

UNLEASH THE SPIRIT OF INNOVATION

engineering 🛆 design

The longest-running student engineering innovation showcase in the Pacific Northwest

2020 CAPSTONE PROGRAM GUIDE

uidaho.edu/expo

#uidahoEXPO

Cybersecurity demands the best

We're partnering with U of I to deliver it

The world of cybersecurity changes fast. To protect our critical infrastructure, engineers can't just keep up—they need to stay two steps ahead.

We're working with the University of Idaho to develop a new four-year program focused on cybersecurity. Using best practices and cutting-edge research, we'll equip the next generation of engineers with the tools and knowledge they need.

Together, we're creating secure solutions and defining the future of cybersecurity.

WELCOME TO VIRTUA EXPO

This year will go down in history as the year the University of Idaho College of Engineering's annual Engineering Design EXPO overcame a worldwide pandemic to maintain its 27-year Vandal tradition.

With safety our highest concern amid the COVID-19 outbreak, we also recognize our responsibility to the hundreds of attendees that come to campus each year for this event.

EXPO is the longest-running student engineering and technological innovation showcase in the Pacific Northwest. That is why we've re-envisioned EXPO as a virtual experience.

Working in teams, engineering students from across disciplines present their projects from our college's Senior Capstone Design Program, recognized by the National Academy of Engineering as one of the top seven in the nation for infusing real-world experiences into engineering education. EXPO is the final step before our students graduate and join the workforce.

In this entirely unique landscape, our student teams, faculty advisors and mentors have overcome every unforeseen challenge to bring their designs and prototypes to completion for online exhibition.

Hundreds of K-12 students will participate in our virtual Extended Experience, exploring senior capstone projects remotely, following along in hands-on activities done at home or in the classroom, and taking a virtual tour of parts of our campus.

Our more than 60 volunteer judges have weathered the storm with us to adopt an online scoring system to judge projects and remote technical presentations.

And throughout it all, our sponsors remained steadfast in their commitment to our college and their confidence in our ability to bring our college's senior capstone program, recognized by the National Academy of Engineering as one of the best in the nation, to a virtual stage.

Over the years, EXPO has grown in significance, bolstering our educational process and our student's development. But EXPO is not possible without the support of our industry partners and friends of the College of Engineering. We depend on your generous support to produce this quality event.

I want to thank this year's corporate and academic presenting sponsors, Schweitzer Engineering Laboratories and Engineering Outreach at the University of Idaho, for their generosity and commitment to EXPO.

In addition, I want to thank all of the sponsors and partners that support EXPO activities and have enabled us to transfer our K-12 Extended Experience into a meaningful virtual event for 5-12th graders this year.

Thank you to Wagstaff, Idaho STEM Action Center, Avista, the Coeur d'Alene Tribe, DC Engineering, GeoTek, Inc., Idaho Power Company, Itron, Idaho National Laboratory, J-U-B Engineers, the Micron Foundation, ON Semiconductor, POWER Engineers and J.R. Simplot Company Foundation.

Though we are not experiencing EXPO from one location this year, I hope you join me in engaging remotely with students and encouraging others to participate and learn more about what it means to Engineer Like a Vandal.

Sincerely,

any

Larry Stauffer, Dean College of Engineering University of Idaho

ATTEND OUR VIRTUAL EXPO uidaho.edu/expo

- Explore capstone projects
- View electronic posters
- Learn more about our K-12
 Extended Experience

THANK YOU, EXPO SPONSORS!

The University of Idaho College of Engineering thanks all of our corporate and academic sponsors for their generous support of the annual Engineering Design EXPO. We value and appreciate your participation and continued commitment to engineering education.

Corporate Presenting Sponsor:

Academic Presenting Sponsor:

Event Sponsors

Become a Sponsor

Planning the University of Idaho's Engineering Design EXPO is a yearlong activity.

To explore future opportunities to support EXPO, contact:

College of Engineering Development Team 208-885-5888 expo@uidaho.edu

We look forward to talking with you about how you can help support this event and current and future students.

MEET OUR JUDGES

Judges are a critical part of the Engineering Design EXPO experience for University of Idaho College of Engineering students. Interaction between students and judges creates opportunities for students to gain new insight and learn about engineering career paths and the profession in general.

Thank You for Joining Us!

Phillip Arpke, Wagstaff, Inc. Peter Baran, Design Magnitude Idaho John Barrutia, DC Engineering Amanda Battles, Clearwater Paper Callie Bendickson, Itron Pat Blount, Moscow High School Pietro Boyd, Nightforce Optics Mary Ellen Brewick, University of Idaho Kara Cafferty, Idaho National Laboratory David Christiansen, UNC Department of **Biostatistics** (Retired) Ed Cimbalik, Micron Jessica Coakley, Itron, Inc. Mitch Colburn, Idaho Power Nicholas Cunningham, ATI Specialty Alloys and Components Stan Curtis, Urban Systems Kevin Damron, Avista Jason Dearien, SEL Raymond Dixon, University of Idaho Chris Dux, Avista Chris Dyer, POWER Engineers, Inc. Sharon Eroschenko, U.S. Bureau of Reclamation Byron Flynn, GE Karen Flynn, Idaho Power Shannon Fuchs, Self-employed Nick Gow, Forte Analytical Alan Griffitts, Naval Surface Warfare Center, Acoustic Research Detachment Gene Hamacher, U of I TechHelp Gary Hermann, Velsicol and CH2M Hill (Retired) David Hollenback, Berg Manufacturing Christopher Hyde, University of Idaho Mark Ingram, Micron David James, Avista

Victoria Kampfer, PSNS & IMF

Zoltan Kiss, USDA Forest Service Trevin Kretz, Encoder Products Company Jay Larsen, Idaho Technology Council Amy Lientz, Idaho National Laboratory Jim Linford, Eagle Creek Consulting Dan Mathewson, Electroimpact Ken Mays, Boeing Matthew Michael, Avista Kelly Moore, Meter Group Inc Nadine Morasci, Astronics AES John Murphy, Glanbia Nutritionals Shane Needham, Alturas Analytics, Inc. Jason Noble, Itron Alex Olson, Schweitzer Engineering Laboratories Caitlin Owsley, Janicki Industries Stacey Page, Ultieg Lyle Parks, Retired Nick Peck, Encoder Products Company, Inc. Dale Peterson, Peterson Metal Products

Luis A. Quinones, Palo Verde Generating Station Behnaz Rezaie, University of Idaho Jonathan Richards, Schweitzer Engineering Laboratories Bryan Riga, Idaho Forest Group Michael Schleich, Itron Eric Silk, Schweitzer Engineering Laboratories Alex Simon, Boeing Luis Skinner, Schweitzer Engineering Laboratories Jamison Slippy, Kodiak Aircraft Company Alistair Smith, University of Idaho Eric Stubbs, Micron Shawn Swanby, Ednetics Todd Swanstrom , Western Trailer Co. Steven Wagner, PlayStation Dan Walsh, Itron Jeff Williams, Vista Outdoor Min Xian, University of Idaho

THE COLLEGE OF ENGINEERING CAPSTONE PROGRAM

Recognized by the National Academy of Engineering as one of the top seven in the nation, the University of Idaho College of Engineering Senior Capstone Design Program infuses real-world experiences into undergraduate engineering education.

