
Using SPARK-Ada to Model and Verify a MILS Message Router*

Bryan Rossebo, Paul Oman, Jim Alves-Foss, Ryan Blue, and Paul Jaszkowiak
Center for Secure and Dependable Systems

University of Idaho
Moscow, ID 83844-1008

Abstract

The concept of information classification is used by all

nations to control information distribution and access. In
the United States this is referred to as Multiple Levels of
Security (MLS), which includes designations for
unclassified, confidential, secret, and top secret
information. The U.S. Department of Defense has
traditionally implemented MLS separation via discrete
physical devices, but with the transformation of military
doctrine to net-centric warfare, the desire to have a single
device capable of Multiple Independent Levels of Security
(MILS) emerged. In this paper we present a formal model
of a MILS message router using SPARK-ADA. The model
is presented as a case study for the design and
verification of high assurance computing systems in the
presence of an underlying separation kernel. We utilized
the correctness-by-design approach to secure system
development and discuss the limitations of that approach
for the type of system we model.

1. The need for certifiably secure systems*

One of the largest problems facing the field of

computer science is that of computer and network
security. With the increased connectivity of Information
Technology (IT) systems and process control systems,
security is needed to defend against malicious persons
intent on abusing or attacking network resources. This is
especially true for unbounded networks like the Global
Information Grid (GIG) [1].

Every year, billions of dollars are lost due to cyber
intrusions and computer viruses that threaten corporate
and government systems. The "ILOVEYOU" virus alone

 * This material is based on research sponsored by AFRL and
DARPA under agreement number F30602-02-1-0178 and NSF under
grant number DUE-0114016. The U.S. Government is authorized to
reproduce and distribute reprints for governmental purposes
notwithstanding any copyright notation thereon. The views and
conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of AFLR, DARPA, or the
U.S. Government.

caused over $10 billion in losses [2]. While monetary
losses call attention to the importance of secure systems,
there are other, more important, reasons for computer
security. Critical systems that protect human life, such as
avionics, weapons controls, reactor controls and life
support systems, for example, require a higher level of
secure and safe operation.

The DO-178B security standard is the specification for
minimum safety in any airplane computer system [3].
Critical systems of this nature need a greater degree of
safety and security than normal IT systems (like banking,
for instance). Problematically, there exist many such
standards for different application areas. What is safe for
DO-178B may or may not be secure for other
applications. This is why the Common Criteria Project [4,
5], jointly sponsored by several nations, defined seven
Evaluation Assurance Levels (EAL), ranging from the
lowest security and safety, EAL1, to the highest, EAL7.
Standards and products are mapped to a specific EAL (or
better, created to an EAL specification), enabling
developers to satisfy security and safety policies by
fulfilling different level-specific requirements based.
EAL5 through EAL7 apply to critical systems.

Certification at the upper levels of security and safety
calls for design and implementation rigor involving
software engineering process control and mathematical
formal methods that verify algorithm correctness. Using a
set of formal proofs of an abstract model of the system,
designers are expected to mathematically show the
system will operate in the way that it was designed. EAL6
and EAL7, for example, require the use of formal
methods, mathematical models and proofs. For large
complex systems this is a most daunting task, but the
separation of the overall system into certified, reusable
components simplifies the verification process by
enabling a proof that demonstrates the correct interaction
of those previously proven components.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Using SPARK-Ada to Model and Verify a MILS Message Router

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Idaho,Center for Secure and Dependable Systems,PO Box
441008,Moscow,ID,83844-1008

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2. Multiple independent levels of security

In the early 1980’s, Rushby presented the concept of

separability for the design and implementation of secure
computer systems [6, 7]. The basic premise of his
research was that computer systems that are completely
separate from each other are by definition secure from
one another. Rushby argued that this separation need not
be physical, as long as at some level of abstraction we
have separate devices, and a well-defined security policy
between them. He proposed that a specialized real-time
operating system, called the separation kernel, could
provide an environment where multiple processes could
run on the same processor and yet be totally separate from
one another. Rushby showed that if these systems are
connected through a well-defined communication policy,
they can be proven secure because of the level of control
exerted over that well-defined policy. Recently, Greve et
al. created a formal security policy for a separation kernel
[8]. That is, they defined a formal security policy that the
separation kernel must enforce to ensure that processes
running on the system are truly separate.

