62nd Annual Idaho Asphalt Conference
University of Idaho, Moscow, Idaho
October 27, 2022

Conference Program

Wednesday, October 26, 2022
4:00 pm
\textit{Registration opens}

5 - 7:00 pm
\textit{Icebreaker in Exhibit Hall – Sponsored by Western States Equipment / Caterpillar}

Thursday, October 27, 2022
7:00 am
\textit{Registration opens – Continental Breakfast in Exhibit Room}

8:00 am
\textit{Opening Comments}

Dr. Emad Kassem, PE, Associate Professor, University of Idaho

8:15 am
\textit{Welcome Note}

Dr. Suzanna Long, Dean of College of Engineering, University of Idaho

Morning Session

\textbf{Presiding:} Dave Johnson, P.E.

The Asphalt Institute

8:30 am
\textit{High Polymer Thick Mat}

Howard Anderson, P.E.
Utah Department of Transportation

\textit{Stone Matrix Asphalt Construction and Performance}

Jared Dastrup, P.E.
Utah Department of Transportation

10:15 am
\textit{Break}

10:40 am
\textit{Innovative Pavement Preservation Strategies for Municipalities}

Tom Kirkman
City of Pocatello

11:20 am
\textit{Full Depth Reclamation – Montana DOT Experience}

Miles Yerger, P.E.
Montana Department of Transportation

Noon – 1:45 pm
\textit{Lunch and Expo}

Afternoon Session

\textbf{Presiding:} John Arambarri, P.E.

Idaho Transportation Department

1:45 pm
\textit{Compaction of Asphalt Mixtures, State of Practice}

Dave Johnson, P.E.
The Asphalt Institute

2:20 pm
\textit{Void Reducing Asphalt Membrane}

Tim Zahrn, P.E.
Asphalt Materials

3:00 pm
\textit{Break}

3:15 pm
\textit{Asphalt Emulsion Nomenclature}

Codrin Daranga
Ergon Asphalt & Emulsions

4:00 pm
\textit{Asphalt Auto Extractor}

Dr. Buzz Powell, P.E.
National Center for Asphalt Technology

4:45 pm
\textit{Adjourn}
Speakers of the 62nd Idaho Asphalt Conference, Oct. 27, 2022

From left to right: Codrin Daranga, Dave Johnson, Howard Anderson, Jared Dastrup, Tom Kirkman, Emad Kassem, John Arambarri, Buzz Powell, Miles Yerger, Tim Zahrn, and Muhammad Zubery.
62nd Idaho Asphalt Conference – October 26 – 27, 2022 – Moscow, Idaho

Attendance List

Mohammed Abu Saq
University of Idaho
abus1212@vandals.uidaho.edu

Shihab Al Beiruti
Idaho Transportation Department
shihab.albeiruti@itd.idaho.gov

Hussain Al Hatailah
University of Idaho
alha1092@vandals.uidaho.edu

Wade Allen
Idaho Transportation Department
wade.allen@itd.idaho.gov

Saumya Amarasiri
Washington State University
samarasiri@wsu.edu

Amanda Anderson
City of Spokane Engineering Services - Construction Management
amanderson@spokanecity.org

Howard Anderson
Utah DOT
handerson@utah.gov

Terry Anderson
Idaho Transportation Department
terry.anderson@itd.idaho.gov

Rick Andrade
City of Heyburn
randrade@heyburncity.org

Luke Antonich
City of Lewiston
lantonich@cityoflewiston.org

John Arambarri
Idaho Department of Transportation
john.arambarri@itd.idaho.gov

Seung Baek
Idaho Transportation Department
seung.baek@itd.idaho.gov

Alannah Bailey
City of Lewiston
abailey@cityoflewiston.org

Steven Bakker
Idaho Transportation Department
steven.bakker@itd.idaho.gov

Tim Barber
Idaho Transportation Department
TIM.BARBER@ITD.IDAHO.GOV

Tyron Bardwell
HDR Engineering
Tyron.bardwell@hdrinc.com

Riley Bender
Idaho Transportation Department
riley.bender@itd.idaho.gov

Danny Bissett
Idaho Asphalt Supply, Inc
dbissett@idahoasphalt.com

Justin Bledsoe
Atlas
justin.bledsoe@oneatlas.com

Brian Bomar
Idaho Transportation Department
Brian.bomar@itd.idaho.gov

Scott Bontrager
City of Moscow
sbontrager@ci.moscow.id.us

Brenda Borer
ALLWEST Testing & Engineering, Inc.
bborer@allwesttesting.com

Nathan Bower
WSDOT
bowern@wsdot.wa.gov

Bob Buvel
City of Moscow
bbuvel@ci.moscow.id.us
62nd Idaho Asphalt Conference – October 26 – 27, 2022 – Moscow, Idaho
Attendance List

Curtis Calderwood
Idaho Transportation Department
CURTIS.CALDERWOOD@D.IDAHO.GOV

Donavon Carrie
Idaho Transportation Department
donavon.carrie@itd.idaho.gov

John Charles
City of Kalispell
jcharles@kalispell.com

Chad Clawson
Idaho Transportation Department
chad.clawson@itd.idaho.gov

Lori Copeland
Idaho Transportation Department
lori.copeland@itd.idaho.gov

Gene Corne
City of Kalispell
gcorne@kalispell.com

Tyler Coy
Idaho Transportation Department
tyler.coy@itd.idaho.gov

Scott Cron
STRATA, Inc.
scron@stratageotech.com

Codrin Daranga
Technical Director
codrin.daranga@ptsilab.com

Jared Dastrup
Utah DOT
jdastrup@utah.gov

Dana Dietz
Idaho Transportation Department
dana.dietz@itd.idaho.gov

Kris Dugger
City of Lewiston
kdugger@cityoflewiston.org

Sarah Eldred
Idaho Transportation Department
sarah.eldred@itd.idaho.gov

Deven Elison
Atlas
deven.elison@oneatlas.com

Kerri Farnsworth
City of Pocatello
kfarnsworth@pocatello.us

Chris Faus
WSDOT
FausCl@wsdot.wa.gov

Scott Fraser
ALLWEST
sfraser@allwesttesting.com

Kevin Funke
ALLWEST
kfunke@allwesttesting.com

Kris Gayda
Idaho Transportation Department
kris.gayda@itd.idaho.gov

Joshua Giudice
Ergon Asphalt & Emulsions
josh.giudice@ergon.com

Robert Gordon
Idaho Transportation Department
robert.gordon@itd.idaho.gov

Nikolai Greer
Idaho Transportation Department
nikolai.greer@itd.idaho.gov

Mike Hammond
WSDOT
hammonm@wsdot.wa.gov

Terri Hansen
Idaho Transportation Department
terri.hansen@itd.idaho.gov
62nd Idaho Asphalt Conference – October 26 – 27, 2022 – Moscow, Idaho
Attendance List

Mark Hayes
Idaho Transportation Department
MARK.HAYES@ITD.IDAHO.GOV

Jason Henscheid
Idaho Transportation Department
jason.henscheid@itd.idaho.gov

Karin Hilding
City of Whitefish
khilding@cityofwhitefish.org

Danny Hoey
City of Spokane Engineering Services - Construction Management
dhoey@spokanecity.org

