Key Point

Following disturbance, semiarid, western plant communities naturally respond in a series of steps that develop over time. First to appear is a flush of colonizing or pioneer species. These are typically annuals or short-lived perennials that quickly establish on the site and pave the way for slower establishing species. Over time, the longer-lived species that managers typically desire, sometimes referred to as the “climax community” reestablish from surviving root systems, soil seed banks, or from seed dispersal from adjacent sites. This process is known as plant succession.

Our common restoration practices, however, tend to skip the colonizer step and attempt to establish climax species directly after disturbance.

When is a Weed not a Weed?

A weed is commonly defined as a plant interfering with our land management objectives for both conservation and agricultural production. However, there may be instances when a plant is unwanted in an area only because someone else has called it a weed. Unfortunately, some of our native pioneering species have been called weedy, because of their presence on disturbed roadsides and poorly managed range and pasture.

These pioneering species behave and grow similarly to many of the region’s exotic grass invaders, allowing them to be more competitive, yet this group of plants hasn’t been used to its full potential largely because of the perception that they are weedy. However, those “weedy” traits may be exactly what is needed. Manipulating succession may put us on the path to better ecosystem resilience and resistance to invasion.
Pioneer species fill an important niche in space and time, reducing post-disturbance erosion potential and offering food sources for pollinators and other wildlife until later species become fully established.

Succession in our western rangelands occurs slowly, decades to centuries if left alone. The current practice of seeding climax species seed mixes in post-disturbance landscapes may create an undesirable gap in time between the removal or control of invasive weeds and the establishment of the desired native plant community. This gap in time creates a vacuum in which invasive species may quickly colonize or re-establish themselves where they once were.

There have been many studies that have shown pioneer plant species to be very effective at competing against and even suppressing invasive species. Several native annual Intermountain wildflowers were found to be highly competitive against cheatgrass in controlled studies. For example, bristly fiddleneck reduced cheatgrass biomass, while fiddleneck and western tansymustard reduced cheatgrass seed production by nearly 80%. In a similar greenhouse study, Perry found the annual native forbs, annual ragweed and common sunflower reduced biomass of several weeds including cheatgrass, Canada thistle and whitetop. Herron likewise found a significant reduction in weed cover in plots seeded with colonizing native annuals compared to climax species. Additionally, Uselman showed native pioneers generally had earlier germination and better survival than late seral natives, implying that they fill a similar functional group to cheatgrass than climax species. They concluded that the use of early seral species may improve early seedling survival in Great Basin seeding efforts.

By manipulating the species present after disturbance, managers can ensure that all niches (space and time) are filled (Fig. 1). Doing so reduces the opportunities available for invasion by unwanted exotic species.

There is typically a high presence of invasive weeds like cheatgrass and tumble mustard, but one also sees a unique community of native species. Rubber rabbitbrush often makes up the overstory, especially further from the road where mowing is less frequent. Grasses often include sand dropseed and purple threeawn. There are often upright native biennial and annual forbs like curlycup gumweed, common sunflower and bristly fiddleneck, and there may be a component of flat, spreading forbs like bigbract verbena. As one moves further away from the roadside, the plant community transitions, sometimes very distinctly, to a perennial dominated system.

For any stretch of highway in the Intermountain Region (Fig. 2), it becomes obvious which native species are still managing to persist and thrive in disturbed conditions in the presence of invasive weeds. This space often sees heavy traffic, soil compaction, and repeated mowing as well as periodic fire from mowing sparks or cigarettes. There is typically a high presence of invasive weeds like cheatgrass and tumble mustard, but one also sees a unique community of native species. Rubber rabbitbrush often makes up the overstory, especially further from the road where mowing is less frequent. Grasses often include sand dropseed and purple threeawn. There are often upright native biennial and annual forbs like curlycup gumweed, common sunflower and bristly fiddleneck, and there may be a component of flat, spreading forbs like bigbract verbena. As one moves further away from the roadside, the plant community transitions, sometimes very distinctly, to a perennial dominated system.

Literature Cited

What Species Fill This Role?

Figure 2. Intermountain roadside can provide clues as to which species act as colonizers in disturbed areas.

On any stretch of highway in the Intermountain Region (Fig. 2), it becomes obvious which native species are still managing to persist and thrive in disturbed conditions in the presence of invasive weeds. This space often sees heavy traffic, soil compaction, and repeated mowing as well as periodic fire from mowing sparks or cigarettes. There is typically a high presence of invasive weeds like cheatgrass and tumble mustard, but one also sees a unique community of native species. Rubber rabbitbrush often makes up the overstory, especially further from the road where mowing is less frequent. Grasses often include sand dropseed and purple threeawn. There are often upright native biennial and annual forbs like curlycup gumweed, common sunflower and bristly fiddleneck, and there may be a component of flat, spreading forbs like bigbract verbena. As one moves further away from the roadside, the plant community transitions, sometimes very distinctly, to a perennial dominated system.