Engineering students work in interdisciplinary teams on creative projects sponsored by valued industry partners, private individuals or U of I departments. Courses in the program emphasize the design process and the creation of a thoughtfully engineered, tested and validated outcome or prototype.

Our annual Engineering Design EXPO, the longest-running student engineering innovation showcase in the Pacific Northwest, is the culmination of the capstone program. Seniors present their work at EXPO through professional exhibits and technical presentations.

Biological Engineering

POCKET MICROSCOPE SLIDE SCANNER

The scope of this project is to design a portable microscope slide image capture device that allows doctors to analyze tissue biopsies while maintaining the needs of low cost and durability. The image generated through this device will be later used by our client to make a machine learning grid that identifies specific patterns in biopsy sample to diagnose with 97% accuracy and redirect the image to related physicians.

Team Members

Jeff Crawford – Computer Science Isaac Riggs - Computer Science Michael Camerino – Biological Engineering Archana Dahal - Biological Engineering Nicolas Yensen - Biological Engineering

Client/Sponsor

Charles Keller, Children's Cancer Therapy Development Institute

Faculty Advisor

Dev Shrestha, U of I Department of Biological Engineering

ARTHROSCOPIC SURGICAL DEVICE FOR SMOOTHING OF ARTICULAR CARTILAGE AND BONE

Millions of people each year undergo arthroscopic surgery to diagnose joint problems such as severe arthritis. Current arthroscopic surgical devices help reduce inflammation but can still leave ripples on articular surface of bones. This results in more discomfort for patients than a perfectly smooth surface would. Our device will smooth articular cartilage and bone without producing a rippling effect. Our device will also be more ergonomic for surgeons, allowing them to operate for longer if needed.

Team Members

Ethan Overfelt - Biological Engineering Katie Farris - Biological Engineering LeeAnn Hold - Biological Engineering Suhaim Altaleb - Mechanical Engineering Qingyun Wang - Electrical Engineering Qian Xu - Electrical Engineering Lissa Nickell - Biological Engineering

Client/Sponsor

W. Douglas Hiller, Whitman Hospital and Medical Center

Faculty Advisor

Dev Shrestha, U of I Department of Biological Engineering

ALGAE HARVESTER AND DEHYDRATOR

The goal of our project is to grow and then dehydrate algae suspended in water to a 15% moisture content for use in biodiesel production. Algae growth and dehydration is an energy intensive process, so our goal is to make an efficient way to produce dry algae. This biofuel feedstock has a great potential to be used in industry, but first must be able to be produced in an energy efficient process.

Team Members

Josh Nisson - Biological Engineering Stefanie Marikis - Biological Engineering Nicole Maas - Biological Engineering Ryan Walters - Biological Engineering Chance Scripter - Biological Engineering

Client/Sponsor

U of I Department of Biological Engineering

Faculty Advisor

Dev Shrestha, U of I Department of Biological Engineering

Chemical and Materials Engineering

BP RENEWABLE DIESEL FEEDSTOCK ANALYSIS

Due to a rising demand in energy, pursuing renewables as an alternative fuel source is of great interest. This team evaluated the current diesel fuel system at BP's Cherry Point refinery and determined an opportunity for additional capacity. Through an intensive analysis of various bio-feedstocks, our team has determined the most viable option to accommodate BP's goal to be carbon net zero by 2050.

Team Members

Sahara Waymire - Chemical Engineering Louise Nicole Yu - Chemical Engineering Addyson Barnes - Chemical Engineering Clay Allred - Chemical Engineering

Client/Sponsor

Bennett Williamson, BP Rick Johnson, BP

Faculty Advisor

Matthew Bernards, U of I Department of Chemical and Materials Engineering

MICROGRAVITY SIMULATION DEVICE

With renewed efforts to place humans on the moon and beyond, there is a need to understand the effects of microgravity on the human body during prolonged space missions. Our team designed and built a clinostat, which is a device that simulates microgravity. This device is a cost-effective way to study the effects of microgravity on biological samples.

Team Members

Alathea Davies - Chemical Engineering Pierce Franklin - Chemical Engineering Daryl Giglio - Chemical Engineering Hassna Alghaith - Chemical Engineering

Client/Sponsor

Matthew Bernards, U of I Department of Chemical and Materials Engineering

Faculty Advisor

Matthew Bernards, U of I Department of Chemical and Materials Engineering

ANAEROBIC DIGESTION OF ALGAE FOR BIOGAS PRODUCTION

Currently, 80% of our world's energy comes from fossil fuels, which has led to harmful emissions and pollution. Microalgae are an increasingly attractive replacement for current fossil fuel use. Production of biogas from anaerobic digestion remains unfeasible for large scale production due to technical restraints. We will be designing a four-phase anaerobic digester based on a compound stomach and the steps of anaerobic digestion to aid in biogas research at the University of Idaho.

Team Members

Maggi Laan - Biological Engineering Amani Al Fulaiti - Computer Engineering Kyle Yates - Biological Engineering Michael Nguy - Electrical Engineering

Client/Sponsor

Dr. Chuck Peterson, Peterson Endowment U of I Department of Biological Engineering

Faculty Advisor

Dev Shrestha, U of I Department of Biological Engineering

METAL REMOVAL FROM MINE WATER USING ALGAE

The team is testing the use of algae from mine water to produce clean water and recover metal using a cost-effective method. For the proposed treatment system, algae are mixed with dissolved metals. The algae is then removed from the mine water so the metal can be taken from the algae.

Team Members

Lucas Arnold - Chemical Engineering Kymberly Bowlby - Chemical Engineering John Fetzer - Chemical Engineering Simon Thomsen - Chemical Engineering

Client/Sponsor

Matthew Bernards, U of I Department of Chemical and Materials Engineering

Faculty Advisor

Matthew Bernards, U of I Department of Chemical and Materials Engineering

REIMAGINING GOLD EXTRACTION

Cyanide, a highly toxic chemical, has widespread use in gold mining operations. Our team investigated replacing cyanide in gold extraction operations with another chemical known as ATF. The team designed an ATF manufacturing facility and gold extraction operation. Compatibility with downstream and recycling processes and an economic analysis compared to cyanide was also performed.