Jared Hopkins
Idaho Transportation Department
jared.hopkins@itd.idaho.gov

Halley Jalbert
Interstate Concrete and Asphalt
halley.jalbert@interstate-ica.com

Dave Johnson
Asphalt Institute
djohnson@asphaltinstitute.org

Dustin Johnson
City of Lewiston
djohnson@cityoflewiston.org

Emad Kassem
University of Idaho
ekassem@uidaho.edu

Tom Kirkman
City of Pocatello	
tkirkman@pocatello.us

Candice Kohn
Pacific GeoSource
candice@pacificgeosource.com

Megan Koski
Idaho Transportation Department
megan.koski@itd.idaho.gov

Corey Krantz
Idaho Transportation Department
corey.krantz@itd.idaho.gov

Rick LaBelle
Asphalt Systems Inc
rick@asphaltsystemsinc.com

Amanda Laib
Idaho Transportation Department
amanda.laib@itd.idaho.gov

Cameron Lee
City of Moscow
clee@ci.moscow.id.us

Ryan Lewis
STRATA
rlewis@stratageotech.com

Suzie Long
University of Idaho
long@uidaho.edu

Melannie Loppnow
Idaho Transportation Department
melannie.loppnow@itd.idaho.gov

Yang Lu
Boise State University
yanglufrank@boisestate.edu

Christopher Lundgreen
WSDOT
LUNDGRC@wsdot.wa.gov

Hans Lybeck
City of Kalispell
publicworks@kalispell.com

Scott Malone
Idaho Transportation Department
scott.malone@itd.idaho.gov

Michael Martin
Idaho Transportation Department
michael.martin@itd.idaho.gov
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myron McCarty</td>
<td>City of Heyburn</td>
<td>mmccarty@heyburncity.org</td>
</tr>
<tr>
<td>Jack McCoy</td>
<td>Western States Equipment Company</td>
<td>jack.mccoy@wseco.com</td>
</tr>
<tr>
<td>Drew Meppen</td>
<td>Idaho Transportation Department</td>
<td>DREW.MEPPEN@ITD.IDAHO.GOV</td>
</tr>
<tr>
<td>Kyle Morgan</td>
<td>Idaho Transportation Department</td>
<td>kyle.morgan@itd.idaho.gov</td>
</tr>
<tr>
<td>Amanda Mullins</td>
<td>Boise State University</td>
<td>amandamullins@boisestate.edu</td>
</tr>
<tr>
<td>Eric Nelson</td>
<td>Idaho Transportation Department</td>
<td>eric.nelson@itd.idaho.gov</td>
</tr>
<tr>
<td>Steve Nettleton</td>
<td>Idaho Transportation Department</td>
<td>steve.nettleton@itd.idaho.gov</td>
</tr>
<tr>
<td>Tim Nielson</td>
<td>Idaho Transportation Department</td>
<td>tim.nielson@itd.idaho.gov</td>
</tr>
<tr>
<td>Shelby Oliver</td>
<td>STRATA, Inc.</td>
<td>soliver@stratageotech.com</td>
</tr>
<tr>
<td>David Olsen</td>
<td>WSDOT</td>
<td>OlsenDM@wsdot.wa.gov</td>
</tr>
<tr>
<td>Doug Olsen</td>
<td>Idaho Asphalt</td>
<td>doug.olsen@westernemulsions.com</td>
</tr>
<tr>
<td>Adam Ott</td>
<td>Idaho Transportation Department</td>
<td>adam.ott@itd.idaho.gov</td>
</tr>
<tr>
<td>Isabelle Panos</td>
<td>Idaho Transportation Department</td>
<td>isabelle.panos@itd.idaho.gov</td>
</tr>
<tr>
<td>Ned Parrish</td>
<td>Idaho Transportation Department</td>
<td>ned.parrish@itd.idaho.gov</td>
</tr>
<tr>
<td>Zachary Phenix</td>
<td>Idaho Transportation Department</td>
<td>zachary.phenix@itd.idaho.gov</td>
</tr>
<tr>
<td>Ken Pierson</td>
<td>Idaho Transportation Department</td>
<td>ken.pierson@itd.idaho.gov</td>
</tr>
<tr>
<td>Buzz Powell</td>
<td>NCAT</td>
<td>buzz@auburn.edu</td>
</tr>
<tr>
<td>Alejandro Recabarren</td>
<td>Liberty Geotech</td>
<td>alejandro.recabarren@libertygeotech.com</td>
</tr>
<tr>
<td>Evan Roberts</td>
<td>Idaho Transportation Department</td>
<td>evan.roberts@itd.idaho.gov</td>
</tr>
<tr>
<td>Alejandro Rosales</td>
<td>Idaho Asphalt Supply, Inc.</td>
<td>arosales@idahoasphalt.com</td>
</tr>
<tr>
<td>Tyson Ruffing</td>
<td>Idaho Transportation Department</td>
<td>tyson.ruffing@itd.idaho.gov</td>
</tr>
<tr>
<td>Junior Sanabria</td>
<td>Idaho Asphalt Supply, Inc.</td>
<td>jsanabria@idahoasphalt.com</td>
</tr>
<tr>
<td>Pat Severance</td>
<td>City of Lewiston</td>
<td>pseverance@cityoflewiston.org</td>
</tr>
<tr>
<td>Eric Shandley</td>
<td>Lakes Highway District</td>
<td>bonny@lakeshwy.com</td>
</tr>
</tbody>
</table>
62nd Idaho Asphalt Conference – October 26 – 27, 2022 – Moscow, Idaho
Attendance List

Scot Stacey
Idaho Transportation Department
SCOT.STACEY@ITD.IDAHO.GOV

Nick Stevens
Idaho Transportation Department
nicholas.stevens@itd.idaho.gov

Jeff Storey
WSDOT
StoreyJ@wsdot.wa.gov

Nate Suhr
City of Moscow
nsuhr@ci.moscow.id.us

Chad Swenson
WSDOT
SwensoC@wsdot.wa.gov

James Szatkowski
Idaho Transportation Department
james.szatkowski@itd.idaho.gov

Steve Taylor
Idaho Transportation Department
steve.taylor@itd.idaho.gov

Jason Thompson
City of Lewiston
jtthompson@cityoflewiston.org

Jeremy Thompson
HDR Engineering
Jeremy.Thompson@hdrinc.com

Shawn Turpin
ALLWEST Testing & Engineering, Inc.
sturpin@allwesttesting.com

Ben Vance
Liberty Geotech
ben.vance@libertygeotech.com

Steffen Verdin
Idaho Transportation Department
steffen.verdin@itd.idaho.gov

Ryan Vincent
WSDOT Materials Lab
VincenR@wsdot.wa.gov

Benjamin Ward
Idaho Transportation Department
d1travel@itd.idaho.gov

Jesse Weaver
Idaho Transportation Department
Jesse.weaver@itd.idaho.gov

Haifang Wen
Washington State University
haifang_wen@wsu.edu

Ciara Wilmer
WSDOT
WilmeCJ@wsdot.wa.gov

Jerry Wilson
Idaho Transportation Department
jerry.wilson@itd.idaho.gov

Dylan Wimer
Idaho Transportation Department
dylan.wimer@itd.idaho.gov

Ty Winther
Idaho Transportation Department
ty.winther@itd.idaho.gov

adrienne woods
Idaho Transportation Department
adrienne.woods@itd.idaho.gov

Miles Yerger
Montana DOT
myerger@mt.gov

Brody Young
Western Emulsions
byoung@peakasphalt.com

Tim Zahn
Asphalt Materials
tzahrn@asphalt-materials.com
Janet Zarate
Idaho Transportation Department
janet.zarate@itd.idaho.gov

Matt Zarecor
Spokane County Public Works
MZarecor@spokanecounty.org

Huachun Zhai
Idaho Asphalt Supply
hzhai@idahoasphalt.com

Muhammad Zubery
LHTAC
mzubery@lhtac.org
High Polymer, Thick Lift, Low Void Pavement

Howard Anderson, P.E.
Utah State Asphalt Engineer

62nd Annual Idaho Asphalt Conference
October 27, 2022

Highly-Modified, Thick-Lift Demonstration Project in Utah

Rocky Mountain Asphalt User Producer Group Meeting
October 13, 2021
Past Experience With Highly Modified and/or Thick Lifts

- South Carolina
 - Limited information on the mix
 - Believed to be highly modified
 - Single-lift at 7.9 inches
 - Consistent densities ~95%
- NCAT
 - South Carolina sponsored
 - Highly Modified
 - 5.75-inch, 12.5 mm mixture
 - Consistent densities through the lift of ~95%
 - Great performance

- Utah
 - Past laboratory work
 - Hamburg driven
 - Typical 12.5 mm mix
 - Multiple samples up to 6.8% binder
 - 40,000 passes
 - No Hamburg failures (<10 mm)
 - Two secondary highways
 - Simply substituted binder into the mix design
 - Constructed in 2017
 - Typical lift thicknesses
 - Excellent performance

The Binder Specification

<table>
<thead>
<tr>
<th>Property</th>
<th>Method</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Shear Rheometer, AASHTO T 315</td>
<td>G*, kPa @ 76°C</td>
<td>1.97 kPa</td>
</tr>
<tr>
<td>Rotational Viscometer, AASHTO T 316</td>
<td>η, Pa.s @ 135°C</td>
<td>2.37 kPa</td>
</tr>
<tr>
<td>RTFO Residue, AASHTO T 243</td>
<td>δ, degree</td>
<td>0.69</td>
</tr>
<tr>
<td>Elastic Recovery, AASHTO T 381 (a)</td>
<td>%</td>
<td>90%</td>
</tr>
<tr>
<td>PAV Residue, 30 hours, 10 MPa RTFO, AASHTO B 90</td>
<td>S, MPa</td>
<td>0.054</td>
</tr>
<tr>
<td>Elastic Modulus, AASHTO T 373</td>
<td>E, kPa @ 25°C</td>
<td>6.37 kPa</td>
</tr>
<tr>
<td>Bending Beam Rheometer, AASHTO T 313</td>
<td>S, m</td>
<td>0.009</td>
</tr>
<tr>
<td>Delta Tc from additional BBR test</td>
<td>°C</td>
<td>-21°C</td>
</tr>
<tr>
<td>PAV Residue, 30 hours, 10 MPa RTFO, AASHTO B 90</td>
<td>Data, °C</td>
<td>-21°C</td>
</tr>
</tbody>
</table>

Notes:
- Modify paragraph 4 as follows:
 - Stop the ductilometer after 20 cm has been reached and within 2 seconds.
 - Sever the specimen at its center with a pair of scissors.
- Province at paragraph 5 as follows:
 - The binder specification is for reference only and not for manufacturing purpose.
 - Sever the specimen at its center with a pair of scissors.
Highly Modified Asphalt Materials

WASHTO Conference
April 4, 2016
Salt Lake City, Utah
Hamburg Test
Showing load cell output
Hamburg Test

PG 70E-34

Mix Design

Air Void Under Wheel

mm rut or % air voids

4.8% AC 5.3% AC 6.8% AC 6.8% AC Low Va

+20K with +20 lb 20K passes

Hamburg Test Data

PG 70E-34

<table>
<thead>
<tr>
<th>Mix</th>
<th>AC%</th>
<th>Air Voids/Rut Voids</th>
<th>20,000</th>
<th>+ (20,000 + 20 lb)</th>
<th>Total Rut, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slab 1</td>
<td>4.8</td>
<td>7.3/7.2</td>
<td>2.32</td>
<td>3.95</td>
<td>6.25</td>
</tr>
<tr>
<td>Slab 2</td>
<td>4.8</td>
<td>7.8/7.8</td>
<td>2.6</td>
<td>1.54</td>
<td>4.14</td>
</tr>
<tr>
<td>Slab 3</td>
<td>5.8</td>
<td>5.5/4.7</td>
<td>2.17</td>
<td>1.98</td>
<td>4.15</td>
</tr>
<tr>
<td>Slab 4</td>
<td>5.8</td>
<td>5.1/5.1</td>
<td>0.28</td>
<td>3.75</td>
<td>5.03</td>
</tr>
<tr>
<td>Slab 5</td>
<td>6.8</td>
<td>3.0/3.0</td>
<td>3.13</td>
<td>7.16</td>
<td>10.3</td>
</tr>
<tr>
<td>Slab 6</td>
<td>6.8</td>
<td>3.0/2.7</td>
<td>5.82</td>
<td>8.20</td>
<td>13.0</td>
</tr>
<tr>
<td>Slab 7</td>
<td>6.8</td>
<td>2.9/2.9</td>
<td>2.8</td>
<td>6.85</td>
<td>9.65</td>
</tr>
<tr>
<td>Slab 8</td>
<td>6.8</td>
<td>2.9/2.2</td>
<td>3.06</td>
<td>6.85</td>
<td>10.15</td>
</tr>
</tbody>
</table>
Hamburg Test

Hamburg Test Data

<table>
<thead>
<tr>
<th>Mix Design</th>
<th>AC%</th>
<th>Air Voids/Rut Void</th>
<th>20,000</th>
<th>+ (20,000 + 20 lb)</th>
<th>Total Rut, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slab 1</td>
<td>4.8</td>
<td>7.4/7.1</td>
<td>3.13</td>
<td>2.62</td>
<td>5.66</td>
</tr>
<tr>
<td>Slab 2</td>
<td>4.8</td>
<td>7.6/7.7</td>
<td>2.94</td>
<td>1.83</td>
<td>4.78</td>
</tr>
<tr>
<td>Slab 1 Low Va</td>
<td>6.8</td>
<td>3.6/3.2</td>
<td>5.94</td>
<td>3.26</td>
<td>9.20</td>
</tr>
<tr>
<td>Slab 2 Low Va</td>
<td>6.8</td>
<td>3.8/3.8</td>
<td>5.61</td>
<td>2.2</td>
<td>7.82</td>
</tr>
<tr>
<td>Slab 1</td>
<td>5.8</td>
<td>5.7/5.8</td>
<td>3.19</td>
<td>2.2</td>
<td>5.39</td>
</tr>
<tr>
<td>Slab 2</td>
<td>5.8</td>
<td>5.6/5.6</td>
<td>3.23</td>
<td>2.36</td>
<td>5.59</td>
</tr>
<tr>
<td>Slab 1 Low Va</td>
<td>6.8</td>
<td>3.6/3.2</td>
<td>5.94</td>
<td>3.26</td>
<td>9.20</td>
</tr>
<tr>
<td>Slab 2 Low Va</td>
<td>6.8</td>
<td>3.8/3.8</td>
<td>5.61</td>
<td>2.2</td>
<td>7.82</td>
</tr>
<tr>
<td>Slab 1</td>
<td>6.8</td>
<td>3.6/3.6</td>
<td>5.94</td>
<td>3.26</td>
<td>9.20</td>
</tr>
<tr>
<td>Slab 2</td>
<td>6.8</td>
<td>3.8/3.8</td>
<td>5.61</td>
<td>2.2</td>
<td>7.82</td>
</tr>
</tbody>
</table>

