A. Wahsheh and J. Alves-Foss. Security policy development: Towards a life-
cycle and logic-based verification model. American Journal of Applied Sciences,
5(9):1117–1126, 2008.

Abstract: Although security plays a major role in the design of soft-
ware systems, security requirements and policies are usually added to an
already existing system, not created in conjunction with the product. As
a result, there are often numerous problems with the overall design. In
this paper, we discuss the relationship between software engineering, se-
curity engineering, and policy engineering and present a security policy
life-cycle; an engineering methodology to policy development in high as-
surance computer systems. The model provides system security managers
with a procedural engineering process to develop security policies. We also
present an executable Prolog-based model as a formal specification and
knowledge representation method using a theorem prover to verify system
correctness with respect to security policies in their life-cycle stages.

Wahsheh08c

[Wahsheh08c] L.A. Wahsheh, D. Conte de Leon, and J. Alves-Foss. Formal verification and visu-
alization of security policies. Journal of Computers, 3(6), 2008.

Abstract: Verified and validated security policies are essential compo-
nents of high assurance computer systems. The design and implementa-
tion of security policies are fundamental processes in the development,
deployment, and maintenance of such systems. In this paper, we intro-
duce an expert system that helps with the design and implementation of
security policies. We show how Prolog is used to verify system correctness
with respect to policies using a theorem prover. Managing and visualiz-
ing information in high assurance computer systems are challenging tasks.
To simplify these tasks, we show how a graph-based visualization tool is
used to validate policies and provide system security managers with a
process that enables policy reviews and visualizes interactions between
the systems entities. The tool provides not only a representation of the
formal model, but also its execution. The introduced executable model is
a formal specification and knowledge representation method.

Wang06e

[Wang06e] B. Wang and J. Alves-Foss. An MSLS-EMM for enforcing confidentiality in mali-
cious environments. In IASTED International Conf. on Communication, Network
and Information Security (CNIS 2006), pages 126–131, Oct. 2006.

Abstract: The use of security policy enforcement mechanisms has been
a topic in recent literature. Particular focus has been on the class of
policies that can be enforced by these mechanisms but not on the secu-
rity policy guiding the execution of the monitoring mechanisms. It has
been a challenge to enforce information confidentiality in a multi-level se-
cure system since malicious users can exploit covert channels within the

200

enforcement mechanisms to propagate confidential information. In this
paper, we characterize necessary security properties for an enforcement
mechanism that can ensure secure execution of the untrusted programs
even though they may be malicious.

Wang06f

[Wang06f] B. Wang. Possibilistic information flow analysis and formal verification of multiple
single-level secure execution monitoring mechanisms for high assurance systems.
Master’s thesis, Dept. of Computer Science, University of Idaho, May 2006.

Abstract: Runtime enforcement mechanisms are needed in systems
where not all system components are trusted to conform to the system
security policies. Therefore the security of a system applying runtime en-
forcement mechanisms, to a large extent, relies on the security of those
enforcement mechanisms. In this thesis we created a secure specification
of a trusted enforcement mechanism. We interpret trustworthiness as 1)
the mechanism satisfies the desired security requirements, 2) the security
requirements do not rely on the specific implementation of the mecha-
nism, and 3) security is formally verified using sound mathematic proofs.
In order to apply mathematical strength to demonstrate the security of
the mechanisms, we applied formal methods to express both the system
specification and the security property. We believe that a Multiple Single
Level Secure (MSLS) enforcement mechanisms could be trusted to en-
force a large set of confidential security policy without compromising the
underlying system security even in the circumstance where each system
component are hostile.

Yang05d

[Yang05d] D. Yang. A threat-scenario-driven modeling approach to the mmr. Master’s thesis,
Dept. of Computer Science, University of Idaho, Aug. 2005.

Abstract: This study presents a new security modeling approach to the
covert channel control security policies, a threat-scenario-driven security
modeling approach. To apply this approach to a system, all potential
covert channel threats are identified and modeled first; system security
properties are specified based on these threat models. This approach is
demonstrated through security modeling of a trusted message router, the
MILS message router. Top level designs guided by the security model are
proved to satisfy system security properties. The modular security mod-
eling allows system designers to choose tradeoffs between system security
and cost. The proposed modeling approach introduces two new steps at
both ends of the security modeling approach. These steps smooth the
transitions from abstract policies to concrete system modeling and from
the formal security properties to the system design. This greatly eases
the integration of security modeling into secure software development. A
new definition of covert channels is proposed based on the identified gap
between non-interference security and non-covert-channel security. This
definition is generic. It can be used to identify covert channel threats at
any system development stage of any deterministic system.

201

Zheng05a

[Zheng05a] Shanyu Zheng, Jim Alves-Foss, and Stephen Lee. Exploring average performance of
group key management algorithms over multiple operations. In Proc. IASTED In-
ternational Conference on Communications, Internet, and Information Technology
(CITT 2005), 2005.

Abstract: Traditional analysis of group key protocol performance is
based on the cost of performing a single operation. We extend this analysis
to examine the performance behavior of five group key protocols after
execution of multiple operation. This paper reports the results of our
experiments for 100 operations consist of combinations of join, leave,
mass add and mass leave operations. The results of these experiments are
consistent with the original single operation experiments, thus validating
their utility.

Zheng06a

[Zheng06a] S. Zheng. A Communication-Computation Efficient Group Key Algorithm for Large
and Dynamic Groups. PhD thesis, Dept. of Computer Science, University of Idaho,
Aug. 2006.