Team Members

Erik Nelson - Chemical Engineering Kyle Rigg - Chemical Engineering Sam Smith - Chemical Engineering Amber McLenna - Chemical Engineering

Client/Sponsor

James Moberly, Department of Chemical and Materials Engineering

Faculty Advisor

Matthew Bernards, U of I Department of Chemical and Materials Engineering

PROCESS IMPROVEMENT OF INDUSTRIAL HEAT TREATMENT OF AMMUNITION CASES

The focus of the project is to reduce wastewater and process steps in the manufacture of ammunition cases. The manufacturing process includes multiple stamping and pressing, washing and heating steps, all of which impact the facility's overall water usage. The project team analyzed each of these steps to reduce the number of overall process stages and to find ways to minimize water usage and wastewater generation.

Team Members

Aspen White - Chemical Engineering Adrien Malinowski - Chemical Engineering Connor McDonnell - Chemical Engineering Bryan Hayden - Chemical Engineering

Client/Sponsor

Austin Heinrich, Vista Outdoor

Faculty Advisor

Matthew Bernards, U of I Department of Chemical and Materials Engineering

DESIGN FOR ACCURATE MEASUREMENT OF INTESTINAL TRANSPORT

Rainbow trout are exceptional biological models due to their well characterized genome and nutritional requirements. They are used as a model to provide data regarding nutritional uptake. Our team designed and built an intestinal transport chamber for future intestinal nutrient uptake studies.

Team Members

Melissa Marsing - Chemical Engineering Jacquelin Martinez-Alvarez - Chemical Engineering Saud Almeshari - Chemical Engineering Faisal Ageeli - Chemical Engineering Courtney Molvig - Chemical Engineering

Client/Sponsor

Madison Powell, University of Idaho Department of Animal and Veterinary Science

Faculty Advisor

Matthew Bernards, U of I Department of Chemical and Materials Engineering

CARBON DIOXIDE CAPTURE WITH BOROHYDRIDES

The use of carbon dioxide to form useful precursors has seen marked interest as concerns about human and environmental sustainability peak. Sodium borohydride is a relatively cheap and shelf-stable reagent, which has shown a high affinity for the reduction of atmospheric carbon dioxide. This project is the design of a scalable and continuous method for atmospheric carbon sequestration via sodium borohydride.

Team Members

Mason Anderson - Chemical Engineering Ahmed Alasiri - Chemical Engineering Kaed Benski - Chemical Engineering Jesse Brown - Chemical Engineering

Client/Sponsor

U of I Department of Chemical and Materials Engineering

Faculty Advisor

Matthew Bernards, U of I Department of Chemical and Materials Engineering

Civil Engineering

CRESTVIEW CROSSING SWALE DESIGN

Our project is to design a water quality swale in a residential subdivision in Newberg, Oregon, to treat stormwater runoff from upstream impervious areas.

Team Members

Shion Watabe - Civil Engineering Alejandro Recabarren - Civil Engineering Geoffrey Michaelis - Civil Engineering

Client/Sponsor

Phillip Patague, 3J Consulting

Faculty Advisor

Fritz Fiedler, U of I Department of Civil and Environmental Engineering

POST FALLS WELL & WELL HOUSE NO. 10

Due to the growth in the Post Falls, Idaho, area, its water department is adding a production well to the city's main pressure zone. The goal of this project is to provide the city with adequate water supply to support existing and future water demands. This project will include the design and placement of the production well, design of the new well house structure and piping, concept plans for site modification, and provisions for a disinfection system.

Team Members

Topsana Elsfelder - Civil Engineering Austin Madsen - Civil Engineering Avery Postera - Civil Engineering Jessica Smith - Civil Engineering

Client/Sponsor

Jessica Waller, J-U-B Engineers

Faculty Advisor

Fritz Fiedler, U of I Department of Civil and Environmental Engineering

JULIAETTA, IDAHO BRIDGE REPLACEMENT

Our project is designing a bridge over the Middle Fork of Potlatch Creek in Juliaetta, Idaho. This bridge is being reconstructed because it does not meet current design standards.

Team Members

Brock Anderson - Civil Engineering Brandon Casanas - Civil Engineering Brian Skinner - Civil Engineering Nate Solly - Civil Engineering

Client/Sponsor Shanon Murgoitio, Idaho Transportation Department

Faculty Advisor

Fritz Fiedler, U of I Department of Civil and Environmental Engineering

CLEAR CREEK EMBANKMENT REPAIR

Our project will design a stream embankment repair that will mitigate erosion and scour caused by a significant flood event of Clear Creek, in Kooskia, Idaho. The damage included erosion of the outboard lane of Clearcreek Road and shearing off of a drainage ditch culvert.

Team Members

Amanda Carlson - Civil Engineering Tyler Harvie - Civil Engineering Nestor Madrigal - Civil Engineering Brandt Souvenir - Civil Engineering

Client/Sponsor

Riannon Zender, J-U-B Engineers

Faculty Advisor

Fritz Fiedler, U of I Department of Civil and Environmental Engineering

HOMESTAKE SYSTEM: ARKANSAS RIVER DIVERSION

A rehabilitation of an existing diversion structure, including intake structure design, fish passage design, spillway structure and temporary bridge for design. The importance of this project is to provide safe passage along the Arkansas River.

Team Members

Sean Conner - Civil Engineering Jack Krusemark - Civil Engineering Kylie Cutler - Civil Engineering Zachary Schaumburg - Civil Engineering

Client/Sponsor

Bryant Charlo, Deere and Ault Kathrine Feistner, Deere and Ault

Faculty Advisor

Fritz Fiedler, U of I Department of Civil and Environmental Engineering

RAISING CANES RESTAURANT DESIGN

A new Raising Canes Restaurant is to be designed and constructed in Morton Grove, Illinois. The Raising Cane's Restaurant has been providing quality chicken finger meals since 1996. The objective of the project is to provide a safe and cost-effective structural design for both the building and the foundation. The structure will primarily be constructed from timber.