+20K with +20 lb 20K passes

Air Void Under Wheel
Project Location

- Port of Entry on I-80 Near Wendover, UT
- High Truck Volume (51%), AADT 7,900
- 2-2.5 Million ESALs/year
- Very Hot in the Summer
- LTPPBind = PG64-28 (98% reliability)

Project Scope

- Mill and Inlay 6.0 Inches of PCC
- ~330 Ton Project
- Highly Modified Binder
- Dense-Graded Mixture
- Construct in a Single Lift
- ~2-Hour One-Way Haul
Notable Design Requirements

- PG 76-34
 - 110-degree useful temperature interval!
 - Highly modified
- Mix Design Requirements
 - 50 gyrations
 - 12.5 mm NMAS
 - 1.0 – 1.5% air voids
 - VMA 15.0 – 17.0
 - VFA 90 – 95%
 - 0.3% maximum draindown
 - 15% RAP maximum

- Proprietary PG 76-34 from Peak/Idaho Asphalt
- Mix Design Properties
 - 1% Air Voids (0.1% at 75 gyrations)
 - VMA = 15.3
 - VFA = 93.3%
 - 6% Total Asphalt
 - 5.33% Virgin
 - 0.67% RAP Binder
 - 0% Naturals
 - Incorporated Evotherm as a Compaction Aid

Superpave Specimens
Hamburg Wheel Tracking Requirements

- Slab Air Voids → 3.5 – 4.5% (6.5 – 7.5%)
- Water Bath Temperature
 - 50°C – first 20,000 passes
 - 54°C – second 20,000 passes
- Wheel Loading = 158 pounds
- Maximum Rut Depth at 20,000 Passes = 7.0 mm (10.0 mm)
- Maximum Rut Depth at 40,000 Passes = 10.0 mm

- Approximately 3.9 mm after 20,000 Passes
- Approximately 6.1 mm after 40,000 Passes
Key Players

Howard Anderson, UDOT
Craig Fabrizio, Staker Parsons

Test Strip Construction

• At Staker-Parson’s Beck Street Facility
• Aggregate base vs. Portland cement concrete
• Virtually no haul vs. 2+ hours
Test Strip Construction
Test Strip Lessons Learned

• Density of 97% or more was easily achieved
• Regular rolling equipment and procedures followed
• Feeding while placing such a large volume of mix was achieved
• Mix was stable even with roller overhang
• No significant issues encountered
Paving Operations

Paving Operations

29

30
Time vs. Temperature

Density Results

<table>
<thead>
<tr>
<th>Core</th>
<th>Total Thickness</th>
<th>Top Half Density</th>
<th>Bottom Half Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.27 inches</td>
<td>97.9%</td>
<td>98.0%</td>
</tr>
<tr>
<td>2</td>
<td>6.27 inches</td>
<td>97.8%</td>
<td>94.4%</td>
</tr>
<tr>
<td>3</td>
<td>6.1 Inches</td>
<td>97.2%</td>
<td>92.8%</td>
</tr>
<tr>
<td>4</td>
<td>6.1 Inches</td>
<td>97.3%</td>
<td>97.6%</td>
</tr>
</tbody>
</table>
Lessons Learned

- Highly modified asphalt can be successfully constructed even with a 2+ hour haul
- High densities were easily achieved
- Initial performance has been spectacular
Early Post Traffic Performance

- Exceptional early performance
 - 17 days of 100°F since opening to traffic
 - Nearly 500,000 commercial trucks
 - No discernable movement

Skid Testing Results

- British Pendulum Test (AASHTO T-278)
 - Existing Pavement: 41 average skid number
 - New Pavement: 53 average skid number
UTDOT is experimenting with a unique asphalt paving method that, if successful, will significantly reduce traffic impacts during construction and increase the life and durability of the pavement.

The new method requires a highly heated asphalt mix, which is then placed on the freshly prepared base in a single pass. By eliminating the need for intermediate paving, the total paving time is reduced, leading to shorter traffic disruptions.

This approach, when combined with the UTDOT’s Weathering Port of King Street project, offers a unique opportunity to demonstrate the benefits of this innovative paving technique.
The POE Weigh Scales have been rebuilt

• This picture and the following were taken June 23, 2022.
• Surface is dirty with PCC dust. No visible distress, or cracking or rutting.
The POE Weigh Scales have been rebuilt

Cost Considerations:

• First project was $150 per ton. This is with a small quantity, long haul and an experimental feature.

• Expect costs to end up similar to SMA or less with experience.
 ◦ The aggregate gradation is cheaper than SMA
 ◦ Binder content is less than SMA, but more expensive
 ◦ No mineral filler
 ◦ No fibers to add
 ◦ QC and QA testing is less than SMA
 ◦ Production is higher
 ◦ The cost for high polymer binder is expected to come down a little with experience
Other Benefits:

• UDOT and the Contractor also have time savings
 ◦ One lift to pave, compact and test
 ◦ Savings in traffic control costs
 ◦ User costs are reduced
 ◦ No tack coat needed
 ◦ Stronger more durable pavement - density, binder grade, content
 ◦ Real potential to expand paving season

Further Discussion:

• Maintenance of Traffic:
 ◦ Cool down time is expected to be one day longer
 ◦ The edge will be thicker, protect from traffic
 ◦ Shorter construction time may be safer for workers and public

• Smoothness
 ◦ One less opportunity to improve the ride
 ◦ A high density material can be ground
 ◦ Can add surface coarse

• Higher volume of material to produce and truck
PCCP Test Section on I-15

- This same mix (2216 tons) was placed on all 5 lanes of I-15 northbound near parish lane in early May of this year. Average density of 97.3%, Ave thickness of 2.97 inches. Ave binder 5.94%, Ave VMA 15.7
- This 3 inch lift was placed directly over very poor PCCP that had only crack sealing done prior to the overlay.
- The PG 76-34 low void mix was placed near also new 3 inch PG 64-34 Superpave mix (1347 tons) for comparison.
- We have excellent performance so far.

Future UDOT Usage

- PG 76-34 Low Void Mix
 - Multiple thin-lift installations around Salt Lake City, bids close this week. Bridge decks are being planned.
 - 13 mile project on SR 196 to I-80 just came in yesterday at $103/mix ton.
- Thick Lift, PG 76-34 Low Void Mix
 - Potential 6 inch lift placed on PCCP on I-15
 - I-15 Ramps and SR 6 Intersection

https://www.visitsaltlake.com/
Acknowledgments

• Lonnie Marchant, Clinton Martin, Robert Stewart, Region 2
• Dave Johnson, Asphalt Institute
• Clark Allen, Dave Thomas, Mike Evans, Central Labs
• Reed Ryan, UAPA

What do you see?
Questions or Comments:
UDOT STONE MATRIX ASPHALT (SMA) CONSTRUCTION AND PERFORMANCE

• History of SMA use in Utah
• Where we use SMA
• SMA Specification
• Important things to watch

HISTORY

First SMA project in 2003 on I-70 by Salina. Project was 4” Rotomill, 2.5” HMA, 1.5” SMA.

AADT 6558
42.72 % Trucks

Preservation:
Chip seal in 2013
Micro Surface planned 2025.

Ride 93
Fatigue Cracking 100
Rutting 76
Environmental Cracking 95
HISTORY

Since 2003 SMA has been used on all roads both high and low volume.

Right now 1455 miles 5047 surface areas of road top surface is SMA

Does not include SMA sections that have been chipped, micro surfaced, or overlayed.

Average environmental cracking index 89

Average rutting index 88

Lane Level / 1.5” SMA overlay
1.5" Rotomill / 1.5" SMA overlay

3" Rotomill / 1.5" HMA / 1.5" SMA overlay
1.5” Rotomill / 1.5” SMA overlay

Where is SMA used:
- Usually 1.5” to 2” thick for the wearing surface
- High Volume Roads
- Low Volume Roads
- Urban Roads
- Rural Roads
- Reconstruction Projects
- Preservation Projects
- To Help Solve Rutting Problems
- In Place of an HMA Chip Seal
- To Seal the Road
- To Slow Down Cracking Problems
- To Improve Friction
Rural Roadway

- Fatigue Cracking >80
 - ENR >50 or Rutting >70
 - Chip Seal

- Fatigue Cracking 50-80
 - ENR >50 or Rutting <70
 - 2” - 4” Overlay with SMA surface** (Minor Rehab)

- Fatigue Cracking <50
 - ENR <50 or Rutting <70
 - Chip Seal with profile correction*

Interstate / Freeway

- Fatigue Cracking >80
 - ENR >50 or Rutting >70
 - Rural or Small Urban Area

- Fatigue Cracking 50-80
 - ENR >50 or Rutting >70
 - Large Urban Area

- Fatigue Cracking <50
 - ENR <50 or Rutting <70
 - High Seal**

SMA SPECIFICATION

- 02744S Stone Matrix Asphalt (SMA)
 - Has been adjusted several times
 - Last major change 2019
 - Changed to closer match the HMA specification
 - Fixed problems with low oil content
 - Now in the process of combining our HMA and SMA Materials Manual of Instruction

- 960 Volumetric Mix Design and Verification
- 962 Guidelines for Stone Matrix Asphalt (SMA) Mix Design and Verification
SPECIFICATION HIGHLIGHTS