What is Succession Management?

Figure 1. Following disturbance, early seral species quickly establish providing initial resilience. The early species then decrease in abundance as mid-seral perennial species increase. The ultimate "climax" community in the Intermountain West is often a mixture of late-seral shrubs and long-lived perennial grasses. Each seral group provides cover and resilience for a period in time following disturbance. Seeding climax-only seed mixes leaves a resilience gap allowing for establishment and proliferation of weeds.
Intermountain Pioneer Species

Bottlebrush squirreltail *(Elymus elymoides)*
- **Growth Type:** Grass
- **Precipitation (in):** 8-18
- **Soils:** Fine-Coarse
- **Seeding Depth (in):** 0-1/4
- **Seeds/lb:** 6,930,000
- **Seed Rate (lb/ac):** 0.5
- **Pollinators:** Native bees, butterflies
- **Flowering Time:** Late summer
- **Life Span:** Perennial

Sand dropseed *(Sporobolus cryptandrus)*
- **Growth Type:** Grass
- **Precipitation (in):** 7-12
- **Soils:** Med-Coarse
- **Seeding Depth (in):** 0-1/8
- **Seeds/lb:** 1,300,000
- **Seed Rate (lb/ac):** 2
- **Pollinators:** Native bees, butterflies
- **Flowering Time:** Late summer
- **Life Span:** Perennial

Rubber rabbitbrush *(Ericameria nauseosa)*
- **Growth Type:** Shrub
- **Precipitation (in):** 7-18
- **Soils:** Med-Coarse
- **Seeding Depth (in):** 0-1/8
- **Seeds/lb:** 693,000
- **Seed Rate (lb/ac):** 0.5
- **Pollinators:** Native bees, butterflies
- **Flowering Time:** Late summer
- **Life Span:** Perennial

Bigbract verbena *(Verbena bracteata)*
- **Growth Type:** Mat forming forb
- **Precipitation (in):** 10-16
- **Soils:** Med-Coarse
- **Seeding Depth (in):** 0-1/8
- **Seeds/lb and Seed Rate (lb/ac):** unknown
- **Pollinators:** Bees, bumblebees, butterflies
- **Flowering Time:** Summer
- **Life Span:** Annual, short-lived perennial

Curlycup Gumweed *(Grindelia squarrosa)*
- **Growth Type:** Forb
- **Precipitation (in):** 6-16
- **Soils:** Fine-Coarse
- **Seeding Depth (in):** 0-1/4
- **Seeds/lb:** 410,000
- **Seed Rate (lb/ac):** 3
- **Pollinators:** Native bees, butterflies
- **Flowering Time:** Late summer
- **Life Span:** Biennial

Bristly fiddleneck *(Amsinckia tessellata)*
- **Growth Type:** Forb
- **Precipitation (in):** 8-30
- **Soils:** Med-Coarse
- **Seeding Depth (in):** 0-1/4
- **Seeds/lb:** 4,000,000
- **Seed Rate (lb/ac):** 0.5
- **Pollinators:** Native bees, butterflies
- **Flowering Time:** Summer-Fall
- **Life Span:** Annual

Common Sunflower *(Helianthus annuus)*
- **Growth Type:** Forb
- **Precipitation (in):** 8-16
- **Soils:** Fine-Coarse
- **Seeding Depth (in):** 1/4-1/2
- **Seeds/lb:** 81,000
- **Seed Rate (lb/ac):** 13
- **Pollinators:** Native bees, butterflies
- **Flowering Time:** Late summer
- **Life Span:** Annual

Hoary and Tansyleaf Tansyaster *(Machaeranthera caneschens and M. tanacetifolia)*
- **Growth Type:** Forb
- **Precipitation (in):** 6-14
- **Soils:** Med-Coarse
- **Seeding Depth (in):** 0-1/4
- **Seeds/lb:** 1,300,000
- **Seed Rate (lb/ac):** 2
- **Pollinators:** Native bees, butterflies
- **Flowering Time:** Late summer
- **Life Span:** Biennial

Globemallow *(Sphaeralcea ssp.)*
- **Growth Type:** Forb
- **Precipitation (in):** 7-15
- **Soils:** Fine-Coarse
- **Seeding Depth (in):** 0-1/4
- **Seeds/lb:** 500,000
- **Seed Rate (lb/ac):** 2
- **Pollinators:** Native bees, butterflies
- **Flowering Time:** Early summer
- **Life Span:** Perennial

Multilobed Groundsel *(Senecio multilobatus)*
- **Growth Type:** Forb
- **Precipitation (in):** 9-20
- **Soils:** Med-Coarse
- **Seeding Depth (in):** 0-1/4
- **Seeds/lb:** 900,000
- **Seed Rate (lb/ac):** 3
- **Pollinators:** Native bees, butterflies
- **Flowering Time:** Early summer
- **Life Span:** Biennial