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Abstract 
 
The concept of information classification is used by all 

nations to control information distribution and access. In 
the United States this is referred to as Multiple Levels of 
Security (MLS), which includes designations for 
unclassified, confidential, secret, and top secret 
information. The U.S. Department of Defense has 
traditionally implemented MLS separation via discrete 
physical devices, but with the transformation of military 
doctrine to net-centric warfare, the desire to have a single 
device capable of Multiple Independent Levels of Security 
(MILS) emerged. In this paper we present a formal model 
of a MILS message router using SPARK-ADA. The model 
is presented as a case study for the design and 
verification of high assurance computing systems in the 
presence of an underlying separation kernel. We utilized 
the correctness-by-design approach to secure system 
development and discuss the limitations of that approach 
for the type of system we model. 

 
1. The need for certifiably secure systems* 

 
One of the largest problems facing the field of 

computer science is that of computer and network 
security. With the increased connectivity of Information 
Technology (IT) systems and process control systems, 
security is needed to defend against malicious persons 
intent on abusing or attacking network resources. This is 
especially true for unbounded networks like the Global 
Information Grid (GIG) [1]. 

Every year, billions of dollars are lost due to cyber 
intrusions and computer viruses that threaten corporate 
and government systems. The "ILOVEYOU" virus alone 
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caused over $10 billion in losses [2]. While monetary 
losses call attention to the importance of secure systems, 
there are other, more important, reasons for computer 
security. Critical systems that protect human life, such as 
avionics, weapons controls, reactor controls and life 
support systems, for example, require a higher level of 
secure and safe operation. 

The DO-178B security standard is the specification for 
minimum safety in any airplane computer system [3]. 
Critical systems of this nature need a greater degree of 
safety and security than normal IT systems (like banking, 
for instance). Problematically, there exist many such 
standards for different application areas. What is safe for 
DO-178B may or may not be secure for other 
applications. This is why the Common Criteria Project [4, 
5], jointly sponsored by several nations, defined seven 
Evaluation Assurance Levels (EAL), ranging from the 
lowest security and safety, EAL1, to the highest, EAL7. 
Standards and products are mapped to a specific EAL (or 
better, created to an EAL specification), enabling 
developers to satisfy security and safety policies by 
fulfilling different level-specific requirements based. 
EAL5 through EAL7 apply to critical systems. 

Certification at the upper levels of security and safety 
calls for design and implementation rigor involving 
software engineering process control and mathematical 
formal methods that verify algorithm correctness. Using a 
set of formal proofs of an abstract model of the system, 
designers are expected to mathematically show the 
system will operate in the way that it was designed. EAL6 
and EAL7, for example, require the use of formal 
methods, mathematical models and proofs. For large 
complex systems this is a most daunting task, but the 
separation of the overall system into certified, reusable 
components simplifies the verification process by 
enabling a proof that demonstrates the correct interaction 
of those previously proven components. 
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2. Multiple independent levels of security 
 
In the early 1980’s, Rushby presented the concept of 

separability for the design and implementation of secure 
computer systems [6, 7]. The basic premise of his 
research was that computer systems that are completely 
separate from each other are by definition secure from 
one another. Rushby argued that this separation need not 
be physical, as long as at some level of abstraction we 
have separate devices, and a well-defined security policy 
between them. He proposed that a specialized real-time 
operating system, called the separation kernel, could 
provide an environment where multiple processes could 
run on the same processor and yet be totally separate from 
one another. Rushby showed that if these systems are 
connected through a well-defined communication policy, 
they can be proven secure because of the level of control 
exerted over that well-defined policy. Recently, Greve et 
al. created a formal security policy for a separation kernel 
[8]. That is, they defined a formal security policy that the 
separation kernel must enforce to ensure that processes 
running on the system are truly separate. 