Table 5 Aggregate Properties – SMA

<table>
<thead>
<tr>
<th>Test Method</th>
<th>Test No.</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Fractured Face</td>
<td>AASHTO T 335</td>
<td>100% minimum</td>
</tr>
<tr>
<td>Two Fractured Face</td>
<td>AASHTO T 335</td>
<td>90% minimum</td>
</tr>
<tr>
<td>Fine Aggregate</td>
<td>AASHTO T 304</td>
<td>45 minimum</td>
</tr>
<tr>
<td>Angularity</td>
<td>UDOT MOI 933</td>
<td>17% maximum</td>
</tr>
<tr>
<td>Flakiness Index</td>
<td>UDOT MOI 933</td>
<td>17% maximum</td>
</tr>
<tr>
<td>L.A. Wear</td>
<td>AASHTO T 96</td>
<td>28% maximum</td>
</tr>
<tr>
<td>Sand Equivalent</td>
<td>AASHTO T 176 (Pre-wet method)</td>
<td>60 minimum</td>
</tr>
<tr>
<td>Plasticity Index</td>
<td>AASHTO T 176 (Pre-wet method)</td>
<td>0 maximum</td>
</tr>
<tr>
<td>Unit Weight</td>
<td>AASHTO T 19</td>
<td>75 lb/cu. ft. minimum</td>
</tr>
<tr>
<td>Soundness (sodium sulfate)</td>
<td>AASHTO T 104</td>
<td>10% maximum loss with five cycles</td>
</tr>
<tr>
<td>Clay Lumps and Friable Particles</td>
<td>AASHTO T 112</td>
<td>2% maximum</td>
</tr>
<tr>
<td>Natural Fines</td>
<td>N/A</td>
<td>0% maximum</td>
</tr>
</tbody>
</table>

Control Sieve Size | 1/4 inch | 1/2 inch |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 inch</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1/2 inch</td>
<td>90 - 100</td>
<td>100</td>
</tr>
<tr>
<td>3/8 inch</td>
<td>45 - 78</td>
<td>90 - 100</td>
</tr>
<tr>
<td>No. 4</td>
<td>20 - 28</td>
<td>26 - 50</td>
</tr>
<tr>
<td>No. 8</td>
<td>16 - 24</td>
<td>20 - 28</td>
</tr>
<tr>
<td>No. 16</td>
<td>13 - 21</td>
<td>13 - 21</td>
</tr>
<tr>
<td>No. 30</td>
<td>12 - 18</td>
<td>12 - 18</td>
</tr>
<tr>
<td>No. 50</td>
<td>12 - 15</td>
<td>12 - 15</td>
</tr>
<tr>
<td>No. 200</td>
<td>8 - 10</td>
<td>8 - 10</td>
</tr>
</tbody>
</table>

SPECIFICATION HIGHLIGHTS

- Asphalt Binder PG 70-28
- Design Gyrations 75

<table>
<thead>
<tr>
<th>Minimum Asphalt Binder Content</th>
<th>Combined Aggregate Bulk Specific Gravity</th>
<th>Minimum Asphalt Binder Content %a</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.375 - 2.424</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>2.425 - 2.474</td>
<td>6.7</td>
<td></td>
</tr>
<tr>
<td>2.475 - 2.524</td>
<td>6.6</td>
<td></td>
</tr>
<tr>
<td>2.525 - 2.574</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>2.575 - 2.624</td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>2.625 - 2.674</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>2.675 - 2.724</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td>> 2.724</td>
<td>6.0</td>
<td></td>
</tr>
</tbody>
</table>

*a Percent of total mix.
SPECIFICATION HIGHLIGHTS

- **Additives / Stabilizers**
- **Hydrated Lime**
- **Stabilizing additive: Mineral Fiber or Cellulose Fiber**
- **Mineral Filler:** Consists of finely divided mineral matter such as rock dust, slag dust, hydrated lime, hydraulic cement, fly ash, or other suitable mineral matter. Free flowing and free of lumps.

<table>
<thead>
<tr>
<th>Mix Design Requirements</th>
<th>Provided by the approved mix design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voids in Mineral Aggregate (VMA) AASHTO R 46, using G_{av}</td>
<td>17.5% minimum</td>
</tr>
<tr>
<td>Eq. based on percent of total mix.</td>
<td></td>
</tr>
<tr>
<td>Air voids at N_{ave}</td>
<td>3.5%</td>
</tr>
<tr>
<td>Voids In Course Aggregate (Stone Matrix Asphalt Mix Design)</td>
<td>VCA_{mix} < VCA_{DRC}</td>
</tr>
<tr>
<td>Hamburg Wheel Tracker</td>
<td>< 10.00 mm at 20,000 Cycles</td>
</tr>
<tr>
<td>Draindown (AASHTO T 305)</td>
<td>0.30 max.</td>
</tr>
</tbody>
</table>

Table 7

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 30</td>
<td>100</td>
</tr>
<tr>
<td>No. 50</td>
<td>95 – 100</td>
</tr>
<tr>
<td>No. 200</td>
<td>55 – 100</td>
</tr>
<tr>
<td>No. 450</td>
<td>40 max.</td>
</tr>
</tbody>
</table>

IMPORTANT THINGS TO WATCH

- Oil content and VMA 17.5 minimum if they are not high then we have had cracking problems
- Compaction target 94%, 9 ton minimum roller, stay close to the lay-down machine, full pneumatic tire rollers not permitted
- Joint compaction
- Does not fix sub grade problems
- Access and side road radius not easy but constructible
- Added cost because of high oil and no RAP
- High quality material equals high quality product
UDOT STONE MATRIX ASPHALT (SMA) CONSTRUCTION AND PERFORMANCE

• Questions?
OVERVIEW

• History
• Strategy
• Treatments
• Coordinated Efforts
• Outcomes
CITY OF POCATELLO DEMOGRAPHICS

• Population = 57,000
• Terrain – Hills and Valleys
• Hot Summers/Harsh Winters
• Maintain approximately 268 Centerline Miles

HISTORY OF PAVEMENT MANAGEMENT

• 2005 – 2013
 – Annual Budget Allocation = $1,000,000
 – Limited Asset Management Plan
 – Subjective Analysis
 – Averaged 24 Miles Treated Per Year
 • Road treated every 11 years
 – Added 5 PCI points in 8 years
 • Averaged 0.63 PCI points per year
STRATEGY

• Collect Objective Data
 – Modern Technology
 • Takes human factors out of the equation
 – Windshield Survey Factors
 • Fatigue
 • Subjectivity

• Develop a Plan
 – Study Data
 • Current methodology was unreliable
 • Budget remained flat - from 2005-2022
 – $1,000,000 per year
 • Determined we need to increase our road miles treated
 – Target was to treat 35-40 miles per year
 » Road need treated every 7 years

• Implement a Plan
 – How To Treat 10-15 More Miles Per Year With The Same Money
 – How Do We Do That?
 – Realized conventional thinking wasn’t going to solve our problem
 – Determined we would have to get creative in our tactics and treatments

COLLECT OBJECTIVE DATA

• Asset Management Program
 – Pavement Management Analysis
 • Performed by Third-party
 – Modern technology
 – PCI ratings
 – Perform Annual Modeling – EAM/Lucity
 • Strategic Parameters Set
 – Types of treatments
 – Budget allocations
 » % based
 » $$ based
DEVELOP A PLAN

• Deterioration Graph
 – Sometimes It’s Difficult To Adhere To
 • Political influence
 • Complaints
• Preventative Maintenance Is Key
 – Keep Good Roads Good!
• Kicking The Can Has Benefits
 – Deplete every bit of life

IMPLEMENTING THE PLAN

• Invested In Manpower And Equipment
 – Manpower
 • Hire qualified employees
 • Extensive operator training
 – Equipment
 • Asphalt Paver
 • Asphalt Cold Planer
 • Asphalt Distributor Truck
 • Oil Tanker

Old Ways

New Ways
PAVEMENT TREATMENTS
Preventative

• Crack Seal
 – Underutilized Treatment
 – When Utilized, Over-applied
 – Proper Techniques
 • Clean cracks
 • Proper temperature
 – Material
 – Ambient
 – Needs To Be Done Every Year

• FOG SEAL
 – Minimum Of 10% Of Budget Allocation
 – Most Under-rated Treatment
 – Research Good Products & Suppliers
 • Rejuvenators
 • Rejuvenators with latex
 • Seal-coats
 – Determine What Works Best In Your Area
 – 4 Years Of Life Extension
 – PCI Of 77 And Above

*Deplete Every Ounce Of Life Out Of Every Road
*Kicking The Can
*Forget About This Road For 4 Years And Move On To Others
PAVEMENT TREATMENTS
Restorative

- **Chip Seal**
 - Excellent treatment, cost prohibitive in urban environment
 - Sweeping
 - Flushing
 - Multiple closures
 - Moving vehicles

- **Micro Seal**
 - Game Changer
 - One-time closure
 - Added Fiber

- **Cape Seal**
 - Chip/Micro

- **PREPPING**
 - Scrub Patch
 - Improve IRI
 - Correct drainage
 - Keep base dry
 - Repair Base Failures
 - Replace base and patch back
 - Profile Mill
 - Grade averaging
 - ADA Ramps

*Deplete Every Ounce Of Life Out Of Every Road
*Kicking The Can
*Forget About This Road For 4-5 Years And Move On To Others

PAVEMENT TREATMENTS
Thin Overlay

- Profile Mill 1/10th of Asphalt, Reapply 1/10th of Asphalt
- ½” Aggregate Asphalt
- Correct Data Imperative
- Base Defects Are Usually Visual
 - Proof roll with pneumatic
 - Repair base failure
 - Correct Drainage

PAVEMENT TREATMENTS
Thick Overlay

- Profile Mill 2-3”
- ½” To ¾” Aggregate, Depending On Traffic Volumes
- Proof Roll With Pneumatic Roller
- Repair Base Failures
- Correct Drainage
- Reapply 2-3”

*Deplete Every Ounce Of Life Out Of The Road
*We Are No Longer Kicking The Can
COORDINATED EFFORTS

- Coordinate Pavement Management Data With Local Utilities Data
 - Pavement Model Vs. Water Dept. Replacement Plan
 • Determine cost sharing between departments
 - Pavement Model vs. Other Utilities
 • Utility Coordination Committee
 - Meet monthly
 - Change plans as needed

*Street Department Gets A New Road
*Utility Department Gets A Budget-friendly Pave Job

OUTCOMES

- 2014 – 2019
 - Annual Budget Allocation = $1,000,000
 • Do more with less
 - Data Driven Strategies
 • Accurate data
 • Keep good roads good!
 • 7-Year Strategy – based on lane miles
 - Outcome
 • Road network condition 77.1
 • +10 PCI in 5 years
 • 2 PCI points per year
Questions?
Pulverization: The Montana Experience

Miles Yerger, PE

Topics

• Our Reasons
• Investigation Procedure
• Calculations
• Specifications
• Project Example
Guidelines for Nomination and Development of Pavement Projects

GUIDELINES FOR NOMINATION AND DEVELOPMENT OF PAVEMENT PROJECTS
(CORRECTIVE MAINTENANCE TO RECONSTRUCTION)
MONTANA DEPARTMENT OF TRANSPORTATION
MONTANA DIVISION, FEDERAL HIGHWAY ADMINISTRATION

Major Rehabilitation

Major Rehabilitation

Major rehabilitation improves pavement structure, typically exposing base gravel. These projects may include grading and/or wetting. The intent of these projects is to rehabilitate the existing pavement structure through an engineered approach that considers the observed pavement distress, the in-place material, and roadway geometrics. Milling operations may expose base gravel which can then be treated or modified. New right-of-way and utility relocation may be required to improve geometry, to flatten slopes and enhance safety. Reconstruction work should be limited to less than 25% of the project length.