Abstract: The management of secure communication between groups of
participants requires a set of secure and efficient operations. In this dis-
sertation we present a Communication-Computation Efficient Group Key
Algorithm (CCEGK). This algorithm extends prior work to provide both
efficient communication and computation, and to address performance,
security and authentication issues. We then theoretically compare the
performance of CCEGK with four other leading group key algorithms,
EGK, TGDH, STR, and GDH3.0 in worst case scenario. Traditional anal-
ysis of group key protocol performance is based on the cost of performing
a single operation. We extend this analysis to examine the performance
and stability behavior of five group key protocols over multiple opera-
tions. Thus, the experimental results we report consist of combinations
of join, leave, mass join, mass leave, merge, and partition operations,
which assist decision makers in reviewing their performance and stability
over time. Since CCEGK provides two rebalance schemes to improve its
performance, the performance impact of tree rebalancing operations on
the overall cost of CCEGK is evaluated over the course of the execution
of multiple operations. Thus, experimental results for CCEGK obtained
by executing multiple operations and considering rebalance schemes are
displayed to show average computation cost, communication cost, and
stability. This was done in order to provide decision makers the ability to
select the appropriate protocols. Several group key protocols, including
the above five, have been presented in the literature to enable secrecy of
communication among dynamic groups of participants. However, there is
little consistency in the literature in terms of operations supported and
performance metrics of the various protocols. This makes it difficult for
designers to choose the best protocol for their specific applications. To

202

alleviate this problem, we introduce a generic model of group key ex-
change protocols. In addition, we introduce new performance metrics for
use in uniformly comparing these protocols and then in improving the
performance of five protocols based on these operations and metrics.

Zheng06b

[Zheng06b] S. Zheng, D. Manz, J. Alves-Foss, and Y. Chen. Security and performance of group
key agreement protocols. In Proc. IASTED Networks and Communication Systems,
pages 321–327, Mar. 2006.

Abstract: A few group key protocols are analyzed, implemented and
deployed, but the costs associated with them have been poorly under-
stood. Their analysis of group key agreements performance is based on
the cost of performing a single operation. In this paper we extend this
analysis to examine the performance behavior of five group key protocols
after execution of multiple operation. We report our experimental re-
sults for 100 operations consist of combinations of join, leave, mass join,
mass leave, merge, and partition. In order to thoroughly compare the
performance of five protocols, we simulate three group operations: join-
leave-mass joinmass leave, merge-partition, and join-leave-mass join-mass
leave-merge-partition to observe

Zheng06c

[Zheng06c] S. Zheng, J. Alves-Foss, and S. Lee. The effect of rebalancing on the performance
of a group key agreement protocol. In Annual IEEE Conference on Local Computer
Networks, pages 983–989, Nov. 2006.

Abstract: The most efficient contributory group key agreement proto-
cols conduct their operations using a tree-based structure to guide com-
munication and computation. Existing performance comparisons of group
key protocols have only evaluated the cost of single operations in isolation.
This paper expands this work by evaluating the performance impact of
tree rebalancing operations on the overall cost of a group key agreement
protocol over the course of the execution of several operations

Zheng07a

[Zheng07a] S. Zheng, D. Manz, and J. Alves-Foss. A communication-computation efficient
group key algorithm for large and dynamic groups. Journal of Computer Networks,
51(1):69–93, 2007.

Abstract: The management of secure communication among groups of
participants requires a set of secure and efficient operations. In this paper
we extend existing work to present a CommunicationComputation Effi-
cient Group Key Algorithm (CCEGK) designed to provide both efficient
communication and computation, addressing performance, security and
authentication issues of CCEGK. Additionally, we compare CCEGK with
three other leading group key algorithms, EGK, TGDH, and STR. An
analytical comparison of all algorithms revealed eight similar methods:

203

add, remove, merge, split, mass add, mass remove, initialize, and key re-
fresh. Comparing the cost in terms of communication and computation,
we found CCEGK to be more efficient across the board.

Zhou06c

[Zhou06c] Jie Zhou and Jim Alves-Foss. Architecture-based refinements for secure computer
systems design. In Proc. Policy, Security and Trust, 2006.

Abstract: The successful design and implementation of secure systems
must occur from the beginning. A component that must process data at
multiple security levels is very critical and must go through additional
evaluation to ensure the processing is secure. It is common practice to
isolate and separate the processing of data at different levels into dif-
ferent components. In this paper we present architecture-based refine-
ment techniques for the design of multi-level secure systems. We discuss
what security requirements must be satisfied through the refinement pro-
cess, including when separation works and when it does not. The process
oriented approach will lead to verified engineering techniques for secure
systems, which should greatly reduce the cost of certification of those
systems.

Zhou08a

[Zhou08a] J. Zhou and J. Alves-Foss. Security policy refinement and enforcement in secure
computer systems design. Journal of Computer Security, 16(2):107–131, 2008.

Abstract: The successful design and implementation of secure systems
must occur from the beginning. A component that must process data at
multiple security levels is very critical and must go through additional
evaluation to ensure the processing is secure. It is common practice to
isolate and separate the processing of data at different levels into dif-
ferent components. In this paper we present architecture-based refine-
ment techniques for the design of multi-level secure systems. We discuss
what security requirements must be satisfied through the refinement pro-
cess, including when separation works and when it does not. The process
oriented approach will lead to verified engineering techniques for secure
systems, which should greatly reduce the cost of certification of those
systems.

204