Team Members

Amanda Kalab - Civil Engineering Holly Terrill - Civil Engineering Michael Clark - Civil Engineering

Client/Sponsor

Brian Sielaff, Tamarack Grove Engineering Brendon Collins, Tamarack Grove Engineering

Faculty Advisor

Fritz Fielder, U of I Department of Civil and Environmental Engineering

WATER RESOURCES RECOVERY FACILITY PUMP STATION IN BORING, OREGON

This project includes the design of a pump station and force main in Boring, Oregon, to convey flow for 60 residential and commercial connections approximately six miles to a separate facility with an elevation change of 120 feet. This project develops real-world experience that we will use in the application of real life.

Team Members

Andrea Boyd - Civil Engineering Jazmyn Ray - Civil Engineering Jules Clemens - Civil Engineering Justin Knight - Civil Engineering

Client/Sponsor

Lynne Chicoine, Water Environment Services Nathan Seaver, Water Environmental Services

Faculty Advisor

Fritz Fiedler, U of I Department of Civil and Environmental Engineering

BEAR CREEK CANYON BIKE PATH

Our project will help the Latah Trail Foundation extend the bike path between Troy and Kendrick, Idaho by protecting the toe of the slope from creek erosion and stabilizing the collapsing hillside.

Team Members

Erik Buitron - Civil Engineering Alexandria Campbell - Civil Engineering Sophia Morosky - Civil Engineering

Client/Sponsor

Jessica Dzara, Alta Science and Engineering, Inc. Phil Riersgard, Latah Trail Foundation

Faculty Advisor

Fritz Fiedler, U of I Department of Civil and Environmental Engineering

CITY OF MOSCOW LOW-STRESS SEPARATED BIKEWAY PROJECT

The Low-Stress Separated Bikeway Project will create a safe and efficient route of travel for cyclists commuting to the University of Idaho from the north side of town. The major goal of this project is to provide a safe bicycle experience to a wide range of travelers from the more experienced and confident rider to those riders that are much less confident about riding in mixed traffic.

Team Members

Rashed Alsuayqir - Civil Engineering Devin Carscallen - Civil Engineering Earl Van Idour - Civil Engineering Billy Walker - Civil Engineering

Client/Sponsor

Michael Kyte, U of I Department of Civil and Environmental Engineering Professor Emeritus

Faculty Advisor

Fritz Fiedler, U of I Department of Civil & Environmental Engineering

Computer Science

REALISTIC 3D MODELING OF DIGITAL NETWORKS AND THE INTERNET

Currently, there are no 3D computer-based models of modern computer networks for research and education. Our goal is to establish a basis for a realistic and accurate 3D model of these networks for research and instructional purposes through the game Minetest. Our solution to this problem will be easy to use and allow potential students whose learning method caters to that of a visual learner to flourish in the academic subject of basic computer networking.

Team Members

Benjamin Hallman - Computer Science Sean Anderson - Computer Science

Client/Sponsor

Daniel Conte de Leon, U of I Department of Computer Science

Faculty Advisor

Bruce Bolden, U of I Department of Computer Science

WEB-BASED MACHINE SHOP SCHEDULER FOR THE UNIVERSITY OF IDAHO

The machine shop in the U of I Department of Mechanical Engineering currently lacks an efficient way to schedule resources for students. Our project resolves this issue by providing a clean and functional website for all students and professors to reserve, manage and access machine usage.

Team Members

Gabriel Hasenoehrl - Computer Science Delaney Fitzgerald - Computer Science Blakely Frechette - Computer Science Irven Perez - Computer Science

Client/Sponsor

Michael Maughan, U of I Department of Mechanical Engineering

Faculty Advisor

Bruce Bolden, U of I Department of Computer Science

SPEECH THERAPY WEB APP USING SPEECH TO TEXT

Research shows that about 8% of children need speech therapy globally. There are many speech therapy apps intended for children in the market, but many of them are expensive, not intuitive for children, or too simplistic for therapists. This project aims to create an affordable application for speech therapy, with a dynamic user-interface system that adjusts its content for individual users in a secure and intuitive environment that is useful to children, therapists and researchers alike.

Team Members

Ian Wood - Computer Engineering Yiqing Ma - Computer Science Lucas Jackson - Computer Science

Client/Sponsor

Eric Booth, Micron Foundation

Faculty Advisor

Feng Li, U of I Department of Electrical & Computer Engineering

AUGMENTED REALITY IN THE COMPUTER SCIENCE DEPARTMENT

In order to better enrich student's experience on campus, we are immersing them in augmented reality throughout the Department of Computer Science. This will provide data about faculty, classes, schedules, and even computer sciecne history right at the students' fingertips, creating a better environment for students to quickly view information.

Team Members

Cameron Dearien - Computer Science Jubal Mitchell - Computer Science Adam Odell - Computer Science

Client/Sponsor

Terry Soule, U of I Department of Computer Science

Faculty Advisor

Bruce Bolden, U of I Department of Computer Science

SIMULATED TRANSACTIVE POWER DISTRIBUTION NETWORK

Some power grid users, called prosumers, intermittently generate their own power via renewables such as solar panels or wind turbines. Our team is working with local power utility Avista to simulate the impact of managing transactions between users with minimal utility interaction. We aim to create a robust simulation of a small-scale power system integrated with automated pricing software.

Team Members

Christine Page - Electrical Engineering Nikki Tran - Electrical Engineering James Todd - Computer Science Karstin Neil - Computer Science

Client/Sponsor

Yacine Chakhchoukh, U of I Department of Electrical & Computer Engineering

Faculty Advisor

Yacine Chakhchoukh, U of I Department of Electrical & Computer Engineering

FORTH COMPUTER

We are building an extremely lightweight, low power processor specifically for the FORTH coding language. Designing a computer around the FORTH language allows for a very fast and versatile processing core that can be used in a number of applications while still using very few resources.

Team Members

Jess Totorica - Electrical and Computer Engineering Thys Ballard - Computer Science Kyle Hartman - Electrical and Computer Engineering Kyle Hild - Computer Science Ronald Crump - Computer Science

Client/Sponsor

Peter Baran, Design Magnitude

Faculty Advisor

Bruce Bolden, U of I Department of Computer Science

HOLISTIC CYBER-PHYSICAL AND CYBERSECURITY SOLUTIONS FOR SMART BUILDINGS (MAHIVE IOT SENSORS)

Illegal hacking is an ever-increasing and evolving threat to our society and our economy. Industry and government need new ways to defend the physical and digital (cyber) worlds. The MAHIVE project's goal is to merge cyber-physical and cybersecurity sensing and analytics into a distributed and holistic detection and prevention platform. Our team will create a hub controller and example sensing devices, enable sensing devices to collect and aggregate physical and cyber events, and then securely send event data to MAHIVE analysis servers using authentication and encryption.