Appropriate soil survey work, subsurface analysis, traffic data and crash data must be collected. The preliminary surfacing recommendation for a 20-year design life will be used. The data collected and engineering required to determine the level of rehabilitation should take six to nine months. Additional development time for a major rehabilitation should be three to four years, given the probable inclusion of other features.

Major rehabilitation treatments include:
- Overlay > 3 ft
- Full depth reclamation
- Pulverize w/overlay
- Grading beyond the surfacing section and/or wetting
- Exposure of base gravel
- Crack and seal w/overlay
- Concrete overlay unbonded or bonded

Hazard Mitigation:
A Safety Engineering review or crash analysis is required. Safety Engineering crash analysis recommendations should be included with the project. Crash analysis recommendations that are not included should be documented in the Scope of Work report with supporting justification. Features to mitigate treatable hazards identified by the design team may be included. Consider project scope, schedule, cost-effectiveness and benefit-cost ratio when evaluating hazard mitigation features.
Reasons for Pulverization

- Recycling/aggregate availability
- Increased Material Costs
- Reduction in Fuel usage when compared to reconstruction
- Allows for use of CTPB when necessary
- Rubble in lower lifts of existing plant mix

Investigation Procedure

- Traffic
- Distress
- Coring
- DCP
- FWD/GPR
Calculations

- AASHTO 93
- Calculation spreadsheets

<table>
<thead>
<tr>
<th>Vagie Material</th>
<th>Coefficiet per cu</th>
<th>Listing materials</th>
<th>Coefficient per cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM5 (4x10)</td>
<td>0.91</td>
<td>PM5 and Gravel*</td>
<td>0.03 - 0.05</td>
</tr>
<tr>
<td>Cracked Aggregate Gravel (Gravel)</td>
<td>0.74</td>
<td>Cracked Aggregate Gravel (Gravel)</td>
<td>0.72</td>
</tr>
<tr>
<td>PM5 (4x10) Medium Gravel, partially crushed, 3/8" minus (in place)</td>
<td>0.52</td>
<td>PM5 (4x10) Medium Gravel, partially crushed (in place)</td>
<td>0.52</td>
</tr>
<tr>
<td>Cleaned Crushed Base (CTB)</td>
<td>0.20</td>
<td>Cleaned Crushed Base (CTB)</td>
<td>0.18</td>
</tr>
<tr>
<td>CTD (Uncoated)</td>
<td>0.16</td>
<td>CTD Pulverized</td>
<td>0.14</td>
</tr>
<tr>
<td>Crushed Recycled Asphalt Paving (ARM/P)</td>
<td>0.30</td>
<td>Crushed Recycled Asphalt Paving (ARM/P)</td>
<td>0.20</td>
</tr>
<tr>
<td>Sub-base Materials*</td>
<td>0.87 - 0.10</td>
<td>Special Services</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Specifications

- Section 302 and 304 of the Standard Specifications
- Special Provision for varying depths along project
Project Example

• P-323 between RP 50.82 and RP 69.03
• “Emergency Project” administered by Maintenance
• 0.2 ft mill, 0.6 ft pulverization with 6% cement
• 0.2 ft PMS overlay

Questions?

Miles Yerger
Pavement Design Engineer
Montana Department of Transportation
myerger@mt.gov
406-444-7650
Compaction of Asphalt Mixtures, State of Practice

Dave Johnson, P.E.
Senior Regional Engineer, Asphalt Institute
Billings, Montana

Importance of Compaction

“Compaction is the single most important factor that affects pavement performance in terms of durability, fatigue life, resistance to deformation, strength and moisture damage.” – C. S. Hughes, NCHRP Synthesis 152, Compaction of Asphalt Pavement, (1989)

“The amount of air voids in an asphalt mixture is probably the single most important factor that affects performance throughout the life of an asphalt pavement. The voids are primarily controlled by asphalt content, compactive effort during construction, and additional compaction under traffic.” – E. R. Brown, NCAT Report No. 90-03, Density of Asphalt Concrete—How Much is Needed? (1990)
Introduction to Compaction

• Compaction is the final step in the construction process of an asphalt pavement
• Compaction is the process by which the freshly placed asphalt mat is compressed (or densified) to reduce the in-place air voids in the mat.
• During the compaction process, aggregate particles in the mat are reoriented closer together and locked into place to provide a strong skeleton for the asphalt mixture with increased shear strength providing resistance to permanent deformation (rutting) and cracking.

The primary goals of the compaction process are to:
- consolidate the mat
- increase in-place density, which reduces in-place air voids
- smooth out the asphalt pavement

Going forward, we will use the terms density and air voids. It is understood that we are referring to in-place density and in-place air voids.
Current Technologies that Influence Compaction...

- DIALECTIC PORFILING SYSTEM
- WARM MIX ASPHALT
- BALANCED MIX DESIGN
- TACK COAT BEST PRACTICES
- LONG-JOINT BEST PRACTICES
- SHRP2 IR BAR

Density vs. Loss of Pavement Service Life

For both thicker and thinner, reduced in-place density at the time of construction results in significant loss of Service Life!
NCAT Report 16-02 (2016)

Literature Review on connecting in-place density to performance

- 5 studies cited for fatigue life
- 7 studies cited for rutting
- “A 1% decrease in air voids was estimated to improve the fatigue performance of asphalt pavements between 8.2 and 43.8%, to improve the rutting resistance by 7.3 to 66.3%, and to extend the service life by conservatively 10%.”
“...to ensure that permeability is not a problem, the in-place air voids should be between 6 and 7 percent or lower. This appears to be true for a wide range of mixtures regardless of NMAS and grading.” – NCHRP 531

Getting Compaction
What is a balanced paving operation?
The synchronized balance of the four phases of asphalt paving to provide continuous paving operations. The four phases are mixture production, mixture hauling, paving operations, and compaction.

Factors in Affecting Compaction

• Base Condition
• Lift Thickness vs. NMAS
• Laydown Temperature
• Ambient Conditions
• Cooling Rates
• Balancing Production Through Compaction
• Paver Operations
General Mechanics of Compaction

• The mechanics of compaction involve three main forces that can have a major impact on the compaction process:
 - Compressive force of the rollers
 - Resistive forces within the mixture
 - Supporting forces exerted by the stable surface below the mat (subgrade, aggregate base or the existing pavement)

• Optimum conditions for compaction of the asphalt mat will be achieved when:
 - Asphalt mat is stable enough at compaction temperatures to be densified without excessive movement
 - Underlying materials adequately support the compactive forces being applied by the rollers

Importance of Underlying Support
Subgrade & Base Support

• Good support critical to obtain proper density
• Spongy or unstable support
 • Provides little resistance to the rollers
 • Mixture not confined, energy dissipated
• Mixture moves and cracks rather than compacts

Lift Thickness’ Effect on Compaction

• Aggregates need room to densify
• Too thin vs. NMAS leads to:
 ◦ Roller bridging
 ◦ Aggregate lockup
 ◦ Aggregate breakage
 ◦ Compaction Difficulties
• NCHRP Report 531 (2004)
 ◦ Fine Graded Mix—Minimum Thickness = 3 X NMAS
 ◦ Coarse Graded Mix—Minimum Thickness = 4 X NMAS
 ◦ SMA Mix—Minimum Thickness = 4 X NMAS
The Temperature Effect

- Charles F. Parker (1959)
 - 275°F – standard temperature – reference air voids
 - 200°F – doubled the air voids
 - 150°F – quadrupled the air voids

- Kim A. Willoughby, et.al. (2001)
 - Mix temperature differentials
 - ≤ 25°F – generally consistent air voids
 - ≥ 25°F – greater air void spread
 - Pneumatic rollers reduced spread
 - End dumps showed a greater spread

- Robert Schmitt, et.al. (2009)
 - Most important factor in achieving density
Mat Temperature

• Compacting asphalt in the correct temperature range is critically important
• Temperatures must be neither too hot nor too cold
• Optimum compaction temperatures vary depending on many factors
 ◦ Start compaction: 310 – 280°F
 ◦ Stop compaction: 180 – 175°F
 ◦ WMA will lower these ranges depending on the technology

Environmental Factors and Compaction

Several factors come into play regarding how fast the mix cools onsite, affecting time available for compaction:
• Ambient air temperature
• Temperature of the existing surface
• Wind speed
• Lift thickness
• Mix temperature
• Solar Radiation
Material Cooling

• Thicker = More Time for Compaction
• Free tools for estimating compaction time
 ◦ PaveCool—single lift (generation 1)
 • PC
 • iOs App
 • Google App
 ◦ MultiCool—multiple lifts (generation 2)
 • PC
 • Google App
 • Mobile Web

PaveCool Example

• Key Inputs
 ◦ Temperature
 • Air
 • Base
 • Mix Delivery
 ◦ Wind Speed
 ◦ Lift Thickness

• Output
 ◦ Cooling Curve
 ◦ Estimated Compaction Time
PaveCool Example

2.5 Inch Lift
50°F Air, Surface Temp
Mix Delivery temp - 300°F
39 minutes to complete compaction operations

2 Inch Lift
50°F Air, Surface Temp
Mix Delivery temp - 300°F
28 minutes to complete compaction operations

Forces of Compaction and Roller Types
Balanced Roller Vibration

- Optimum compaction occurs when all forces are accepted by the asphalt layer
- Balance between forces of compaction and the asphalt layer

Drum Bouncing

- When using vibratory rollers:
 - Forces out of balance create drum bounce
 - Inefficient operation
 - Solve bouncing:
 - change speed
 - lower amplitude
 - higher frequency
 - one drum static
 - both drums static
Roller Equipment

• Forces of Compaction
• Roller Type
 ◦ Steel Drum
 • Static
 • Vibratory
 ◦ Pneumatic
 ◦ Newer Technology
 • Vibratory Pneumatic
 • Oscillatory Steel Drum

Note: screed operator walking along side
Forces of Compaction

Compaction forces
- Low force
 - Static pressure
 - Manipulation
- Higher forces
 - Impact
 - Vibration

Effect of Roller Type, Size, Passes

Roller type and size affects:
- Magnitude of the load
- Manner the load is imparted to the pavement

Number of passes:
- Increases the density
- To optimum point after a number of passes
 - Lowers compaction
 - If continued, damages mat
Roller Types

- **Static Steel-Wheeled**
- **Pneumatic**
- **Vibratory**

Pneumatic Rollers

- Reorients particles through kneading action
- Tire pressures:
 - ~80 psi (cold) for compaction
 - ~50 psi (cold) for finish rolling
 - Range of tire pressures not to exceed 10 psi
- Used as Intermediate or as Breakdown Roller
- Tires must be hot to avoid pickup
- Tires must be smooth - no tread
- Not used for PFC mixes or SMA
Many experts believe kneading action helps in providing a tighter surface that is more dense and less permeable compared to drum rollers.

