FWS Grad courses (8/24/2020)

* indicates online/video option, @ indicates online only, ^ indicates accelerated workshop taught in 2-4 days, # indicates ½ semester course accelerated course (usually last ½ fall or first ½ spring)

Note: Many courses are Fish/WLF integrated so do not assume Fish courses only apply to fish students and WLF courses only apply to WLF students.

All Semesters: WLF/Fish 501 seminar

Fall (Even)
Fish 516 Animal Movement, Dispersal and Migration* (3 cr) – not fall 2020 due to sabbatical
Fish 521 Community Ecology @ (3 cr)
Fish 525 Aquaculture in Relation to Wild Fish Populations* (2 cr)
Fish 526 Climate Effects & Cons Manage@ (2 cr)
WLF503 Matrix Population Modeling# (1 cr)
WLF 551 Applied Mixed Effects Modeling^ (2 cr)

Fall (Odd)
Fish 515 Large River Fisheries* (2 cr)
WLF540 Conservation Genetics* (1-3 cr)

Spring (Even)
Fish 510 Advanced Fish and Wildlife Management* (3 cr)
Fish 511 Advanced Fish Physiology* (2 cr)
WLF506 External Speaker Seminar (1 cr)*
WLF 550 Quantitative Analysis of Fish and Wildlife Populations*# (2 cr)
WLF 561 Landscape Genetics* (2 cr)
WLF 562 Landscape Genetics Lab* (1-2 cr)
WLF575 Behavioral Ecology*# (2 cr)

Spring (Odd)
FISH 550 Ecology & Conservation of Freshwater Invertebrates*# (2 cr)
FISH 551 Freshwater Invertebrate Field Methods (2 cr) – spring break
WLF506 External Speaker Seminar (1 cr)*
WLF5xx Communicating Conservation Science (2 cr) – new course will be 504 in spring 2021
WLF 545 Wildlife Habitat Ecology*# (2-3 cr)
WLF 550 Quantitative Analysis of Fish and Wildlife Populations*# (2 cr) – currently uncertain for 2021

Summer
Fish540 Wetland Restoration* (3 cr)
WLF540 Conservation Genetics* (1-3 cr) – most but not all summers

Courses that we hope to add back into the rotation but not yet sure when:
Fish 530 Stream Ecology
Fish503 Advanced Limnology (1-3)
Course Descriptions

Fish 510 Advanced Fishery Management (3 cr)
Contemporary management of fish and wildlife populations in North America. Guiding principles, relevant laws and policies, social and political aspects, select issues, the policy interface of biological systems with governmental and social institutions. Cooperative: open to WSU degree-seeking students. (Spring, Alt/yr)

Fish 511 Fish Physiology (2 cr)
Physiology of fishes, their implications, and applications. Principles and methods used to study organ systems and physiological mechanisms of homeostatic regulation in fishes. Cooperative: Open to WSU degree-seeking students. Joint listed with Fish411 (Spring, Alt/yr)

Prereq: Permission

Fish 515 Large River Fisheries (2 cr)
Management issues and problems in large river fisheries in North America and globally; importance of flood plains; ecological bases for management actions in large rivers; river fisheries in the context of multiple use of large rivers. Cooperative: open to WSU degree-seeking students. (Fall, Alt/yr)

Fish 516 Animal Movement, Dispersal and Migration (3 cr)
Key theories and approaches for studying animal movement and dispersal in aquatic, marine and terrestrial environments, with critical analysis of empirical examples. Students are expected to develop an independent research project.

Fish 521 Community Ecology (3 cr)
Introduction to literature and contemporary research into processes structuring ecological communities. Topics will encompass community ecology in a range of ecological systems and across trophic levels, including community impacts on ecosystem processes. (Fall/Alt/yr)

Fish 525 Aquaculture in Relation to Wild Fish Populations (2 cr)
Historical and current relationships between wildness and domestication as it relates to fisheries management and aquaculture in mitigation and industry. Interactions between wild and hatchery-reared fishes, including salmon. Cooperative: open to WSU degree-seeking students. (Fall, alt/yr)

FISH 526 Climate Effects & Cons Manage (2 cr)
Climate change and the conservation and management of populations and ecosystems. This graduate seminar will examine the current understanding of climate controls on ecosystems, likely scenarios for climate change in coming years, effects on fish and wildlife communities and populations and policy discussions as they relate to conservation and management using analysis of primary literature, and oral and written assignments. Cooperative: open to WSU degree-seeking students. (Fall Alt/yr) **Prereq:** Previous coursework in ecology or Permission.
Fish 530 Stream Ecology (3 cr)
Structure and function of running water ecosystems; principles of population, community, and ecosystem ecology in streams and rivers. Three 1-day field trips reqd. (Fall, Alt/years)

Fish 540 Wetland Restoration (3 cr)
This web-based course contains modules covering wetland science, restoration ecology, freshwater restoration, coastal restoration, and monitoring/maintenance. The emphasis is on the science of wetland ecosystems and the applied ecology/practice of restoration, with additional consideration of cultural and socio-political contexts. Extensive readings, an assignment, and a study guide are required for each module. Students apply their learning in and contribute relevant professional experience to weekly online discussions. Students are also responsible for obtaining documentation of at least one wetland restoration site in their region and conducting a site visit in order to evaluate the success of the restoration project. A final exam (re-design of a failed restoration project) is administered online, with partial credit earned through discussion with an interdisciplinary team of classmates and the remaining credit earned through individual analysis and synthesis. (Fall only)
Prereq: Biol 114 and Biol 115/115L; and For 221 or Biol 314 or Permission
Credits 3 cr
Prerequisites
BIOL 114 and BIOL 115/115L; and FOR 221 or BIOL 314 or Permission