Original research by Alves-Foss [9, 10] led to the idea 
of a software/firmware architecture that would support 
Multiple Independent Levels of Security (MILS). The 
concept of Multiple Levels of Security (MLS) has 
traditionally been implemented by keeping multiple 
classifications of data (e.g., top-secret, secret, classified, 
unclassified) on physically separate devices. The MILS 
architecture uses a separation kernel to keep multiple data 
classifications on the same machine but completely 
independent of each other [11, 12]. Under the MILS 
implementation, there is no shared data whatsoever unless 
that data travels through the well-defined communication 
path. The separation kernel does this by creating 
partitions for each data classification type and keeping 
them separate by allowing no shared memory access, 
processor use, or hard disk storage. At the core of this 
architecture are the well-defined communication paths 

and a proven formal security policy that facilitates a proof 
of the whole system as an interaction of the certified 
components. The MILS architecture facilitates the 
composition of MLS components and single-level 
components via the well-defined and proven secure 
communication policy. Fig. 1 shows an example 
communications digraph to enforce a secure policy of 
communication paths (arrows) between Unclassified (U), 
Secret (S), Top Secret (TS), and MLS partitions. Once 
this policy is proven, the system is secure as long as 
individual components are secure. In other words, 
proving the communication policy is done once, and from 
then on we only have to prove that individual components 
adhere to the security policy for the system. 

In the MILS architecture, secure communication is 
implemented in two subsystems: the MILS Message 
Router (MMR) and a collection of middleware guards. 
The guards enforce object-level method access rights and 
are not the focus of this paper (see [13] for 
implementation details of the MILS guards). As shown in 
Fig. 2, the MMR enforces the digraph of allowed typed 
communication, as defined in the security policy (Fig. 1). 
Communication classifications are enforced by the MMR 
as a mechanism to stratify messages (such as 
Unclassified/Classified/Secret/Top Secret). The MMR 
verifies that the sending partition is allowed to send a 
message to the receiving partition at the requested level. 
If the request is authorized by the security policy, then the 

MMR passes the message to the receiving partition. Thus, 
the MMR imposes a policy of "who can talk to whom and 
at what classification level."  In previous work, it has 
been shown that once the MMR is proven to satisfy the 
security policy in conjunction with any service running in 
the partitions of which it governs communications, the 
entire system satisfies the security policy, provided that 
the services themselves satisfy the security policy 
individually [10]. This means that meeting EAL7 
requirements on the MMR would make possible and 

Figure 2. The MMR contains the security policy digraph
 from Figure 1
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Figure 1. A security policy digraph for communication paths



greatly simplify the work of building and certifying 
MILS-based EAL7 systems for critical uses.  

 
3. A SPARK-Ada MMR model 

 
The main goal of the research described in this paper is 

to model the MMR and then verify the model’s correct 
operation via formal methods. One of the principle 
objectives of the MILS initiative is the creation of EAL7-
certified components. EAL7 requires the entire system to 
be mathematically proven using formal methods [4]. 
Specifically, we must create a high-level MMR design 
that is (a) proven in a formal modeling language, and (b) 
traceable to the code implementation [5]. SPARK-Ada is 
a formal methods tool that facilitates both criteria; 
specifically, it incorporates formal Hoare logic operations 
with executable Ada code, enabling the creation of 
verifiably correct executable models. Specifically, Hoare 
logic pre-, post-, and assert conditions are incorporated 
into the Ada source code (delineated with a “--#” prefix) 
and are used by the SPARK-Ada formal logic proof 
checkers during the verification process. The verification 
process and proof tools are described Section 4. 

We used SPARK-Ada to implement a formal model of 
the MMR consistent with the MILS architecture targeted 
for an unspecified separation kernel. Our constraints were 
to build a MMR that: (1) used finite (not virtual) working 
memory, (2) had “zero-copy” message buffering 
modeling high performance implementations, (3) was 
consistent with EAL7 certification methodologies, (4) 
served as an example of how client processes should 
actually be implemented by developers, and (5) was 
easily updated for testing and removing assumptions in 
the model. 