Research supports this

But must keep these away from the unsupported edge to avoid excessive lateral movement of mat.

Use during intermediate rolling of the supported edge.

Not finish rolling

Vibratory Rollers

• Commonly used for initial (breakdown) rolling
• 8-18.5 tons, 57-84 in wide (“heavy” rollers)
 – 50-200 lbs/linear inch (PLI)
• Frequency: 2700-4200 impacts/min.
• Amplitude: 0.016-0.032 in.
 – For thin overlays (≤ 2 in.) use low amplitude or static mode
• Operate to attain at least 10 impacts/ft
 – 2-4 mph
Drum Impacts per Foot

<table>
<thead>
<tr>
<th>Frequency</th>
<th>2 MPH</th>
<th>3 MPH</th>
<th>4 MPH</th>
<th>5 MPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000 vpm</td>
<td>11.36</td>
<td>7.58</td>
<td>5.68</td>
<td>4.55</td>
</tr>
<tr>
<td>2200 vpm</td>
<td>12.50</td>
<td>8.33</td>
<td>6.25</td>
<td>5.00</td>
</tr>
<tr>
<td>2400 vpm</td>
<td>13.64</td>
<td>9.09</td>
<td>6.82</td>
<td>5.45</td>
</tr>
<tr>
<td>2600 vpm</td>
<td>14.77</td>
<td>9.84</td>
<td>7.39</td>
<td>5.91</td>
</tr>
<tr>
<td>2800 vpm</td>
<td>15.91</td>
<td>10.61</td>
<td>7.95</td>
<td>6.36</td>
</tr>
<tr>
<td>3000 vpm</td>
<td>17.05</td>
<td>11.36</td>
<td>8.52</td>
<td>6.82</td>
</tr>
<tr>
<td>3200 vpm</td>
<td>18.18</td>
<td>12.12</td>
<td>9.09</td>
<td>7.27</td>
</tr>
<tr>
<td>3400 vpm</td>
<td>19.32</td>
<td>12.88</td>
<td>9.66</td>
<td>7.72</td>
</tr>
<tr>
<td>3600 vpm</td>
<td>20.45</td>
<td>13.64</td>
<td>10.22</td>
<td>8.18</td>
</tr>
<tr>
<td>3800 vpm</td>
<td>21.59</td>
<td>14.39</td>
<td>10.80</td>
<td>8.63</td>
</tr>
<tr>
<td>4000 vpm</td>
<td>22.72</td>
<td>15.16</td>
<td>11.36</td>
<td>9.10</td>
</tr>
</tbody>
</table>

Other Compaction Technologies

- In addition to the standard roller types, there are a number of innovative and new compaction technologies now available:
 - Oscillatory rollers
 - Combination rollers
 - Vibratory pneumatic (rubber) tire rollers
Oscillatory Rollers

- Oscillatory rollers are typically equipped with an oscillating drum and vibratory drum.
- The oscillatory drum generates Compactive force based on:
 - Weight of the roller
 - Tangential dynamic force from offset spinning eccentric weights
- Can be used effectively in both intermediate and breakdown.
- Tangential Compactive force is desirable in scenarios where:
 - Vertical force is not practical
 - Compaction at lower cessation temperatures are desired

Combination Rollers

- Combination rollers are rollers that are equipped with both a steel drum and pneumatic (rubber) tires.
- Advantages of “combi” rollers:
 - Desirable qualities of both vibratory and rubber tire in a single roller
 - Provide rapid density increases from vibratory drum
 - Kneading action that both densifies mat and provides a tight finish from rubber tires
Vibratory Rubber Tire Rollers

- Vibratory pneumatic (rubber) tire rollers are rubber tire rollers that are equipped with vibration amplitude and frequency.

- Advantages of vibratory rubber tire rollers:
 - Advantages of both rubber tire and vibratory rollers in a single roller
 - Kneading action that densifies mat and provides a tight finish from rubber tires
 - Rapid density increases from dynamic forces generated by the vibratory drum
 - Avoid bridging at cold joints

Roller Operations & Roller Procedures
Compaction Variables at the Roller

- Roller Patterns
 - Sequencing
 - Passes—A roller passing over one point in the may one time
 - Roller Speed

- Rolling Zone

- General Rolling Operations

Traditional Roller Operations Sequencing

- Breakdown Rolling
- Intermediate Rolling
- Finish Rolling
Pattern Decisions

- How many passes?
- How to be sure mix is rolled at correct temperature?
- How fast to roll?

Establishing Breakdown Rolling Pattern

Goal: 93.5\% \text{G}_{mm}

Select: 3 Passes
(Intermediate will get the rest of the density)
Rolling Pattern

- Speed and lap pattern for each roller
- Number of passes for each roller
 - One trip across a point on the mat
 - Set minimum temperature each roller finishes

IMPORTANT:
- Paver speed must not exceed compaction!!!
- Paver makes single pass
- Roller pattern requires 3-7 passes

Roller Speed is Critical – SPEED KILLS DENSITY!!

[Graph showing density vs. number of passes for different speeds]

Slower = More Compaction/Pass
Breakdown Rolling

• First roller behind paver
• Gets most of density
• Begin at highest temperature without huge mat distortion
• May have to work very close to paver for some mixes
• May be performed with two coordinated rollers

Breakdown Rolling

• Historically 3-wheel steel
• D/D vibratory most common
• Vibration most productive during breakdown
• Pneumatics
 • Used on base courses
 • Leveling courses
 • Forces mix into cracks
 • Compacts without bridging minor ruts
• Can leave marks – may be harder to roll out
Echelon Vibratory Rollers

Intermediate Rolling

- Final step in getting density and initial smoothness
- Mat hot enough to allow aggregate movement
- Mat already close to final density
- Too much force will fracture aggregate
- Typical roller type:
 - Traditionally pneumatic
 - Vibratory at low amplitude and/or static mode
Pneumatic Roller

Main purpose
• Minimal compaction
• Smoothness
• Removal of any marks
• Once smooth, stop rolling

Typical roller types:
• Tandem steel-wheel
• Pneumatic w/lower pressure
• Vibratory static mode only

Finish Rolling
General Rolling Procedures

For best results
• Roll at highest temperature without excessive displacement
• Stay close to paver
• Monitor weather
• Keep up but not too fast
 • Slower paver speed
 • Not faster roller speed

Overlaps
• 6” overlap assures uniform compaction
• Include overlap selecting drum width
• Roller should cover mat in no more than 3 passes
General Rolling Procedures

Reversing Directions
- Avoid straight stops
- Turn toward center of mat
- Don’t turn drum while stopped
- Next pass should roll out any marks created by reversing

Compact the Mat While It Is Hot!

Stay Close to the Paver with Breakdown Rollers.
Always Stop and Reverse Directions at an Angle!
General Rolling Procedures

“Birdbath” from roller stopping on hot mat

Why Rollers Need to Turn to Stop

57

58
Summary of “Good Practice”

• Compact mat when it is hot!
• Conduct a density control strip at the beginning of the project
 ◦ Determine optimum roller pattern
 ◦ Stick with roller pattern throughout project unless something changes in the conditions
• Reverse directions properly
 ◦ Turn into stops
 ◦ Do not turn while standing
• Do not stop roller on hot mat
• Use proper technique when compacting longitudinal joints
Topics to be Covered

• **Problem**: Longitudinal Joints Failures

• **Solution**: VRAM
 Void Reducing Asphalt Membrane
 ▪ Intro and terminology
 ▪ Concept and Performance History
 ▪ Application
 ▪ Special Provisions
 ▪ Research
 ▪ Idaho SH 55 Project
 ▪ Three Pillars of Sustainability
How difficult is it to find pavements like these?
Rumble Strips / Corrugations

- Being used on an increasing basis for safety
- Placed in the weakest area of the pavement, centerline joint or outside edge of paving creating early failure
- Water settles in rumble strips

Longitudinal Construction Joints

- **Issues**
 - Cannot achieve the same density at the joint as in the mat
 - Water and air intrusion due to permeability accelerates damage

- **Longitudinal construction joints**
 - Commonly, the first area requiring maintenance on a pavement
Air Voids from Joint Towards Center of Lane

Air Voids from Unconfined Centerline Joint

Centerline going towards interior of mat

Why do joints fail early?

*Washington State DOT Study
“Effect of In-Place Voids on Service Life”
Effect of Air Voids on Pavement Service Life

Reduction in Expected Service Life

<table>
<thead>
<tr>
<th>Service Life, Years</th>
<th>Air Voids, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>6%</td>
</tr>
<tr>
<td>15</td>
<td>7%</td>
</tr>
<tr>
<td>14</td>
<td>8%</td>
</tr>
<tr>
<td>13</td>
<td>9%</td>
</tr>
<tr>
<td>12</td>
<td>10%</td>
</tr>
<tr>
<td>11</td>
<td>11%</td>
</tr>
<tr>
<td>10</td>
<td>12%</td>
</tr>
<tr>
<td>9</td>
<td>6%</td>
</tr>
<tr>
<td>8</td>
<td>7%</td>
</tr>
<tr>
<td>7</td>
<td>8%</td>
</tr>
<tr>
<td>6</td>
<td>9%</td>
</tr>
<tr>
<td>5</td>
<td>10%</td>
</tr>
<tr>
<td>4</td>
<td>11%</td>
</tr>
<tr>
<td>3</td>
<td>12%</td>
</tr>
</tbody>
</table>

If the center of the mat is at 7% voids or less, but the joint is at 11% voids, the joint fails 5 years earlier than the rest of the pavement.

