Short-term growth and soil biological responses to post-thinning biomass removal and complementary soil amendments

Mark Coleman, Lauren Sherman & Deborah Page-Dumroese

University of Idaho
Collaborators

Steve Cook, University of Idaho
Marty Jurgensen, Michigan Tech
Dan Lindner, USDA Forest Service
Kymi Drager, University of Wisconsin

Shayne Watkins, Potlatch
Abbie Acuff, Potlatch
Rob Keefe, University of Idaho
Does removal of thinning residues for bioenergy decrease site quality?

- Thinning produces abundant small-diameter wood
- Improves resource availability and stand quality
- Biomass removal extracts organic matter (N, C)
- Know more about whole-tree vs. bole-only impacts
- Few report effects of thinning residue removal, especially in small-diameter stands
Can soil amendments mitigate any negative impacts of biomass removal?

• Maintaining soil quality involves retention of soil organic matter
• Forest stands respond to N fertilizer
• Biochar amendments replenish organic matter
Pitwood
MAT 6.6 °C, MAP 106 cm

UIEF
MAT 7.8 °C, MAP 74 cm
Experimental design

<table>
<thead>
<tr>
<th>Unthinned control</th>
<th>0X, No biomass retention</th>
</tr>
</thead>
<tbody>
<tr>
<td>untreated</td>
<td>fertilizer</td>
</tr>
<tr>
<td>biochar</td>
<td>fertilizer & biochar</td>
</tr>
<tr>
<td>1X, All biomass retained</td>
<td>2x biomass retained</td>
</tr>
<tr>
<td>untreated</td>
<td>fertilizer</td>
</tr>
<tr>
<td>biochar</td>
<td>fertilizer & biochar</td>
</tr>
</tbody>
</table>

- 4 biomass treatments: Con, 0x, 1x, 2x
- 4 amendment treatments: Con, Fert, BChar, FxBC
- Replicated 4x: 2 at Pitwood, 2 at UIEF
4 biomass treatments
4 amendment treatments
Replicated 4x
Slash distribution

UIEF
Initial and post thinning stand conditions

<table>
<thead>
<tr>
<th></th>
<th>TPH (trees ha⁻¹)</th>
<th>QMD (cm)</th>
<th>BA (m² ha⁻¹)</th>
<th>SDI (trees ha⁻¹)</th>
<th>RD (Curtis)</th>
<th>Species distribution (% BA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DF</td>
</tr>
<tr>
<td>Pitwood</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-thin</td>
<td>2625</td>
<td>9</td>
<td>17</td>
<td>481</td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td>Post-thin</td>
<td>467</td>
<td>17</td>
<td>10</td>
<td>237</td>
<td>17</td>
<td>59</td>
</tr>
<tr>
<td>UIEF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-thin</td>
<td>1563</td>
<td>12</td>
<td>16</td>
<td>440</td>
<td>33</td>
<td>10</td>
</tr>
<tr>
<td>Post-thin</td>
<td>373</td>
<td>14</td>
<td>6</td>
<td>136</td>
<td>11</td>
<td>13</td>
</tr>
</tbody>
</table>
Biomass and N added

<table>
<thead>
<tr>
<th></th>
<th>Pitwood</th>
<th></th>
<th>UIEF</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1x</td>
<td>2x</td>
<td>1x</td>
<td>2x</td>
</tr>
<tr>
<td>DWD (Mg ha(^{-1}))</td>
<td>76±9</td>
<td>158±12</td>
<td>27±2</td>
<td>72±4</td>
</tr>
<tr>
<td>Nitrogen content (kg ha(^{-1}))</td>
<td>44±4</td>
<td>258±5</td>
<td>44±1</td>
<td>118±2</td>
</tr>
</tbody>
</table>

- No other study reports more than 70 t ha\(^{-1}\)
Biochar application

2.5 Mg ha^{-1}

No impact on soil carbon concentration

![Graph showing no impact on soil carbon concentration between control and biochar treatments. The y-axis represents soil organic matter, LOI (%), and the x-axis represents locations (UIEF and Pitwood). The bars for both UIEF and Pitwood show similar values for both control and biochar treatments, indicating no significant difference.]
Fertilizer application

224 kg ha$^{-1}$
BA growth depended on location

- Growth at Pitwood was twice that at UIEF
- Response to initial basal area depended on location
Biomass treatment response
3-yr periodic annual increment

- Best growth at 1x slash retention
- Slowest growth when not thinned or when 2x biomass is retained
Growth decline at high slash is consistent between locations

• PAI basal area growth response to downed woody debris by location with fitted quadratic curve.

• What’s causing the growth decline with high slash?
Soil temperature and moisture not different among biomass treatments.
N limitation probably not causing Growth decline

- No statistical differences among treatments or locations
- 2x tends to have improved nutrition
Amendment treatment response
3-yr periodic annual increment

- Growth responded to fertilizer, not biochar
- Potential to mitigate nutrient loss through fertilization
- Biochar increases soil carbon with no detrimental effects
Leaf N responded to fertilizer

- Stronger response at UIEF than Pitwood
- Can say fertilized trees took up more N than non-fertilized
Soil biology measurements

Field measurements of soil respiration

Lab assays of exoenzyme activity
Soil respiration

- Season largely controls soil respiration
- Seasonal patterns differed between locations
- No biomass or amendment treatment effects
Soil exoenzyme activities

• Nutrient release depends on carbon release
• Seasonal patterns differed between locations
• No biomass or amendment treatment effects
Conclusion

• Removal of thinning residues for bioenergy is not harmful for tree growth
• Retaining excessive slash does lower tree growth
• Fertilizer, not biochar, can mitigate detrimental effects
• Observed responses are short term.
• Assessing thinning impacts yields results quicker than harvest-impact studies
Conclusion cont.

• Expected 10- or 20-year responses
 • Thinned trees will be superior size and quality
 • 2x biomass will no longer be detrimental
 • Fertilizer will no longer affect growth or foliar nutrients, but total volume (yield) will be greater
 • Biochar may show positive response, at least it won’t be detrimental
Idaho forest growth response to post-thinning energy biomass removal and complementary soil amendments

LAUREN A. SHERMAN1, DEBORAH S. PAGE-DUMROESE2 and MARK D. COLEMAN1

1Department of Forest, Rangeland and Fire Sciences, University of Idaho, 875 Perimeter Drive MS 1133, Moscow, ID, 83844, USA.
2United States Department of Agriculture Forest Service, Rocky Mountain Research Station, Moscow, ID, 83843, USA
Soil Biology analysis of variance results

<table>
<thead>
<tr>
<th></th>
<th>ns</th>
<th>ns</th>
<th>ns</th>
<th>ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass (B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amendment (A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location (L)</td>
<td></td>
<td></td>
<td>**</td>
<td>***</td>
</tr>
<tr>
<td>Season (S)</td>
<td>***</td>
<td>ns</td>
<td>ns</td>
<td>***</td>
</tr>
<tr>
<td>B * L</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>A * L</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>A * S</td>
<td></td>
<td></td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>L * S</td>
<td></td>
<td>**</td>
<td></td>
<td>***</td>
</tr>
<tr>
<td>ln (BG)</td>
<td></td>
<td></td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>ln (MC)</td>
<td></td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>ln (LOI)</td>
<td></td>
<td>**</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>ns</td>
<td></td>
<td>***</td>
</tr>
</tbody>
</table>

*P<0.10, **P<0.05, ***P<0.01, ns=not significant