The model is composed of several “processes,” each 
typically in a separate partition, but not necessarily so, 
along with the MMR component that resides in a partition 
by itself. Every process is allowed to run in an a priori 
static scheduling order that includes the execution of the 

MMR. The execution cycle continues indefinitely. If a 
process wishes to send a message to another process, it 
places the message in its message buffer and waits until 
the MMR is invoked. When the MMR processes the 
message, it checks to see if the message is authorized and 
valid and proceeds with the transmission by swapping 
ownership of that message buffer (hence, it’s a zero-copy 
process). If the message is not valid or not permitted, it is 
expunged (zeroed) with no notice to either process. No 
process is allowed to read a section of memory that it 
does not own and each piece of memory is owned by 
exactly one process at a time. 

Fig. 3 depicts the six processes from Fig. 1, denoted A 
through F, that we modeled in our SPARK-Ada MMR. 
The MMR is only aware of the authorized 
communication channels depicted in this Fig.. A 
comparison of this figure with Fig. 1 will indicate two 
interesting data flows. First, we can see that there is 
authorized flow from the MLS device E to C (top-secret), 
D (secret) and F (unclassified). This is a depiction of a 
trusted downgrader (such as a cryptographic device) that 
takes in high level information and processes it in a way 
to ensure no unauthorized information leakage. Second is 
the flow from F (unclassified) to D (secret), which depicts 
flow from an untrusted process (say a network device) 
into the system through a guard D. Although this is not an 
unauthorized flow, we have to be sure that there is no 
possible back channel, i.e., that D cannot block the 
sending of data from F. In addition, D will have to protect 
itself from attacks launched through F. 

The MILS kernel and the MMR are not aware of the 
downgrading effort or the guarding, and they do not care. 
The purpose of the lower layer is to provide a set of 
security services to the higher levels. The kernel and the 
MMR restrict information flow so that the only points of 
concern are the flow out of E and from F to D. The MILS 
system will provide a verified separation kernel and 
MMR that can be reused by system developers. The 
developers will have to verify that the software running in 
partition E is multi-level secure, and that the single-level 
code in partition D is self-protecting and does not provide 
back channels. The other components can simply be 
verified as “black boxes” because the formally proven 
secure communication policy already verifies the security 
of the interactions. Thus, the level of proof rigor is 
significantly reduced when compared to traditional MLS 
solutions. 

 
3.1. MMR model assumptions 

 
Our model has a few assumptions to make verification 

simpler; while these assumptions could be removed, 
doing so would greatly increase the complexity of the 
verification proof. The main reason for the simplification 
of the model is to demonstrate that (a) the MMR does in 

Figure 3. An MMR security policy digraph
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fact operate correctly to facilitate secure messaging, and 
(b) SPARK-Ada is a viable proof-verification tool for 
executable models. The assumptions our SPARK-Ada 
MMR model are: 
1. All pointers are unique. Each pointer to the working 

memory must be unique for our model; otherwise, 
communication could pass between the two or more 
owning processes of that pointer. This assumption 
aids our verification because the pointers are used as 
array indices in memory, and swaps between the 
memory spaces are simplified by knowing this 
information. We can easily verify this for the code-
level  implementations since we do not use dynamic 
pointers or aliasing. 

2. Each process reads its incoming messages on each 
execution, and afterward, all of those memory spaces 
are zeroed. The zeroing of the receive buffers is 
needed because of the swaps on a successful send. If 
the receive buffer is not zeroed out, then the message 
in that buffer could be read by the sending process, 
creating an unchecked communication channel. This 
problem could also be resolved by zeroing out the 
receiving buffer before the swap occurs. Both 
approaches are possible solutions to closing the covert 
channel, but our model uses the first approach. 