Team Members

Tristan Clawson - Computer Science Jared Gradin - Computer Engineering

Client/Sponsor

Daniel Conte de Leon, U of I Department of Computer Science

Faculty Advisor

Bruce Bolden, U of I Department of Computer Science

PARK-IT-CDA: GARAGE SENSOR SYSTEM OVER A MESH NETWORK

The goal of the project is to provide an intuitive means of visual indication for commuters who are looking for available parking within a specific garage in downtown Coeur d'Alene. The Garage Sensor System (GSS) will allow people to find open parking spaces before they enter the garage, expediting the parking process.

Team Members

Joel Berain - Computer Science Nikolai Tiong - Computer Science Tyrel Parker - Computer Science Zane Goodrick - Computer Science

Client/Sponsor

U of I Department of Computer Science

Faculty Advisor

Frederick Sheldon, U of I Department of Computer Science, U of I Coeur d'Alene

Electrical and Computer Engineering

SEMICONDUCTOR LASER CONTROL AND DATA ACQUISITION FOR QUALITY OPTICAL RESEARCH

Lasers are being used more frequently in scientific instruments. But for experiment results to be valid, the lasers have to be carefully controlled using expensive dedicated hardware. We are producing a cheap, modular and extendable data acquisition and control backbone for laser instruments. This will allow labs and researchers to produce high quality optical research less expensively.

Team Members

John Ashby - Electrical Engineering Jared Reichle - Electrical Engineering Alexis Wilson - Computer Engineering

Client/Sponsor

Chris Manning, Thorlabs

Faculty Advisor

Feng Li, U of I Department of Electrical & Computer Engineering

TESTBED FOR MEASUREMENT AND CONTROL OF GENERATOR POWER OSCILLATIONS

Generators work effectively via a carefully controlled current. If the system is overloaded, the generator may near its transient stability and incur damage. In some cases, generators have been known to endure current fluctuations without damage. Our goal is to explore those edge cases and design a testbed to examine and collect measurement data. The value of this project is to give engineers some basic data to avoid damage and danger of synchronous machines.

Team Members

Zuhao Zhou - Electrical Engineering Yutong Chen - Electrical Engineering Quan Yan - Electrical Engineering Changyao Xu - Electrical Engineering

Client/Sponsor Matchyaraju Alla, Schweitzer Engineering Laboratories

Faculty Advisor Feng Li, U of I Department of Electrical & Computer Engineering

OPTICAL WIRELESS COMMUNICATION FOR MASS DEPLOYMENT OF IOT-DEVICES

In couple of years, more than 50 billion devices will connect more than 7.6 billion people with exponentially increasing connectivity demand. It is expected that mass deployment of IoT devices will require data traffic that cannot be met by radio frequency-based wireless technologies alone. Optical wireless communication (OWC) will be needed to create high-density and high-capacity indoor IoT networks. Our project is to build several sensor nodes and one OWC hub to demonstrate this idea.

Team Members

Yuhang Dai - Electrical Engineering Wei Hu - Electrical Engineering Yanqin Huang - Electrical Engineering Zhicai Li - Electrical Engineering Xueren Wang - Electrical & Computer Engineering

Client/Sponsor

Suat Ay, U of I Department of Electrical & Computer Engineering VLSI Sensors Research Group (VSRG)

Faculty Advisor

Feng Li, U of I Department of Electrical & Computer Engineering

SUBORBITAL FLIGHT COMMUNICATION AND BATTERY FIRE CONTAINMENT UNIT FOR RE-ENTRY VEHICLES

Communicating with satellites returning from orbit is an expensive task due to the need for specialized equipment and systems. In order to reduce this cost, our team is developing electronics hardware and software libraries to leverage the existing Iridium satellite network to stream data from a returning cube satellite. We are also developing a firebox capable of housing batteries to power these devices that will keep flames contained in the event of catastrophic battery failure.

Team Members

Michael Atkinson - Computer Science Brandon Foss - Computer Science Collin Heist - Electrical Engineering Shelby Linafelter - Electrical Engineering Lennin Rodriguez - Computer Science MacKenzie Sexton – Mechanical Engineering Sesily Stewart – Materials Science and Engineering

Client/Sponsor

Avery Brock, NASA Ames Research Center Marcus Murbach, NASA Ames Research Center

Faculty Advisor

Feng Li, U of I Department of Electrical & Computer Engineering

EXPLORE CAPSTONE PROJECTS

LOW-COST ELECTROENCEPHALOGRAM

Our project was to create a low-cost electroencephalogram (EEG) for educational use, providing value to schools through a more economical EEG device that can be used to expose young students to the wonders of neuroscience and inspire neuroscientists of the future.

Team Members

Corbin Schueller - Computer Science Hanieh Nezakati - Electrical Engineering Drew Schultz - Mechanical Engineering Abhilash Reddy - Computer Science Jeff Courtright - Biological Engineering Michael Lejardi - Computer Engineering

Client/Sponsor

Gautam Kumar, U of I Department of Chemical & Materials Engineering

Faculty Advisor

Feng Li, U of I Department of Electrical & Computer Engineering

DESIGNING EXERCISES FOR THE INDUSTRIAL CONTROL SYSTEMS LABORATORY

The U of I Department of Electrical and Computer Engineering Industrial Control Systems Lab contains a wide variety of equipment, all of which requires experience to use. There is currently no method for students can learn how to operate equipment without instructor guidance. Our project provides lab exercises for students to follow and learn about the equipment and concepts required for operation.

Team Members

Dakota Pfaff - Electrical Engineering Brian Guiana - Electrical Engineering Yikai Lu - Electrical Engineering Jialong Dai - Electrical Engineering

Client/Sponsor

Brian Johnson, U of I Department of Electrical & Computer Engineering

Faculty Advisor

Feng Li, U of I Department of Electrical & Computer Engineering

BACKUP SOLAR GENERATION

U of I Facilities Services owns and maintains two wells that provide clean water to the City of Moscow and the University of Idaho. We are designing a 1-megawatt solar array to provide green backup power to these wells.

Team Members

Emerson Butler - Electrical Engineering Salim Al Tubi - Mechanical Engineering Joseph Amodemo - Electrical Engineering Boxiang Hou - Electrical Engineering Jiawen Yu - Electrical Engineering

Client/Sponsor

Marc Compton, U of I Facilities Services

Faculty Advisor

Herbert Hess, U of I Department of Electrical & Computer Engineering

VIRTUAL FENCE SYSTEM FOR CATTLE MANAGEMENT WITHOUT GPS

All virtual fencing for rangeland cattle farmers on the market are GPS-based. This project aims to design a virtual fencing system that is lightweight and more reliable without using GPS. The system will provide farmers an easy interface to locate, identify, rotate and keep their cattle in their property without using fencing.