Longitudinal Construction Joints Traditional Methods

Mechanical methods to improve joint performance

- Joint density requirements (typically target voids at 4” from joint to within 2% of center mat voids)
- Echelon paving (hot joint)
- Joint heater
- Notched wedge joint
- Cut off lower density unconfined edge
- Mill and inlay (confined)
Improving HMA Pavements with a Void Reducing Asphalt Membrane

Terminology

V R A M
Void Reducing Asphalt Membrane

The Product Category

L J S
Longitudinal Joint Sealant
(Illinois Terminology)

Asphalt Materials, Inc.
Trade Name

J-Band®
Longitudinal Joint Improvement Plan

- Early 2000’s timeframe
- Illinois DOT recognized need for better joint performance
- Failure mechanism
 - PERMEABILITY
- Concept: Fill a portion of the voids with an asphalt product from bottom up, a Void Reducing Asphalt Membrane (VRAM)

LJS Performance History

- 9 IDOT LJS Experimental Test Sections Placed in 2002 – 2003
- Illinois DOT took cores for testing 3 of these in 2017
 - District 7 US-51 Elwin
 - District 1 US-50 Richton Park
 - District 2 IL-26 Cedarville
LJS Experimental Projects

IDOT IL-26

CONTROL 14 YR OLD

VRAM SECTION 14 YR OLD

Attributes and Specs

Saves Time
Void Reducing Asphalt Membrane (VRAM)

- Thick application of hot-applied, polymer-modified asphalt (~ 1 gal/sq yd for 1 1/2" overlay)
- Application of an 18" band applied before paving in the location of the new longitudinal joint
- Fills voids and reduces water intrusion at joint from the bottom up
- Modifies the AC mix at the longitudinal joint
- Protects underlying pavement layers
- Materials approach to improving joint performance

VRAM Application

18" wide VRAM application or 9" wide mill and fill
Non-tracking < 30 min Based on cooling time
1st pass covering half VRAM width. Joint density testing not required within 1 ft from joint.
VRAM Application Methods

- Placed by pressure distributor with mechanical agitation in tank
- Manual strike off box fed from melting kettle
- Tow behind melter applicator

Special Provision – Material properties

<table>
<thead>
<tr>
<th>Test</th>
<th>Test Requirement</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic shear @ 88°C (unaged), (G^*/\sin \delta), kPa</td>
<td>1.00 min.</td>
<td>AASHTO T 315</td>
</tr>
<tr>
<td>Creep stiffness @ -18°C (unaged), Stiffness (S), MPa m-value</td>
<td>300 max. 0.300 min.</td>
<td>AASHTO T 313</td>
</tr>
<tr>
<td>Ash, %</td>
<td>1.0 – 4.0</td>
<td>AASHTO T 111</td>
</tr>
<tr>
<td>Elastic Recovery*, 100 mm elongation, cut immediately, 25°C, %</td>
<td>70 min.</td>
<td>ASTM D6084 Method A</td>
</tr>
<tr>
<td>Separation of Polymer, Difference in °C of the softening point (ring and ball)</td>
<td>3 max.</td>
<td>ASTM D7173</td>
</tr>
</tbody>
</table>
Improving HMA Pavements with VRAM

Special Provision – Rates by mix type and thickness
Coarse and fine-graded based on No. 8 sieve*

<table>
<thead>
<tr>
<th>VRAM Application Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse-Graded HMA Mixtures</td>
</tr>
<tr>
<td>Overlay Thickness, in</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1 ¼</td>
</tr>
<tr>
<td>1 ½</td>
</tr>
<tr>
<td>1 ¾</td>
</tr>
<tr>
<td>≥ 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fine-Graded HMA Mixtures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overlay Thickness, in</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1 ¼</td>
</tr>
<tr>
<td>≥ 1 ½</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SMA Mixtures/SuperPave 5 Mixtures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overlay Thickness, in</td>
</tr>
<tr>
<td>1 ½</td>
</tr>
<tr>
<td>1 ¾</td>
</tr>
<tr>
<td>≥ 2</td>
</tr>
</tbody>
</table>

*No. 8 limits – 19-mm, 35% - 12.5-mm, 40% - 9.5-mm, 45%

Effect of VRAM on Voids and Asphalt at Joint

- The VRAM will migrate into the available air voids with heat and compaction
- Example HMA @ 6.0% AC, @ 1.5” thick/square yard = 9.9 lb of AC from mix
- VRAM @ 18” with VRAM weight per SY and total asphalt in joint area:

<table>
<thead>
<tr>
<th>Mix type</th>
<th>VRAM rate, lb/ft</th>
<th>VRAM, lb/SY</th>
<th>Total asphalt in joint area, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse-graded</td>
<td>1.47</td>
<td>8.8</td>
<td>10.8</td>
</tr>
<tr>
<td>SMA/SP5</td>
<td>1.26</td>
<td>7.6</td>
<td>10.6</td>
</tr>
<tr>
<td>Fine-graded</td>
<td>0.95</td>
<td>5.7</td>
<td>9.6</td>
</tr>
</tbody>
</table>

- Finer mixes have less inter-connected voids than coarse-graded mixes

Cross Sectional View at Longitudinal Joint
Current States* with VRAM Experience

- Illinois
- Indiana
- Ohio
- Iowa
- Michigan
- Missouri
- Wisconsin
- Minnesota
- Wyoming
- Montana
- Idaho
- New Jersey
- Pennsylvania
- Massachusetts
- Maryland
- Virginia
- Delaware
- South Carolina
- District of Columbia
- New York
- North Carolina
- West Virginia
- Nebraska
- New Mexico

Since 2002, VRAM has grown in popularity and is now found on roads across 23 states and the District of Columbia.
Growth of VRAM
Snapshot taken August 2022

<table>
<thead>
<tr>
<th>Year</th>
<th>VRAM Project Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>116</td>
</tr>
<tr>
<td>2017</td>
<td>327</td>
</tr>
<tr>
<td>2018</td>
<td>940</td>
</tr>
<tr>
<td>2019</td>
<td>1,556</td>
</tr>
<tr>
<td>2020</td>
<td>2,580</td>
</tr>
<tr>
<td>2021</td>
<td>2,887</td>
</tr>
<tr>
<td>2022</td>
<td>3,213</td>
</tr>
</tbody>
</table>

VRAM Performance History

9 IDOT VRAM experimental sections placed in 2002 – 2003 (oldest VRAM projects)
- IDOT research reports available
- Example - IL 50 Richton Park
IDOT Core Testing 14 Years After Service (2017)

- Asphalt content
- Migration
- Laboratory permeability testing
- I-FIT flexibility index (FI) values

Note: No LJS on left, with LJS on right. Example, not from IDOT research sections.

IDOT core testing 14 years after service (2017)

- Asphalt content nearly double for VRAM cores
- Laboratory permeability testing (vertical flow)
 - Top half of all cores had nearly equal lab perm.
 - Bottom half
 - Control: 110 to 372×10^{-5} cm/sec
 - VRAM: zero
- I-FIT flexibility index (FI) values
 - Controls: 0.2 to 0.8
 - VRAM: 1.9 to 23
 - IDOT long-term aged lab FI ≥ 4.0
Testing VRAM & Control Conditions

- Comparing VRAM to a traditional method
 - Encouragement to have a control section on a VRAM project when first starting out
 - Annual performance review focusing on the joint area

Cores on or near the centerline joint

<table>
<thead>
<tr>
<th>Good to Know</th>
<th>Must Know</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Content</td>
<td>Laboratory Permeability Testing (vertical flow)</td>
</tr>
<tr>
<td>Migration</td>
<td>Flexibility or Cracking Test</td>
</tr>
</tbody>
</table>

The use of VRAM reduces permeability and air void content, which reduces the intrusion of water into the pavement, indicating that good long-term pavement performance will be achieved.

Longitudinal cracking at the joints will be delayed relative to the control sections.
Idaho SH 55, July 2019

- Contractor: Idaho Materials & Construction
- Applied by Western States Asphalt
- 5,280-foot demo project West of Marsing in Owyhee County, ID, starting 500 ft. east of US-95 to 500 ft. east of Edison Road
- Planned application at 18” wide and 0.95 lb/ft (±10%) for the 3” fine graded surface course.
- West half from 500 ft. east of US-95 to 2,640 east has VRAM, east half control
Idaho SH 55
VRAM - Pillars of Sustainability

• Achieve Engineering goals while achieving Sustainability goals

VRAM/J-Band - Environmental Pillar

• AMI partnered with ClimeCo to study the sustainability of J-Band

• ClimeCo is a sustainability, climate change, and environmental commodities firm

• Goal: Build on J-Band life-extension to quantify its sustainability benefits

What is a Life Cycle Assessment?

by: Gary Yoder and Jaskaran Sidhu | February 22, 2022
VRAM - Environmental Pillar

- GHG and air quality emissions estimated over the life cycle of the road: J-Band v. 3 alternatives
 - Longer life
 - Less maintenance
- Extraction, manufacturing, transport, application, and maintenance trips were quantified
- Quantified J-Band reduction in energy during construction and in maintenance compared to alternatives
- Final report is available on the ClimeCo Site
 - [What is a Life Cycle Assessment](#)
- To be presented at 2023 Transportation Research Board

VRAM - Safety (Social) Pillar

- No density checks at the centerline during construction puts fewer workers at risk
- Rumble strips and distracted driving
- ClimeCo studied the reduction in maintenance for a road using J-Band, and calculated safety metrics
 - Far fewer injuries and fatalities using J-Band than alternatives in joint construction

[What is a Life Cycle Assessment?](#)
Improving HMA Pavements with a Void Reducing Asphalt Membrane

2021 TRB Paper Establishing Agency Value

Written with Illinois DOT – Accepted by Transportation Research Board

ABSTRACT

Many states are looking for methods to improve longitudinal joint performance of their asphalt pavements since these joints often fail before the rest of the surface. With their inherently lower density, longitudinal joints fail by cracking, raveling, and potholing because of the intrusion of air and water. Due to these longitudinal joint issues, and after trying several less-than-successful traditional solutions, the Illinois Department of Transportation (IDOT) developed a concept to seal the longitudinal joint region, but from the bottom up. Test sections were constructed in 2004 through 2005 to determine how a newly developed material, called longitudinal joint sealant (LJS), would improve joint performance. LJS is a highly polymer-modified asphalt concrete with fibers and is placed at the location of a longitudinal joint or paving. As mix is paved over it, the LJS melts and migrates up into voids in the low-density mix, making the mix impermeable to moisture while sealing the longitudinal joint itself. The IDOT test pavements were evaluated after twelve years and found to have longitudinal joints that exhibited significantly better performance than the control joint sections and were as similar or better conditions than the rest of the pavement. Laboratory testing of cores showed decreased permeability and increased crack resistance of mix near joints with LJS as compared to similar mix without LJS. The life extension of the joint area is approximately three to five years, and the benefit is calculated to be three to five times the initial cost.