Original research by Alves-Foss [9, 10] led to the idea
of a software/firmware architecture that would support
Multiple Independent Levels of Security (MILS). The
concept of Multiple Levels of Security (MLS) has
traditionally been implemented by keeping multiple
classifications of data (e.g., top-secret, secret, classified,
unclassified) on physically separate devices. The MILS
architecture uses a separation kernel to keep multiple data
classifications on the same machine but completely
independent of each other [11, 12]. Under the MILS
implementation, there is no shared data whatsoever unless
that data travels through the well-defined communication
path. The separation kernel does this by creating
partitions for each data classification type and keeping
them separate by allowing no shared memory access,
processor use, or hard disk storage. At the core of this
architecture are the well-defined communication paths

and a proven formal security policy that facilitates a proof
of the whole system as an interaction of the certified
components. The MILS architecture facilitates the
composition of MLS components and single-level
components via the well-defined and proven secure
communication policy. Fig. 1 shows an example
communications digraph to enforce a secure policy of
communication paths (arrows) between Unclassified (U),
Secret (S), Top Secret (TS), and MLS partitions. Once
this policy is proven, the system is secure as long as
individual components are secure. In other words,
proving the communication policy is done once, and from
then on we only have to prove that individual components
adhere to the security policy for the system.

In the MILS architecture, secure communication is
implemented in two subsystems: the MILS Message
Router (MMR) and a collection of middleware guards.
The guards enforce object-level method access rights and
are not the focus of this paper (see [13] for
implementation details of the MILS guards). As shown in
Fig. 2, the MMR enforces the digraph of allowed typed
communication, as defined in the security policy (Fig. 1).
Communication classifications are enforced by the MMR
as a mechanism to stratify messages (such as
Unclassified/Classified/Secret/Top Secret). The MMR
verifies that the sending partition is allowed to send a
message to the receiving partition at the requested level.
If the request is authorized by the security policy, then the

MMR passes the message to the receiving partition. Thus,
the MMR imposes a policy of "who can talk to whom and
at what classification level." In previous work, it has
been shown that once the MMR is proven to satisfy the
security policy in conjunction with any service running in
the partitions of which it governs communications, the
entire system satisfies the security policy, provided that
the services themselves satisfy the security policy
individually [10]. This means that meeting EAL7
requirements on the MMR would make possible and

Figure 2. The MMR contains the security policy digraph
 from Figure 1

MMR EB

A F

DC

E
{MLS}

B
{TS}

A
{S}

F
{U}

D
{S}

C
{TS}

Figure 1. A security policy digraph for communication paths

greatly simplify the work of building and certifying
MILS-based EAL7 systems for critical uses.

3. A SPARK-Ada MMR model

The main goal of the research described in this paper is

to model the MMR and then verify the model’s correct
operation via formal methods. One of the principle
objectives of the MILS initiative is the creation of EAL7-
certified components. EAL7 requires the entire system to
be mathematically proven using formal methods [4].
Specifically, we must create a high-level MMR design
that is (a) proven in a formal modeling language, and (b)
traceable to the code implementation [5]. SPARK-Ada is
a formal methods tool that facilitates both criteria;
specifically, it incorporates formal Hoare logic operations
with executable Ada code, enabling the creation of
verifiably correct executable models. Specifically, Hoare
logic pre-, post-, and assert conditions are incorporated
into the Ada source code (delineated with a “--#” prefix)
and are used by the SPARK-Ada formal logic proof
checkers during the verification process. The verification
process and proof tools are described Section 4.

We used SPARK-Ada to implement a formal model of
the MMR consistent with the MILS architecture targeted
for an unspecified separation kernel. Our constraints were
to build a MMR that: (1) used finite (not virtual) working
memory, (2) had “zero-copy” message buffering
modeling high performance implementations, (3) was
consistent with EAL7 certification methodologies, (4)
served as an example of how client processes should
actually be implemented by developers, and (5) was
easily updated for testing and removing assumptions in
the model.