Team Members

Xuyue Gu - Electrical Engineering Ziqing Zhu - Electrical Engineering Lauren Smith - Electrical Engineering Samantha Baran - Electrical Engineering Austin Grieve - Electrical Engineering

Client/Sponsor

Jason Karl, U of I College of Natural Resources Peter Baran, Design Magnitude

Faculty Advisor

Feng Li, U of I Department of Electrical & Computer Engineering

SECURE AND SAFE MICROGRID ON THE U OF I CAMPUS

U of I is seeking to establish a microgrid on campus in the event of a power outage. Our team will unveil the underlying issues associated with integrating a 1-megawatt solar array power generation source, as well as power for the well pumps on campus, which under emergency conditions could be used for fire suppression. The final product will analyze power flow, fault, contingency, seasonality, load shedding, and protection to ensure the efficiency and safety of the microgrid.

Team Members

Shaun Andrews - Electrical Engineering Christopher Cervino - Electrical Engineering Shawn Naughton - Electrical Engineering Ziyu Qian - Electrical Engineering Huiyu Zhao - Electrical Engineering

Client/Sponsor

Marc Compton, U of I Facilities Services

Faculty Advisor

Herbert Hess, U of I Department of Electrical & Computer Engineering

INSULATION MEASURING AND CUTTING MODULE

Our project reduces waste and human error in cutting costly insulation that goes onto the tubing of Boeing's airplanes. We have worked to transition the process of measuring and cutting insulation from a purely human job to an automated process.

Team Members

Rennie Scott - Mechanical Engineering Alyssa Keyes - Mechanical Engineering Ian Glasgow - Mechanical Engineering Kyle Deeter - Mechanical Engineering

Client/Sponsor

Angel Mora, Boeing

Faculty Advisor

Matthew Swenson, U of I Department of Mechanical Engineering

OPTIMIZED RIFLESCOPE MOUNT

In order to provide quality products to customers, industry is always moving toward innovative designs, lighter weight materials and ensuring reliable performance. Nightforce Optics has proposed that our team optimize their current rifle scope mount by making it lighter weight, redesigning high-stress regions and reducing manufacturing costs.

Team Members

Jacob Weber - Mechanical Engineering Hector Magana - Mechanical Engineering Travis Goehring - Mechanical Engineering James Zillinger – Materials Science and Engineering

Client/Sponsor

Nightforce Optics

Faculty Advisor

Michael Maughan, U of I Department of Mechanical Engineering

FATIGUE TESTING DEVICE TO EVALUATE SHEET METAL COMPONENTS

The methodology for testing the performance the long-term durability of sheet metal components is not readily available. The goal of our project is to design a low-cost system for measuring the useful life of sheet metal samples under various conditions. The team has designed and built a fully operational system enabling repeatable measurement of fatigue properties of sheet metal samples up to six inches in size.

Team Members

Chase Croft - Mechanical Engineering Anthony Kitchen - Mechanical Engineering Alex McNurlin - Mechanical Engineering Ryan Blair - Mechanical Engineering

Client/Sponsor

Jonathan Richards, Schweitzer Engineering Laboratories

Faculty Advisor

Matthew Swenson, U of I Department of Mechanical Engineering

AUTOMATED DATA LOGGING RAPID BUTTON CYCLER

Buttons are the main way we interact with machines. When they fail, it can be a nuisance to an outright disaster. That is why our team designed a data-logging button cycler for our client Advanced Input Systems. Our device tests the life of multiple buttons over millions of presses while giving real-time feedback on switch health and failures.

Team Members

Andrew Overby - Mechanical Engineering Cody Kasper - Mechanical Engineering Chris Crozier - Mechanical Engineering

Client/Sponsor

Ben Medeiros, Advanced Input Systems Brett Harned, Advanced Input Systems

Faculty Advisor

Steve Beyerlein, U of I Department of Mechanical Engineering

LEAN MANUFACTURING ANNEALING PROCESS FOR AMMUNITION MANUFACTURING

Vista Outdoor ammunition is supplied to law enforcement, who face life and death situations. A properly heat-treated shell is crucial to ensure proper ammunition performance. Instead of using a batch oven process, we are designing a product that uses induction technology to anneal shell cases faster and more efficiently.

Team Members

Matthew Meagher - Mechanical Engineering Josh Clark - Mechanical Engineering Zachary Woffinden - Mechanical Engineering Dwain Stucker - Mechanical Engineering

Client/Sponsor

Jeff Williams, Vista Outdoor

Faculty Advisor

Michael Maughan, U of I Department of Mechanical Engineering

HOME SECURITY DEVICE THAT SHOCKS INTRUDERS AT THE DOOR

Our team will provide an alternative safety device for preventing access to a room or house, using a Tesla Coil design. The design will electrically shock intruders with triple the voltage of a standard taser, with the intent to deter intruders but not injure.

Team Members

Julia Roach - Biological Engineering Eric Hedine - Electrical Engineering Tim Mattson - Electrical Engineering Danny Pierce - Mechanical Engineering Wyatt King - Mechanical Engineering

Client/Sponsor

Herbert Hess, U of I Department of Electrical & Computer Engineering

Faculty Advisor

Daniel Cordon, U of I Department of Mechanical Engineering

3D PRINTED SMART WATER FILTER

Filters in dangerous environments have a large cost of replacement. Our 3D printed smart water filter will be a handsfree, low maintenance filter that can be scaled to fit various pipes and used in various configurations to provide the required filtering. This project is a proof of concept for further research in developing a similar product for a more precise implementation.

Team Members

Michael Sanabia - Mechanical Engineering Phillip Flexer - Mechanical Engineering Mohammed Alqahtani - Materials Science and Engineering Abhishek Rathod - Mechanical Engineering

Client/Sponsor

Krishna Raja, U of I Department of Chemical and Materials Engineering Michael Maughan, U of I Department of Mechanical Engineering

Faculty Advisor

Michael Maughan, U of I Department of Mechanical Engineering

REAR-DRIVE SNOWMOBILE

Rear-drive is different than conventional snowmobile drive configuration. When driving the track from the front, the top side of the track is pulled in tension, and the bottom of the track is pushed into compression. The bottom portion of the track in contact with the snow, being in compression, causes fuel loss and other inefficiencies while decreasing overall handling. Our team explored a rear-drive concept that would be eco-friendly and rider-friendly.