3. The security policy is static. The security policy for 
our system is based on a simple directed graph 
security policy (Fig. 3). If process A is allowed to 
send a message to process B, then there is a directed 
edge connecting process A to process B. Each edge is 
one-way, so for process B to send to process A there 
would need to be a separate directed edge from B to 
A. In our model the digraph is static for simplicity, but 
the policy can be set at design time or at execution 
time, as long as the policy has been proven correct 
prior to instantiation in the model. 

4. No process is allowed to send a message to itself. 
Self-directed messaging could be allowed but is 
unnecessary and therefore removed for simplification. 

5. Each process is allowed to send at most one message 
per activation. This assumption was used for 
simplification. Enabling multiple sends per activation 
can be implemented but requires checks to make sure 
that memory is not overrun, which complicates 
verification. 
 

3.2. SPARK-Ada MMR implementation 
 
Our MMR model is implemented in six Ada packages: 

Lbl_t, Msg_t, Mem_t, MMR, System, and Main. We use 
italics to differentiate the MMR packages from the generic 
MMR components discussed previously. 
1. The Lbl_t (label) package consists of type definitions 

for labels that enumerate the complete list of the 
processes in the system, including the null process. 

The package also contains a constant defining the size 
of memory space. It is a very simple package that all 
other packages use as a naming scheme. 

2. The Msg_t (message) package defines the Msg data 
type, which is the template for individual 
communications in the system. This Msg data type is 
a basic model of messages from one process to 
another. It consists of a process identifier to denote 
origin of the message, a process identifier to denote 
destination, and the message data (a simple integer in 
our model). Also defined in this package are default 
values for the Msg data type, a null origin and 
destination, and procedures to access and modify the 
Msg data type. 

3. The Mem_t (memory) package defines a simple data 
type that creates another data type, Mem_Row, that is 
an array of Msg’s. The Mem_Row data type is what a 
process receives when it reads its messages. 

4. The MMR package acts as a virtual memory manager 
in the system. The MMR package has two internal 
packages that it uses in its operation, a Memory 
package and a Policy package. The MMR keeps a set 
of pointers to Memory that it uses to distinguish which 
process owns which section of Memory. The MMR 
package has a procedure, Route, that scans each 
outgoing Msg to see if it is valid and allowed by the 
Policy. If it is valid and allowed, the MMR delivers 
the message by swapping pointers (in effect, 
ownership); otherwise it expunges the message from 
Memory. 

 Memory acts as a large memory space. It has two 
procedures, Read and Write, that the MMR 
package uses. Read takes a pointer P and an Msg 
M and writes the Msg that is at the location 
pointed to by the pointer P to the Msg M. Write 
takes a pointer P and an Msg M and writes the 
Msg M to the memory space pointed to by the 
pointer P. 

 Policy contains a static multidimensional array 
that serves as the communication policy for the 
MMR. It has one function, Is_Allowed, that takes 
in two process identifiers (e.g., A and B) and 
returns a binary value indicating whether or not 
messages are allowed (e.g., from A to B). 

5. The System package implements the executable 
portion of the model. It executes each of the processes 
in order and acts as a go-between for the processes 
and the MMR package. It guarantees that a process 
cannot spoof its identity when it is sending a message. 
It does not guarantee that the message is addressed 
correctly but only that the message goes into the 
appropriate send buffer in the MMR. Once each 
process has executed, it then runs the MMR_Route 
procedure so that the messages are sent according to 
the specified communication policy. 



6. The Main package is just a wrapper program that 
executes the System package indefinitely. 
Fig. 4 depicts the relationship between the MMR 

package, with its subordinate Memory and Policy 
packages, and the simulated processes denoted A through 
F. The Policy package contains an adjacency matrix 
representing the security policy diagraph shown in Fig. 3. 