The model is composed of several “processes,” each
typically in a separate partition, but not necessarily so,
along with the MMR component that resides in a partition
by itself. Every process is allowed to run in an a priori
static scheduling order that includes the execution of the

MMR. The execution cycle continues indefinitely. If a
process wishes to send a message to another process, it
places the message in its message buffer and waits until
the MMR is invoked. When the MMR processes the
message, it checks to see if the message is authorized and
valid and proceeds with the transmission by swapping
ownership of that message buffer (hence, it’s a zero-copy
process). If the message is not valid or not permitted, it is
expunged (zeroed) with no notice to either process. No
process is allowed to read a section of memory that it
does not own and each piece of memory is owned by
exactly one process at a time.

Fig. 3 depicts the six processes from Fig. 1, denoted A
through F, that we modeled in our SPARK-Ada MMR.
The MMR is only aware of the authorized
communication channels depicted in this Fig.. A
comparison of this figure with Fig. 1 will indicate two
interesting data flows. First, we can see that there is
authorized flow from the MLS device E to C (top-secret),
D (secret) and F (unclassified). This is a depiction of a
trusted downgrader (such as a cryptographic device) that
takes in high level information and processes it in a way
to ensure no unauthorized information leakage. Second is
the flow from F (unclassified) to D (secret), which depicts
flow from an untrusted process (say a network device)
into the system through a guard D. Although this is not an
unauthorized flow, we have to be sure that there is no
possible back channel, i.e., that D cannot block the
sending of data from F. In addition, D will have to protect
itself from attacks launched through F.

The MILS kernel and the MMR are not aware of the
downgrading effort or the guarding, and they do not care.
The purpose of the lower layer is to provide a set of
security services to the higher levels. The kernel and the
MMR restrict information flow so that the only points of
concern are the flow out of E and from F to D. The MILS
system will provide a verified separation kernel and
MMR that can be reused by system developers. The
developers will have to verify that the software running in
partition E is multi-level secure, and that the single-level
code in partition D is self-protecting and does not provide
back channels. The other components can simply be
verified as “black boxes” because the formally proven
secure communication policy already verifies the security
of the interactions. Thus, the level of proof rigor is
significantly reduced when compared to traditional MLS
solutions.

3.1. MMR model assumptions

Our model has a few assumptions to make verification

simpler; while these assumptions could be removed,
doing so would greatly increase the complexity of the
verification proof. The main reason for the simplification
of the model is to demonstrate that (a) the MMR does in

Figure 3. An MMR security policy digraph

E

B

A

F

D

C

fact operate correctly to facilitate secure messaging, and
(b) SPARK-Ada is a viable proof-verification tool for
executable models. The assumptions our SPARK-Ada
MMR model are:
1. All pointers are unique. Each pointer to the working

memory must be unique for our model; otherwise,
communication could pass between the two or more
owning processes of that pointer. This assumption
aids our verification because the pointers are used as
array indices in memory, and swaps between the
memory spaces are simplified by knowing this
information. We can easily verify this for the code-
level implementations since we do not use dynamic
pointers or aliasing.

2. Each process reads its incoming messages on each
execution, and afterward, all of those memory spaces
are zeroed. The zeroing of the receive buffers is
needed because of the swaps on a successful send. If
the receive buffer is not zeroed out, then the message
in that buffer could be read by the sending process,
creating an unchecked communication channel. This
problem could also be resolved by zeroing out the
receiving buffer before the swap occurs. Both
approaches are possible solutions to closing the covert
channel, but our model uses the first approach.

3. The security policy is static. The security policy for
our system is based on a simple directed graph
security policy (Fig. 3). If process A is allowed to
send a message to process B, then there is a directed
edge connecting process A to process B. Each edge is
one-way, so for process B to send to process A there
would need to be a separate directed edge from B to
A. In our model the digraph is static for simplicity, but
the policy can be set at design time or at execution
time, as long as the policy has been proven correct
prior to instantiation in the model.

4. No process is allowed to send a message to itself.
Self-directed messaging could be allowed but is
unnecessary and therefore removed for simplification.

5. Each process is allowed to send at most one message
per activation. This assumption was used for
simplification. Enabling multiple sends per activation
can be implemented but requires checks to make sure
that memory is not overrun, which complicates
verification.