Team Members

Thomas Entwit - Mechanical Engineering Brannon Hudson - Mechanical Engineering Aref Hakami - Mechanical Engineering

Client/Sponsor

Daniel Cordon, U of I Department of Mechanical Engineering

Faculty Advisor

Daniel Cordon, U of I Department of Mechanical Engineering

POWDERED ALLOY PACKING SYSTEM FOR ADDITIVE MANUFACTURING

Additive manufacturing is a method for making intricate parts in a fast and efficient manner. These parts are used in many high-impact industries from space exploration to robotics and even some medical fields. Materials used for additive manufacturing are often advanced and sensitive to environmental conditions requiring they be packaged carefully. Our team has been tasked with creating a system that will quickly and safely package these alloys for transport.

Team Members

Nicholas Ayers - Materials Science and Engineering Austin Beyer - Mechanical Engineering Kaitlin Coad - Mechanical Engineering Kate Seegmiller - Mechanical Engineering

Client/Sponsor

Nicholas Cunningham, ATI Specialty Alloys and Components Curtis Denos, ATI Specialty Alloys and Components

Faculty Advisor

Matthew Swenson, U of I Department of Mechanical Engineering

DEBALING AGRICULTURAL MATERIALS FOR BIO-BASED PRODUCTS

With the rise of agriculture-based feedstocks for biofuels and bio-based products, there is a need for debaling agricultural-based materials. The problem then becomes how can we effectively and efficiently turn compressed agricultural materials into a loose, consistent density flow while still maintaining maximum particle length? Our goal is to design and build a prototype that fulfills these requirements. The final design will require minimal maintenance and little input from an operator.

Team Members

Sean Leonard - Mechanical Engineering Loren Jenkins - Mechanical Engineering Yaser Alghreeb - Mechanical Engineering Steven Mortensen – Biological Engineering

Client/Sponsor Forest Concepts

Faculty Advisor Daniel Cordon, U of I Department of Mechanical Engineering

ENCODER INTERACTIVE DISPLAY

Encoders, high-accuracy mechanical sensors, are utilized in elevators, large cranes, vending machines, assembly lines and many other daily applications. Our team has been tasked with creating a visual, interactive display to help Encoder Products Company (EPC) showcase their products so more individuals can learn about the power of encoders and their impact on the world around them.

Team Members

Mark Jennings - Electrical Engineering Tanner Sloan - Mechanical Engineering Jacob Metter - Mechanical Engineering

Client/Sponsor

Trevin Kretz, Encoder Products Company (EPC) Nick Peck, Encoder Products Company (EPC)

Faculty Advisor

Steven Beyerlein, U of I Department of Mechanical Engineering

BATTERY LIQUID COOLING SYSTEM FOR ELECTRIC ENGINES

In an effort to meet the modern demand for reduced carbon pollution, the Hyster-Yale Group is converting one of its diesel forklifts into an electric one. To aid in these efforts, this group has designed a modular liquid cooling system to help batteries maintain a safe temperature. The liquid cooling system can be upscaled or downsized for any future conversions, and makes the future – hot swapping any combustion engine for an electric system – closer to reality.

Team Members

Tarrin Funderburg - Mechanical Engineering Donald Funk - Mechanical Engineering Jesus Barrera - Mechanical Engineering Ryan Gonzalez - Mechanical Engineering

Client/Sponsor

Samuel Weiss, Hyster-Yale Group

Faculty Advisor

Matthew Swenson, U of I Department of Mechanical Engineering

DUAL ROBOTIC ARM LOG HANDLING

The modern process of breaking down logs through a series of cutting operations for commercial sale is expensive and requires extensive upkeep and resources. Our RoBoLoG system aims to continuously improve this process by utilizing robotic arms to move a log through a saw to break it down. This system will reduce maintenance, infrastructure and computing power costs.

Team Members

Sam Malinowski - Mechanical Engineering An Le - Mechanical Engineering Deryk Ahner - Mechanical Engineering Jongin Hwang - Mechanical Engineering

Client/Sponsor

Jeremy Fromm, Idaho Forest Group Chad Kosmicki, Idaho Forest Group

Faculty Advisor

Steve Beyerlein, U of I Department of Mechanical Engineering

SPONSOR A CAPSTONE PROJECT

Have an engineering project for students to design, prototype and test? Sponsor a senior capstone project! In addition to participating in formal design reviews and a final project presentation, financial sponsors also:

- Interact with undergraduate students, graduate teaching assistants and engineering faculty with expertise in their field.
- Observe potential student hires that could help meet future recruitment needs.
- Introduce students to best practices in industry for design and manufacturing.
- Projects for the year are identified, scoped and budgeted by Aug. 1.

Learn more about sponsorship opportunities at uidaho.edu/engr-capstone

INVENT IDAHO FINALISTS

Young inventors grades 1st through 8th are awarded scholarships to attend the University of Idaho College of Engineering based on competition projects. Learn more at **inventidaho.com.**

Alexandria Johnson - "Opt-Out Glasses" Kenny Nejely - "The Cuttin' Baler" Magnus Rants - "Magnetic Legos" Catherine Roco - "Potato Plastic Bags" Kate Ruegner - "Mez-Sure"

U of I College of Engineering Dean Larry Stauffer poses for a photo with the 2020 Invent Idaho Finalists.

2020 EXPO ORGANIZING COMMITTEE

For questions related to sponsorship, K-12 outreach and other ways you can get involved, please email **expo@uidaho.edu** or contact an individual representative below.

Event Management

- John Crepeau, 2020 EXPO Organizing Chair Associate Dean crepeau@uidaho.edu
- Sandy Spear, Industrial Technology Program Coordinator
- sspear@uidaho.edu
- Aarika Dobbins, Management Assistant aarika@uidaho.edu
- Patty Riedl', Administrative Coordinator pattyr@uidaho.edu
- Sue Branting, Department Manager Department of Computer Science sueb@uidaho.edu
- Jeremiah Akin, Administrative Coordinator, Department of *Electrical and Computer Engineering* **jakin@uidaho.edu**

Sponsorship

- Bobbi Hughes, Executive Director of Advancement bhughes@uidaho.edu
- Chloe Rambo, Former Associate Director of Development

Senior Capstone Design Program

- Matt Swenson, Capstone Program Director Assistant Professor, Mechanical Engineering swenson@uidaho.edu
- Dan Cordon, Capstone Instructor Clinical Faculty Assistant Professor, Mechanical Engineering dcordon@uidaho.edu

EXPO Extended Experience

- Paulette House, Director of Student Services phouse@uidaho.edu
- Marie Wagner, Student Services & Programs Coordinator mariew@uidaho.edu