Keywords: Longitudinal joint, longitudinal joint sealant (LJS), void reducing asphalt membrane (VRAM)

TRB Paper is available upon request

VRAM - Economic Pillar

IDOT’s ROI: 3-5 times the cost of LJS

IDOT expects VRAM to provide a life extension of 3-5 years.

The benefit of this practice is 3-5 times the cost of the material, per IDOT.
VRAM Summary

- **Material solution** to improve performance at the joints
- Proven technology – multiple projects have been in place for over 15 years
- Reduces the need for joint maintenance
- Helps to improve **safety & sustainability** on the roads
- Life Cycle Cost Analysis can provide **savings**

Questions About VRAM?

For more information go to https://www.thejointsolution.com
Tim Zahrn 217.494.3563
OVERVIEW

• What makes an emulsion?
OVERVIEW

• What makes an emulsion?
• What breaks an emulsion?

• What makes an emulsion?
• What breaks an emulsion?
• The answer to ALL your questions!
OVERVIEW

• What makes an emulsion?
• Emulsion nomenclature
• Is rapid faster than quick?
• What breaks an emulsion?
• Break speed determining factors
• The answer to ALL your questions!
• Summary & conclusions

EMULSIONS

Definition – A suspension of small globules of one liquid dispersed in a second liquid with which the first will not mix

• Consists of a dispersed phase and a continuous phase
 – Milk (fat in water)
 – Mayonnaise (fat in oil)
 – Butter (water in fat)
ASPHALT EMULSIONS

• A dispersion of asphalt in water
 • Water is the continuous phase
 • Asphalt is the non-continuous or dispersed phase

• What makes an emulsion?

 • **Necessary Components:**
 – Asphalt
 – Water
 – Surfactants – Emulsifying Agents
 – Mechanical Energy (Colloid Mill)

 • **Other Common Components**
 – Additives
 – Modifiers or Polymers
WHAT MAKES AN EMULSION?

Emulsifiers, Surface active agents, or Surfactants

Definition—a substance capable of reducing the surface tension of a liquid in which it is dissolved

- Obviously, water and oil do not mix…
- Emulsifiers allow this to occur by altering the surface tension (hand soap)

WHAT MAKES AN EMULSION?

Emulsifying Agents:

- Emulsifiers are chemical molecules that possess dual functionalities
 - Polar head, often electrically charged, which is hydrophilic, or “water loving”
 - Non-polar tail which is lipophilic, or “oil loving”
EMULSION COMPONENTS

Emulsifying Agents:

How do they Work?

- Emulsifier molecules adsorb at the interface between two liquids
- The head orientates towards more polar phase (water)
- The tail remains in the non-polar phase (oil)

EMULSION COMPONENTS

Emulsifying Agents:

- As the key ingredient in suspending oil in water, emulsifiers greatly affect the performance and stability of the resulting emulsion
- The type of emulsion produced is controlled by the chemistry of the emulsifier
- Emulsifiers, and hence emulsions, are characterized by the head group of the molecule
EMULSION COMPONENTS

Emulsifying Agents:
- Cationic emulsifiers possess a positive charge on the head group
- Anionic emulsifiers possess a negative charge
- Nonionic emulsifiers do not possess a charge

Example of a cationic emulsifier

\[
\text{CH}_3\text{CH}_2\text{NH}_2\text{CH}_2\text{NH}_2\text{CH}_2\text{NH}_2\text{CH}_2
\]

Head group

Tail group
EMULSION COMPONENTS

Emulsifying Agents:

- Example of an anionic emulsifier

For asphalt emulsions, the tails of the emulsifier adsorb around the asphalt droplet.
- The head groups protrude on the outside of each droplet.
EMULSION COMPONENTS

Similar charge or large head group size keeps asphalt droplets suspended and maintains emulsion stability

EMULSION NOMENCLATURE

Asphalt Emulsions are characterized with a systematic nomenclature, for example:

CHFRS-2hp
EMULSION NOMENCLATURE

CHFRS-2hp

Charge of the Emulsion Droplets
• If the first letter is a C, the emulsion is cationic
• If a “C” is not present, the emulsion is anionic
• Though fairly rare in paving applications, nonionics are typically named like anionic emulsions

High Float
• “HF” indicates that the emulsion has High Float characteristics as indicated by the Float Test
• This high float characteristic provides a structured residue that aids in thicker aggregate films
EMULSION NOMENCLATURE

CHFRS-2hp

Type of Emulsion
- Next emulsions are named by how quickly the asphalt droplets coalesce
 - “RS” designates a Rapid Setting Emulsion
 - “MS” Medium Set
 - “SS” Slow Set
 - “QS” Quick Set

Emulsion Viscosity
- Emulsions are further described by their viscosity range
 - “1” signifies lower viscosity
 - “2” signifies higher viscosity
EMULSION NOMENCLATURE

CHFRS-2hP

Type of Asphalt
• A designation may follow the “1” or “2” that describes the type of asphalt used
 • “h” refers to a harder asphalt
 • “s” refers to a softer asphalt

Polymer Modification
• Polymer modified emulsions will often contain a letter at the end to signify that they are polymer modified
 • Most typically “P”, but occasionally “L,” “LM,” and “S” are also used
Common Anionic Emulsions:

RS-2	RS-2p
MS-2	MS-2h
HFRS-2	HFRS-2p
HFMS-2	SS-1
SS-1h	SS-1hlm

Common Cationic Emulsions:

CRS-2	CRS-2p
CMS-2	CMS-2s
CSS-1	CSS-1h
CSS-1hp	CQS-1hlm
CQS-1h	CHFRS-2p
IS RAPID FASTER THAN QUICK?

TYPES OF EMULSIONS

Rapid Setting Emulsions:

- Emulsions designed to react and break quickly when in contact with roadway and aggregate
- Typically used in chip seal applications
- Rely mostly on a chemical break to revert to asphalt
TYPES OF EMULSIONS

Medium Setting Emulsions:

- Often called “mixing grade” emulsions
- These emulsions have increased stability to allow for better aggregate coating in mixing applications
- Often contain solvents to create stock-pile type mixes
- Rely primarily on evaporation for breaking

TYPES OF EMULSIONS

Slow Setting Emulsions:

- Emulsions formulated for stability and/or extended mix times
- Rely on evaporation for breaking
- Often used in tack coats, fog seals, and aggregate pre-coating
TYPES OF EMULSIONS

Quick Setting Emulsions:

- Emulsions formulated for specific use in Slurry Seal applications
- Specialized chemistry to allow for mixing with aggregate, but also quick breaking behavior
- Relies primarily on a chemical break

Micro-Surfacing Emulsion:

- Emulsions formulated for specific use in Micro-Surfacing
- The emulsion is carefully formulated to allow for mixing with aggregate, but also maintains quick setting behavior
- Often called CSS, but relies on a chemical break and is fast setting in the system
WHAT MAKES AN EMULSION BREAK?

HOW DOES AN EMULSION BREAK?

INITIAL CONDITION
SURFACTANT WETS THE AGGREGATE

ASPHALT DROPLETS ARE DESTABILIZED
AGGREGATE BECOMING "OIL WET"

ASPHALT DROPLETS WET AGGREGATE AND BEGIN TO FLOCCULATE
ASPHALT DROPLETS BEGIN TO COALESCE, GAINING MECHANICAL STRENGTH

ASPHALT FILM FORMS WITH THE SURFACTANT REMAINING AS AN ADHESION PROMOTER
BREAK SPEED DETERMINING FACTORS

- Emulsifier type (chemistry)
- Solution chemistry (pH, salt content, etc.)
- Ambient conditions
 - Temperature
 - Relative humidity
 - Wind conditions
- Surface condition (old/new, cracked/smooth, dry/wet)
- Application rate and uniformity
- Construction variables (application temperature, shear and temperature history of the emulsion, application equipment, etc.)
THE ANSWER TO ALL YOUR QUESTIONS

IT DEPENDS!
WHAT ABOUT VERY RAPID SET EMULSIONS?

- Essentially rapid set emulsions engineered to be stable at lower emulsifier content.

HEAD SCRATCHER:

- The fastest breaking emulsion known to me is a slow set emulsion
 - Breaking mechanism/speed not driven by emulsifier
 - Emulsifier still needed for emulsion stability
 - Nature of base binder drives speed of breaking
 - Can be very slow in cold humid conditions
 - Hard asphalt based non-tracking type tack coats and bond coats
SUMMARY AND CONCLUSIONS

• The rapid, medium, slow, and quick designations refer to the type and dosage of emulsifier which, as a general rule, do control the speed of breaking.

• In practice it is the “speed determining process” that controls the breaking speed of an emulsion. It can be temperature, humidity, emulsifier type and content, emulsion base chemistry, soap chemistry, pH and so on.

QUESTIONS?
CODRIN.DARANGA@PTSILAB.COM
Buzz Powell
Jason Moore (NCAT Lab Manager)

Content

• Background
• NCAT experience
• Independent studies
• Industry feedback
• Takeaways
Background

• Historical harsh solvent extractions
• Nuclear AC and bio-solvents
• NCAT ignition furnace/method
• Correction factor for AC, gradation
• Variability with specific aggregates
• Harsh solvent benefit without the risk?

InfraTest Modular Asphalt Analyzer “Cube”

Compatible with both TCE and DCM solvents
Purchase Options

- Compatible with both TCE and DCM solvents

NCAT Experience

- Loaner unit production testing (1 year)
- Positive assessment of comparison trials
- 10/day (AC and dried aggregates)
- Reduced fumes w/ closed system, but
- Walk-in hood needed for rotovap
- Reduced solvent demand with repetitive recycling
- Return on investment in NCAT’s nonprofit business.
NCAT Experience

Excessive Dust

IOWA DOT$_{ETG}$

\[y = 0.9867x \]
\[R^2 = 0.9909 \]
Industry Feedback

- Unanimously positive feedback
- User interface for real time controls
- AC and dried aggregates in 1 hour
- Faster turnaround than an ignition furnace
- Dry shake of uncoated aggregates
- Decision via worker safety & bottom line
- 400V 8.5 kW, 3PH 50/60hz custom transformer (provided)
- 230V 5kW water cooling unit (~$10k).

Takeaways

- Technology works
- Contractors approve
- Startup costs are high
- Worker safety benefits
- Reduced testing time.

Dr. R. Buzz Powell, PE
Associate Director and Research Professor

277 Technology Parkway
Auburn, AL 36830

Phone: (334) 844-6857
Cell: (334) 750-6293

Email: buzz@auburn.edu
Web: www.pavetrack.com
Twitter: www.twitter.com/pavetrack