3.2. SPARK-Ada MMR implementation

Our MMR model is implemented in six Ada packages:

Lbl_t, Msg_t, Mem_t, MMR, System, and Main. We use
italics to differentiate the MMR packages from the generic
MMR components discussed previously.
1. The Lbl_t (label) package consists of type definitions

for labels that enumerate the complete list of the
processes in the system, including the null process.

The package also contains a constant defining the size
of memory space. It is a very simple package that all
other packages use as a naming scheme.

2. The Msg_t (message) package defines the Msg data
type, which is the template for individual
communications in the system. This Msg data type is
a basic model of messages from one process to
another. It consists of a process identifier to denote
origin of the message, a process identifier to denote
destination, and the message data (a simple integer in
our model). Also defined in this package are default
values for the Msg data type, a null origin and
destination, and procedures to access and modify the
Msg data type.

3. The Mem_t (memory) package defines a simple data
type that creates another data type, Mem_Row, that is
an array of Msg’s. The Mem_Row data type is what a
process receives when it reads its messages.

4. The MMR package acts as a virtual memory manager
in the system. The MMR package has two internal
packages that it uses in its operation, a Memory
package and a Policy package. The MMR keeps a set
of pointers to Memory that it uses to distinguish which
process owns which section of Memory. The MMR
package has a procedure, Route, that scans each
outgoing Msg to see if it is valid and allowed by the
Policy. If it is valid and allowed, the MMR delivers
the message by swapping pointers (in effect,
ownership); otherwise it expunges the message from
Memory.

 Memory acts as a large memory space. It has two
procedures, Read and Write, that the MMR
package uses. Read takes a pointer P and an Msg
M and writes the Msg that is at the location
pointed to by the pointer P to the Msg M. Write
takes a pointer P and an Msg M and writes the
Msg M to the memory space pointed to by the
pointer P.

 Policy contains a static multidimensional array
that serves as the communication policy for the
MMR. It has one function, Is_Allowed, that takes
in two process identifiers (e.g., A and B) and
returns a binary value indicating whether or not
messages are allowed (e.g., from A to B).

5. The System package implements the executable
portion of the model. It executes each of the processes
in order and acts as a go-between for the processes
and the MMR package. It guarantees that a process
cannot spoof its identity when it is sending a message.
It does not guarantee that the message is addressed
correctly but only that the message goes into the
appropriate send buffer in the MMR. Once each
process has executed, it then runs the MMR_Route
procedure so that the messages are sent according to
the specified communication policy.

6. The Main package is just a wrapper program that
executes the System package indefinitely.
Fig. 4 depicts the relationship between the MMR

package, with its subordinate Memory and Policy
packages, and the simulated processes denoted A through
F. The Policy package contains an adjacency matrix
representing the security policy diagraph shown in Fig. 3.

The figure shows how the MMR is designed to interact in
the model, where the partition in each row is allowed to
talk to the partition in the column if the cell is shaded.
The MMR has only three publicly available procedures:
Send_Msg, Read_Msgs, and Route. There are two internal
packages within the MMR: Memory that has two
procedures, Write and Read, and Policy that has one

Send Msg

Read Msgs

MMR

Route

Proc A
Send

Receive

Proc F
Send

Receive

Write

Read

Memory

A

B

C

D

E

F

S B C D E FA

A B C D E F

B

C

D

E

F

A

Policy
Is Allowed

Proc B
Send

Receive

Proc E
Send

Receive

Figure 4. MMR interactions with processes A-F

--# inherit Lbl_t, Msg_t;
package Memory
--# own Mem_Space : Mem_Space_T;
--# initializes Mem_Space;
is
type Mem_Space_T is array

 (Lbl_t.Pointer) of Msg_t.Msg;
procedure Write(

 M: in Msg_t.Msg;
 S: in Lbl_t.Pointer);
--# global in out Mem_Space;
--# derives Mem_Space from *,
--# M,
--# S;
--# post Mem_Space = Mem_Space~[S => M];
procedure Read(