The figure shows how the MMR is designed to interact in 
the model, where the partition in each row is allowed to 
talk to the partition in the column if the cell is shaded. 
The MMR has only three publicly available procedures: 
Send_Msg, Read_Msgs, and Route. There are two internal 
packages within the MMR: Memory that has two 
procedures, Write and Read, and Policy that has one 
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Figure 4. MMR interactions with processes A-F

--# inherit Lbl_t, Msg_t;
package Memory
--# own Mem_Space : Mem_Space_T;
--# initializes Mem_Space;
is
type Mem_Space_T is array

      ( Lbl_t.Pointer ) of Msg_t.Msg;
procedure Write(

      M: in Msg_t.Msg;
      S: in Lbl_t.Pointer );
--# global in out Mem_Space;
--# derives Mem_Space from *,
--#                        M,
--#                        S;
--# post Mem_Space = Mem_Space~[ S => M ];
procedure Read(

      M: out Msg_t.Msg;
      S: in  Lbl_t.Pointer );
--# global in Mem_Space;
--# derives M from Mem_Space,
--#                S;
--# post M = Mem_Space( S );

end Memory;

package body Memory is
  Mem_Space: Mem_Space_T;

procedure Write(
      M: in Msg_t.Msg;
      S: in Lbl_t.Pointer ) is

begin
    Mem_Space( S ) := M;

end Write;
procedure Read(

      M: out Msg_t.Msg;
      S: in  Lbl_t.Pointer ) is

begin
    M := Mem_Space( S );

end Read;
begin
  Mem_Space := Mem_Space_T'(
   Lbl_t.Pointer => Msg_t.Def_Msg );
end Memory;

(a) Memory package specification (b) Memory package body

Figure 5. SPARK-Ada code for Memory package



function, Is_Allowed. There is also an internal table 
within the MMR that keeps track of the pointers for each 
process and whether that memory location currently 
contains a message or not. 
 
4. Model verification 

 
Verification of the MMR model was done using the 

tools available with SPARK. This entailed first creating 
the code and proof annotations in the packages described 
above according to the SPARK-Ada language. There are 
two types of source files: <name>.ads files for package 
specification files and <name>.adb files for package body 
files. Fig. 5(a) shows the package specification for 
Memory. It states that the Memory package inherits from 
the Lbl_t and Msg_t packages; it contains its own global 
variable Mem_Space, an array made up of the Msg type 
from the Msg_t package of size Pointer from the Lbl_t 
package; and also contains two procedures, Write and 
Read, which manipulate the Mem_Space abstract 
variable. Write takes in two variables as input: M of the 
type Msg from the Msg_t package and S of the Pointer 
type from the Lbl_t package; it derives the Mem_Space 
from itself, M and S. When the procedure is finished, the 
post-condition states that Mem_Space will be the same, 
except the array location pointed to by S now contains the 
value of M. Read uses the same two inputs but derives the 
value of M from Mem_Space and S; when the procedure 
is finished, the post-condition states that M contains the 
value from Mem_Space pointed to by S. Fig. 5(b) is the 
package body for the Memory package. The body simply 

implements in code what the specifications describe from 
the package specification.  

Fig. 6 illustrates the use of pre- and post-conditions in 
the Read_Msgs package body. The pre-condition states 
that all values in the Pointer array are different from one 
another – it is a uniqueness check. The post-condition 
states that for all of the Proc_IDs (the full list of process 
names) that the Flags variable in the row P have been set 
to False, the output array A has been filed with the old 
values from the Memory for the process P, and the spaces 
in Memory for the process P have now been zeroed out 
with the Def_Msg constant. In laymen’s terms, the 
Memory has been read into the array A and then been 
zeroed out. 