FISH 550 Ecology & Conservation of Freshwater Invertebrates
2 credits
Joint-listed with FISH 450.
The course will survey the evolutionary origins and identification of major groups of invertebrates occurring in freshwaters, examine the key behavioral, morphological, and physiological traits possessed by freshwater invertebrates, identify the key ecological roles and influence of invertebrates in freshwater ecosystems and ecosystem services, and demonstrate how freshwater invertebrates can be used to monitor water quality and ecosystem condition. Cooperative: open to WSU degree-seeking students. (Spring Alt/ys)

FISH 551 Freshwater Invertebrate Field Methods
2 credits
Joint-listed with FISH 451.
The course will survey the systematics and identification of freshwater invertebrates and demonstrate how freshwater invertebrates can be used to monitor water quality and ecosystem condition. Students will collect and identify freshwater invertebrates from habitats surrounding Moscow, Idaho during an intensive field course. The course will occur on one weekend in February and five days of Spring Break. the course has two required field trips. Cooperative: open to WSU degree-seeking students. (Spring Alt/ys)
Prereq: BIOL 114 or ENT 322 or Permission
Coreq: FISH 450.
WLF 501 (s) Seminar (cr arr)
Presentation of individual studies on assigned topics – usually thesis proposal. Graded P (pass)/F (fail).
Prereq: Permission
Credits 1-16 cr

WLF 503 (s) Workshop (cr arr)
Selected topics in the conservation and management of natural resources.

WLF 506 External Speakers (1 cr)
Students will attend seminars of fish and wildlife researchers and managers invited to present in our departmental seminar series. Students will read papers of external speakers, lead discussions of papers and assist with hosting speakers. Graded Pass/Fail.
Credits 1 cr

WLF 540 Conservation Genetics (1-3 cr, max 3)
Basic principles of population genetics and phylogenetics and their applications to the field of conservation and natural resource management. Taught in three 1-credit modules, and students can register for 1-3 credits. Module 1 includes introduction to conservation genetics and phylogenetics, module 2 includes population genetic theory and methods, and module 3 includes applications in conservation genetics and genomics. Cooperative: open to WSU degree-seeking students. (Spring, Alt/yr)
Credits 1-3 cr - Max 3 cr

WLF 541 Advanced Population Biology (3 cr)
Readings and discussion of current theories of population control, their biological basis, and applications to animal populations. (Fall, Alt/yr)
Prereq: WLF 448 or Permission
Credits 3 cr
Prerequisites
WLF 448 or Permission

WLF 543 Fish and Wildlife Population Analysis (4 cr)
Quantitative analysis of fish and wildlife habitat, diet, harvest, population density, survival, and natality data; development and application of population models in fish and wildlife management. Three lec and 3 hrs of lab a wk. (Fall, Alt/yr)
Prereq: WLF 448, Stat 431 or Permission
Credits 4
Prerequisites
WLF 448, STAT 431 or Permission

WLF 545 Wildlife Habitat Ecology (2-3 cr)
Reading and discussion on habitat concepts, analyses, and applications. Students enrolled in the 3rd credit will complete additional readings and quantitative problem sets. Cooperative: open to WSU degree-seeking students.
Prereq: WLF 492 or Permission, animal and plant ecology
Credits 2-3 cr
Prerequisites
WLF 492 or Permission, animal and plant ecology
WLF 549 Conservation Genetics Lab (1 cr)
Same as For 542. This optional lab course is a complement to WLF 540 Conservation genetics and should be taken concurrently. Students will learn to analyze and interpret phylogenetic and population datasets using a variety of software packages. Students will also design and implement a lab for their classmates. (Fall, alt/even yrs)
Coreq: WLF 540
Credits 1 cr
Corequisites
WLF 540

WLF 550 Quantitative Analysis of Fish and Wildlife Populations
2 credits
Contemporary mathematical and statistical models central to fish and wildlife research and management, including capture-recapture, occupancy, resource selection, movement, population, growth, hierarchical models.
Prereq: MATH 160 or equivalent, STAT 431.

WLF 551 Applied Mixed Effects Modeling
2 credits
Analysis of complex ecological data with mixed effects models and their various extensions. After a brief review of generalized linear modeling, students will gain practical experience in the use of linear and generalized linear modeling, students will gain practical experience in the use of linear and generalized linear mixed models to analyze hierarchical datasets (continuous, count, binary, etc.) that include inherent serial or spatial autocorrelation. Cooperative: open to WSU degree-seeking students. (Fall, Alt/yr)
Prereq: STAT 431.

WLF 561 Landscape Genetics (2 cr)
Landscape genetics is an interdisciplinary field of study that evaluates how landscape and environmental features influence gene flow, population structure and local adaptation by integrating landscape ecology, population genetics and spatial statistics. This course covers applications of landscape genetics that can improve our understanding of ecology, evolution, and management of wild populations. Recommended Preparation: Population genetics or conservation genetics, and multivariate or spatial statistics. Cooperative: open to WSU degree-seeking students. (Spring, alt/even yrs)
Credits
2 cr

WLF 562 Landscape Genetics Lab (1-2 cr)
This optional lab course is a complement to WLF 561 Landscape genetics and should be taken concurrently. Students will learn to analyze and interpret landscape genetic datasets using a variety of methods. If taken for two credits, students will do a project analyzing landscape genetic data. Recommended Preparation: Population genetics or conservation genetics, and multivariate or spatial statistics. Cooperative: open to WSU degree-seeking students. (Spring, alt/even yrs)
Coreq: WLF 561
Credits 1-2 cr