 M: out Msg_t.Msg;
 S: in Lbl_t.Pointer);
--# global in Mem_Space;
--# derives M from Mem_Space,
--# S;
--# post M = Mem_Space(S);

end Memory;

package body Memory is
 Mem_Space: Mem_Space_T;

procedure Write(
 M: in Msg_t.Msg;
 S: in Lbl_t.Pointer) is

begin
 Mem_Space(S) := M;

end Write;
procedure Read(

 M: out Msg_t.Msg;
 S: in Lbl_t.Pointer) is

begin
 M := Mem_Space(S);

end Read;
begin
 Mem_Space := Mem_Space_T'(
 Lbl_t.Pointer => Msg_t.Def_Msg);
end Memory;

(a) Memory package specification (b) Memory package body

Figure 5. SPARK-Ada code for Memory package

function, Is_Allowed. There is also an internal table
within the MMR that keeps track of the pointers for each
process and whether that memory location currently
contains a message or not.

4. Model verification

Verification of the MMR model was done using the

tools available with SPARK. This entailed first creating
the code and proof annotations in the packages described
above according to the SPARK-Ada language. There are
two types of source files: <name>.ads files for package
specification files and <name>.adb files for package body
files. Fig. 5(a) shows the package specification for
Memory. It states that the Memory package inherits from
the Lbl_t and Msg_t packages; it contains its own global
variable Mem_Space, an array made up of the Msg type
from the Msg_t package of size Pointer from the Lbl_t
package; and also contains two procedures, Write and
Read, which manipulate the Mem_Space abstract
variable. Write takes in two variables as input: M of the
type Msg from the Msg_t package and S of the Pointer
type from the Lbl_t package; it derives the Mem_Space
from itself, M and S. When the procedure is finished, the
post-condition states that Mem_Space will be the same,
except the array location pointed to by S now contains the
value of M. Read uses the same two inputs but derives the
value of M from Mem_Space and S; when the procedure
is finished, the post-condition states that M contains the
value from Mem_Space pointed to by S. Fig. 5(b) is the
package body for the Memory package. The body simply

implements in code what the specifications describe from
the package specification.

Fig. 6 illustrates the use of pre- and post-conditions in
the Read_Msgs package body. The pre-condition states
that all values in the Pointer array are different from one
another – it is a uniqueness check. The post-condition
states that for all of the Proc_IDs (the full list of process
names) that the Flags variable in the row P have been set
to False, the output array A has been filed with the old
values from the Memory for the process P, and the spaces
in Memory for the process P have now been zeroed out
with the Def_Msg constant. In laymen’s terms, the
Memory has been read into the array A and then been
zeroed out.

The first step in the verification process is to invoke
the SPARK Examiner that does syntax checking and
information flow checking. The Examiner generates
verification condition files for each procedure and
function within the packages (i.e., <name>.vcg). If the
execution of the code matches the pre-conditions and
post-conditions as described by the proof annotations,
then the verification process continues. We then run the
SPARK Simplifier which takes the <name>.vcg files and
attempts to verify them using the Southampton Program
Analysis Development Environment (SPADE) Proof
Checker. It is usually capable of processing only the
simpler verification conditions. Any verification
conditions that the Simplifier cannot handle are stored
into <name>.siv files corresponding to the <name>.vcg
files. At that point, any conditions that have not been
verified by the Examiner or the Simplifier must then be
manually verified by a review team or by using the

procedure Read_Msgs(
 P : in Lbl_t.Proc_ID;
 A : out Mem_t.Mem_Row)
--# global in Pointers;
--# in out Flags;
--# in out Memory.Mem_Space;
--# derives Memory.Mem_Space,
--# A from P,
--# Memory.Mem_Space,
--# Pointers &
--# Flags from *,
--# P;
--# pre
--# for all X1 in Lbl_t.Proc_ID => (
--# for all Y1 in Lbl_t.Mem_Cols => (
--# for all X2 in Lbl_t.Proc_ID => (
--# for all Y2 in Lbl_t.Mem_Cols =>(
--# (
--# (X1 /= X2
--# or
--# Y1 /= Y2)
--# ->
--# (Pointers(X1)(Y1) /= Pointers(X2)(Y2))
--#)))));