The first step in the verification process is to invoke 
the SPARK Examiner that does syntax checking and 
information flow checking. The Examiner generates 
verification condition files for each procedure and 
function within the packages (i.e., <name>.vcg). If the 
execution of the code matches the pre-conditions and 
post-conditions as described by the proof annotations, 
then the verification process continues. We then run the 
SPARK Simplifier which takes the <name>.vcg files and 
attempts to verify them using the Southampton Program 
Analysis Development Environment (SPADE) Proof 
Checker. It is usually capable of processing only the 
simpler verification conditions. Any verification 
conditions that the Simplifier cannot handle are stored 
into <name>.siv files corresponding to the <name>.vcg 
files. At that point, any conditions that have not been 
verified by the Examiner or the Simplifier must then be 
manually verified by a review team or by using the 

procedure Read_Msgs(
    P : in Lbl_t.Proc_ID;
    A : out Mem_t.Mem_Row )
--# global in     Pointers;
--#            in out Flags;
--#            in out Memory.Mem_Space;
--# derives Memory.Mem_Space,
--#              A     from P,
--#                             Memory.Mem_Space,
--#                             Pointers &
--#              Flags from *,
--#                               P;
--# pre
--# for all X1 in Lbl_t.Proc_ID => (
--# for all Y1 in Lbl_t.Mem_Cols => (
--#  for all X2 in Lbl_t.Proc_ID => (
--#    for all Y2 in Lbl_t.Mem_Cols =>(
--#     (
--#      ( X1 /= X2
--#        or
--#        Y1 /= Y2 )
--#      ->
--#      ( Pointers(X1)(Y1) /=  Pointers(X2)(Y2))
--#  )))));

--# post
--# ( for all Y in Lbl_t.Proc_ID => (
--#    Flags(P)(Y) = FALSE
--#    and
--#    A(Y) =
--#    Memory.Mem_Space~(Pointers(P)(Y))
--#    and
--#    Memory.Mem_Space(Pointers( P )(Y)) = 
--#     Msg_t.Def_Msg
--#  ));

is
  Temp_Mem_Row : Mem_t.Mem_Row;
begin
  Fill_Mem_Row( P, Temp_Mem_Row );
  Zero_Flags( P );
  Zero_Mem_Row( P );
  A := Temp_Mem_Row;
end Read_Msgs;

Figure 6. SPARK-Ada code for Read_Msgs procedure body



SPADE Proof Checker in manually guide mode. The 
proof checker program takes in <name>.vcg or 
<name>.siv files containing unverified conditions and 
outputs the manually guided verifications into 
<name>.plg files. In a similar manner, the review team 
can create verifications in a <name>.prv file containing 
verification conditions that have been manually verified 
by a review committee. 

When all verification conditions have been proven, 
either automatically or manually, the Proof Obligation 
Summarizer (POGS) checks for the existence of all files 
(.vcg, .siv, .plg, and .prv) and produces a summary of all 
of the verification conditions that were generated. Fig. 7 
shows the POGS summary for function Is_Allowed and 
procedure Send_Msg.  

As shown in Fig. 7, the Is_Allowed function from the 
Policy package has been verified by the Examiner and the 
Simplifier. It has two verifications associated with it. The 
first is a run-time check to see that the variables are 
within their appropriate ranges. The second is an assertion 
made in the SPARK annotations that has been verified by 
the SPARK Examiner. As also shown in Fig. 7, the 
Send_Msg procedure was verified by the Examiner (vcg), 
Simplifier (siv), and SPADE proof checker (plg). Not all 
verifications are this simple, however. For example, the 
verification for the Route procedure (not shown) contains 
29 verification conditions. 

POGS also provides a summary of the entire proof. 
Fig. 8 shows the final proof summarization for the MMR 
model. Note that most proofs were handled by the 
Simplifier or guided to a successful formal proof through 
the Proof Checker – which is not unusual for formal 
methods tools. Also note that proof by committee or 

review team was not employed. We felt strongly that 
formal logic should prevail and not be overridden by 
informal proof methods. 

 
5. Summary and conclusions 

 
We have modeled a MILS Message Router capable of 

securely handling multiple levels of message 
classifications, assuming that processes handling each 
classification are properly contained within partitions 
segregated by a separation kernel. Although our model 
was simplified to enable a formal proof of correctness, it 
is easily extensible to a variety of MLS applications by 
modifying the digraph representation in the Policy 
adjacency matrix (or adjacency list).  