Marketing & Communications

- Alexiss Turner, Marketing & Communications Manager alexisst@uidaho.edu
- Jenine Cordon, Web Coordinator jenine@uidaho.edu

ENGINEER LIKE A VANDAL

NATIONALLY RANKED BEST VALUE

by Forbes, Money, U.S. News and World Report and The Princeton Review

HIGHEST SALARY EARNINGS

for early- and mid-career undergraduate degree recipients than any other public university in Idaho – PayScale 2019 College Salary Report

MORE SCHOLARSHIPS AWARDED

than any other public engineering program in the state – 2019-2020 Financial Aid Data

TOP 7 IN THE NATION

recognized for "infusing real-world experiences into engineering education" through our interdisciplinary Capstone Design Program

- National Academy of Engineering

87% GRADUATE WITH JOBS

or are enrolled in additional education or military service – 2016-2018 U of I Career Services Outcomes Survey

EXEMPLARY STATUS BRONZE LEVEL INSTITUTION FOR DIVERSITY & INCLUSION

– American Society for Engineering Education

University of Idaho college of Engineering BROWSE AND LEARN MORE AT UIDAHO.EDU/ENGR-DEGREES

1.8 MILLION JOBS BY 2022 -Center for Cyber Safety and Education

ONE CYBERSECURITY DEGREE

undergraduate program launches FALL 2021

UIDAHO.EDU/ENGR-DEGREES

Meets accreditation requirements of ABET and National Centers of Academic Excellence in Cyber Defense program standards. Plot a course to a STEMazing future with help from the Idaho STEM Action Center.

Through STEM competitions, internships, mentorships, and scholarships we can help you connect your school to industry and learn more about STEM career opportunities.

To find out how we can support your dreams, visit: stem.idaho.gov and like us on Facebook.

Where challenges exist, innovations will follow.

We salute all of today's engineering students and industry professionals.

myavista.com

Micron

Micron is a proud supporter of innovation and design.

micron.com

© 2020 Micron Technology, Inc. Micron, the Micron orbit logo, the M orbit logo, Intelligence Accelerated[™], and other Micron trademarks are the property of Micr Technology, Inc. All other trademarks are the property of their respective owners. AVISTA

Engineering Excellence since 1997

What we do:

GeoTek was founded on the principal of providing strong business partnerships with clients by demonstrating a committed passion for those who demand technical advice. Incorporated in 1997, GeoTek is a full-service consulting firm specializing in geotechnical engineering, construction materials testing, special inspections, and environmental consulting.

Join the GeoTek family!

With six offices spanning four different states, GeoTek is rapidly expanding and looking for qualified individuals to join our team!

Why GeoTek?

- Competitive pay and benefits
- Hands-on training and mentorship opportunities
- Long-term career development
- A warm and welcoming company culture

And so much more!

Apply today at www.geotekusa.com

y in

0

×

f

POWERING POSSIBILITIES

Idaho Power does more than keep the lights on with reliable fair-priced energy. We make challenging careers in engineering possible. We offer:

- A culture of safety, integrity and respect
- Work–life balance
- Competitive pay and benefits
- Lifelong learning

Learn more at idahopower.com/careers.

We're proud to support the U of I Engineering. Design EXPO.

idahopower.com/careers

Itron

Proud to support the **University** of Idaho

Itron is dedicated to solving the energy and water challenges of tomorrow. We are looking for the next generation of problem solvers to join us in creating a more **resourceful world.**

itron.com/resourceful careers.itron.com

J·U·B ENGINEERS, INC.

Your Dream Career... REALIZED

- Diverse Projects & Disciplines
- Innovative Environment
- Focus on Relationships Great People and Clients
- Career Path Defined to Help **YOU** Reach **YOUR** Career Goals
- Top-notch Benefits Package
- 100% Employee Owned
- Employee Coaching and Mentoring
- Career and Internship Opportunities Available

Apply TODAY! www.jub.com

OUR PURPOSE | HELPING EACH OTHER CREATE BETTER COMMUNITIES

Welcome Idaho students to the 2020 Design EXPO!

www.onsemi.com

ON Semiconductor

is proud to support the University of Idaho's College of Engineering.

ON Semiconductor has been honored as one of the World's Most Ethical Companies[®] for the fifth year in a row!

COME SOLVE WITH US

Meet the challenges of today's grid. Distributed Generation. Transmission. Protection & Controls. Automation. Renewable Energy.

Bring your problem-solving skills to POWER and help us create innovative solutions for clients across the U.S. and around the world.

Get the answers to your career at **WWW.POWERENG.COM**

POWER is proud to support the University of Idaho College of Engineering and the annual Engineering Design EXPO.

The Place for Engineers in the Inland Northwest!

Wagstaff, Inc. is a world leader in the aluminum casting equipment industry. With an ever growing research, design and manufacturing facility, we create and support world-class products installed in over 58 countries around the globe. We are always seeking out the best, brightest, and most innovative engineers in fields including Mechanical, Electrical, Hydraulic, Metallurgical and Software Engineering. Opportunities for world travel and career advancement abound!

Wagstaff is located in Spokane Valley, Washington and offers a great quality of life with fantastic recreational and cultural activities available within a short drive in any direction. We provide very competitive benefits and subscribe to a corporate philosophy that focuses on the well-being of our employees and their families, with things such as wellness programs, an on-site gym and monthly cookouts. There's a reason we were voted one of the best places to work in Washington. **Check us out!**

in

Wagstaff, Inc. • 3910 North Flora Rd. • Spokane Valley, WA 99216 • www.wagstaff.com

wag/taff

ENGINEERING OUTREACH Achieve Your Professional Education Goals ... ONLINE!

Master's Degree Programs

- Electrical Engineering
- Mechanical Engineering
- Civil Engineering
- Computer Science
- Computer Engineering
- Engineering Management
- Technology Management
- Geological Engineering
- Statistical Science
- Teaching Mathematics

Academic Certificates

- Analog Integrated Circuit Design
- Nuclear Technology Management (Future Offering)
- Power System Protection and Relaying
- Process and Performance Excellence
- Secure and Dependable Computing Systems
- Statistics

Non-Degree Coursework

- Professional Development
- STEM Coursework
- Transfer Credits

University of Idaho College of Engineering Engineering Physics Building, Room 312 875 Perimeter Drive MS 1014 Moscow, ID 83844-1014

> General Information: outreach@uidaho.edu

> Phone: (800) 824-2889 Local: (208) 885-6373

> > **Registration:**

eo-support@uidaho.edu Phone: (800) 824-2889 Local: (208) 885-4642

eo.uidaho.edu