--# post
--# (for all Y in Lbl_t.Proc_ID => (
--# Flags(P)(Y) = FALSE
--# and
--# A(Y) =
--# Memory.Mem_Space~(Pointers(P)(Y))
--# and
--# Memory.Mem_Space(Pointers(P)(Y)) =
--# Msg_t.Def_Msg
--#));

is
 Temp_Mem_Row : Mem_t.Mem_Row;
begin
 Fill_Mem_Row(P, Temp_Mem_Row);
 Zero_Flags(P);
 Zero_Mem_Row(P);
 A := Temp_Mem_Row;
end Read_Msgs;

Figure 6. SPARK-Ada code for Read_Msgs procedure body

SPADE Proof Checker in manually guide mode. The
proof checker program takes in <name>.vcg or
<name>.siv files containing unverified conditions and
outputs the manually guided verifications into
<name>.plg files. In a similar manner, the review team
can create verifications in a <name>.prv file containing
verification conditions that have been manually verified
by a review committee.

When all verification conditions have been proven,
either automatically or manually, the Proof Obligation
Summarizer (POGS) checks for the existence of all files
(.vcg, .siv, .plg, and .prv) and produces a summary of all
of the verification conditions that were generated. Fig. 7
shows the POGS summary for function Is_Allowed and
procedure Send_Msg.

As shown in Fig. 7, the Is_Allowed function from the
Policy package has been verified by the Examiner and the
Simplifier. It has two verifications associated with it. The
first is a run-time check to see that the variables are
within their appropriate ranges. The second is an assertion
made in the SPARK annotations that has been verified by
the SPARK Examiner. As also shown in Fig. 7, the
Send_Msg procedure was verified by the Examiner (vcg),
Simplifier (siv), and SPADE proof checker (plg). Not all
verifications are this simple, however. For example, the
verification for the Route procedure (not shown) contains
29 verification conditions.

POGS also provides a summary of the entire proof.
Fig. 8 shows the final proof summarization for the MMR
model. Note that most proofs were handled by the
Simplifier or guided to a successful formal proof through
the Proof Checker – which is not unusual for formal
methods tools. Also note that proof by committee or

review team was not employed. We felt strongly that
formal logic should prevail and not be overridden by
informal proof methods.

5. Summary and conclusions

We have modeled a MILS Message Router capable of

securely handling multiple levels of message
classifications, assuming that processes handling each
classification are properly contained within partitions
segregated by a separation kernel. Although our model
was simplified to enable a formal proof of correctness, it
is easily extensible to a variety of MLS applications by
modifying the digraph representation in the Policy
adjacency matrix (or adjacency list).

The main goal of this project was to test the use of
executable proof verification tools to design and create
MILS components that could be certified at upper levels
of the Common Criteria (e.g., EAL5 to EAL7). Exploring
MMR design alternatives was also a motive behind the
study; the solution presented here was the third iteration
of our MMR design. What we learned from the process
was enlightening but, in hindsight, not unexpected:
• The modeling process allows exploration of the

solution space, albeit not as efficiently as
prototyping.

• Generating formal proofs of correctness, even for
simple operations contained in small components, is
an arduous task that requires automated tools.

 Semantic Analysis Summary
 SPARK Proof Obligation Summariser Release 4.0 / 12.04
 Praxis High Integrity Systems, Bath, England
--
VCs for function_is_allowed :
--
 | | | ---------Proved In--------- | |
 # | From | To | vcg | siv | plg | prv | TO DO |
--
 1 | start | rtc check @ 143 | | YES | | | |
 2 | start | assert @ finish | YES | | | | |
--

VCs for procedure_send_msg :
--
 | | | ---------Proved In--------- | |
 # | From | To | vcg | siv | plg | prv | TO DO |
--
 1 | start | rtc check @ 451 | | YES | | | |
 2 | start | rtc check @ 452 | | YES | | | |
 3 | start | assert @ finish | | YES | | | |
 4 | | refinement | YES | | | | |
 5 | | refinement | | | YES | | |
--

Figure 7. POGS procedure and function verification summary examples

• Tying the executable code to the formal proof
assertions (a la SPARK-Ada) enables a more
rigorous proof model than can be attained through
non-executable formal methods proof environments
in which we have worked (e.g., ACL2).