The main goal of this project was to test the use of 
executable proof verification tools to design and create 
MILS components that could be certified at upper levels 
of the Common Criteria (e.g., EAL5 to EAL7). Exploring 
MMR design alternatives was also a motive behind the 
study; the solution presented here was the third iteration 
of our MMR design. What we learned from the process 
was enlightening but, in hindsight, not unexpected: 
• The modeling process allows exploration of the 

solution space, albeit not as efficiently as 
prototyping. 

• Generating formal proofs of correctness, even for 
simple operations contained in small components, is 
an arduous task that requires automated tools. 

                          Semantic Analysis Summary                         
            SPARK Proof Obligation Summariser Release 4.0 / 12.04           
                Praxis High Integrity Systems, Bath, England                
----------------------------------------------------------------------------
VCs for function_is_allowed :                                               
----------------------------------------------------------------------------
      |       |                    |  ---------Proved In--------- |       |
 #    | From  | To                 |  vcg  |  siv  |  plg  |  prv  | TO DO |
----------------------------------------------------------------------------
 1    | start | rtc check @ 143    |       |  YES  |       |       |       |
 2    | start |    assert @ finish |  YES  |       |       |       |       |
----------------------------------------------------------------------------

VCs for procedure_send_msg :                                                
----------------------------------------------------------------------------
      |       |                    |  ---------Proved In--------- |       |
 #    | From  | To                 |  vcg  |  siv  |  plg  |  prv  | TO DO |
----------------------------------------------------------------------------
 1    | start | rtc check @ 451    |       |  YES  |       |       |       |
 2    | start | rtc check @ 452    |       |  YES  |       |       |       |
 3    | start |    assert @ finish |       |  YES  |       |       |       |
 4    |       | refinement         |  YES  |       |       |       |       |
 5    |       | refinement         |       |       |  YES  |       |       |
----------------------------------------------------------------------------

Figure 7.  POGS procedure and function verification summary examples



• Tying the executable code to the formal proof 
assertions (a la SPARK-Ada) enables a more 
rigorous proof model than can be attained through 
non-executable formal methods proof environments 
in which we have worked (e.g., ACL2). 

• The lack of commercial grade on-call assistance on 
the use and nuances of the SPARK-Ada verification 
toolset was a significant hindrance to our task. 

The MILS initiative and the development of a formally 
verified MMR embedded within a separation kernel 
machine are ongoing projects. We have also developed 
coded versions of the MMR in C/C++ and models of its 
operation in ACL2. Although we are uncertain if the 
SPARK-Ada model will eventually end up as the final 
definition for the MMR, we are convinced that modeling 
it in SPARK-Ada was a worthwhile task that better 
defined and refined our understanding of the MMR’s 
processes. 
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POGS Summary:

Total subprograms fully proved by examiner:                 0
Total subprograms fully proved by simplifier:              11
Total subprograms fully proved by checker:                  8
Total subprograms fully proved by review:                   0
Total subprograms with at least one undischarged VC:        0

-----
Total subprograms for which VCs have been generated:       19

Total VCs by type:
-----------Proved By------------

                     Total  Examiner   Simp  Checker  Review  Undischarged 
Assert or Post:         33         1     18       14       0             0 
Precondition check:      4         0      4        0       0             0 
Check statement:         0         0      0        0       0             0 
Runtime check:          43         0     43        0       0             0 
Refinement VCs:          6         1      0        5       0             0 
Inheritance VCs:         0         0      0        0       0             0 
===========================================================================
Totals:                 86         2     65       19       0             0 
% Totals:                          2%    75%      22%      0%            0%
===================== End of Semantic Analysis Summary ====================

Figure 8. POGS summary for MMR proof