• The lack of commercial grade on-call assistance on
the use and nuances of the SPARK-Ada verification
toolset was a significant hindrance to our task.

The MILS initiative and the development of a formally
verified MMR embedded within a separation kernel
machine are ongoing projects. We have also developed
coded versions of the MMR in C/C++ and models of its
operation in ACL2. Although we are uncertain if the
SPARK-Ada model will eventually end up as the final
definition for the MMR, we are convinced that modeling
it in SPARK-Ada was a worthwhile task that better
defined and refined our understanding of the MMR’s
processes.

6. References

[1] Global Information Grid Capstone Requirements

Document, JROCM 134-01, August 30, 2001
[2] N. Nikitovic, "Building a Security Infrastructure -

Maximizing Return of Security Investments" [Online
document], 2003 Dec 1, [cited 2004 Mar 3], Available
HTTP:
http://www.dataprotection2003.info/speakers/Nemanja_Ni
kitovic/abstract.html

[3] RTCA, Software Considerations in Airborne Systems and
Equipment Certification. RTCA DO178b, 1993.

[4] Common Criteria Project Sponsoring Organizations,
Common Criteria for Information Technology Security
Evaluation: Part 1: Introduction and General Model, ver
2.1, Washington, DC: RTCA, 1999.

[5] Common Criteria Project Sponsoring Organizations,
Common Criteria for Information Technology Security
Evaluation: Part 3: Security Assurance Requirements, ver
2.1, Washington, DC: RTCA, 1999.

[6] J.M. Rushby, "Proof of separability: A verification
technique for a class of security kernels," In Proc.
International Symposium on Programming, Lecture Notes
in Computer Science ‘82, 1982, vol. 137, pp. 352-367.

[7] J.M. Rushby, "Design and verification of secure systems,"
In Proc. ACM Symposium on Operating System Principles
‘81, 1981, vol. 15, pp. 12-21.

[8] D. Greve, M. Wilding, and M. Vanfleet. A separation
kernel formal security policy. ACL2 Workshop 2003.
Boulder, CO, July. 2003.

[9] J. Alves-Foss. “Specifying Trusted Distributed System
Components”, Journal of Computer and Information
Science, 2(1), 1996, pp. 238-257.

[10] J. Alves-Foss, "The architecture of secure systems," In
Proc. Hawai'i International Conference on System
Sciences: Emerging Technologies Track '98, 1998, pp. 317-
307.

[11] J. Alves-Foss, W. S. Harrison, P. Oman and C. Taylor,
“The MILS Architecture for High-Assurance Embedded
Systems,” International Journal of Embedded Systems,
Vol. 2(1), January 2006, to appear.

[12] S. Harrison, N. Hanebutte, P. Oman, & J. Alves-Foss, “The
MILS Architecture for a Secure Global Information Grid,”
Crosstalk – The Journal of Defense Software Engineering,
18(10), 2005, 20-24.

[13] N. Hanebutte, P. Oman, M. Loosbrock, A. Holland, S.
Harrison, & J. Alves-Foss, “Software Mediators for
Transparent Channel Control in Unbounded
Environments,” Proceedings of the 6th IEEE Information
Assurance Workshop, (June 17-19, West Point, NY), IEEE
Press, 2005.

POGS Summary:

Total subprograms fully proved by examiner: 0
Total subprograms fully proved by simplifier: 11
Total subprograms fully proved by checker: 8
Total subprograms fully proved by review: 0
Total subprograms with at least one undischarged VC: 0

Total subprograms for which VCs have been generated: 19

Total VCs by type:
-----------Proved By------------

 Total Examiner Simp Checker Review Undischarged
Assert or Post: 33 1 18 14 0 0
Precondition check: 4 0 4 0 0 0
Check statement: 0 0 0 0 0 0
Runtime check: 43 0 43 0 0 0
Refinement VCs: 6 1 0 5 0 0
Inheritance VCs: 0 0 0 0 0 0
===
Totals: 86 2 65 19 0 0
% Totals: 2% 75% 22% 0% 0%
===================== End of Semantic Analysis Summary ====================

Figure 8. POGS summary for MMR proof

