Preliminary Archaeological Investigations
at Idaho's Kooskia Interment Camp
(May 1943 - May 1945)

Phase I ~ October 2009 to May 2011

Research Design Proposed By:

Dr. Stacey Lynn Camp
Principal Investigator
Assistant Professor of Anthropology, University of Idaho
(208) 885-6736
scamp@uidaho.edu

Original Draft ~ February 22, 2010
Revised Draft ~ June 19, 2010
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Site History</td>
<td>4</td>
</tr>
<tr>
<td>Research Themes and Questions</td>
<td>5</td>
</tr>
<tr>
<td>Project Methodologies</td>
<td>6-10</td>
</tr>
<tr>
<td>Project Personnel</td>
<td>11</td>
</tr>
<tr>
<td>Project Outcomes</td>
<td>12</td>
</tr>
<tr>
<td>Project Timeline</td>
<td>13-14</td>
</tr>
<tr>
<td>Works Cited</td>
<td>15-16</td>
</tr>
</tbody>
</table>

FIGURES

1. Proposed project area, Lowell (ID) U.S.G.S. 7.5' Quadrant, 1984 17
2. Internee Housing Area Sketch Map 18
3. Administration Housing Area Sketch Map 19
4. The Canyon Creek Prison Site, Site 10-IH-870 Sketch Map, April 1979 20
5. Kooskia Internment Camp 21
6. Kooskia Internment Camp 22
7. Japanese internee tending to his garden at Kooskia 23
8. Location of Internee Barracks 24
9. Foundation of Water Tank above Internee Barracks 25
PROJECT INTRODUCTION

On February 19, 1942, over 120,000 individuals of Japanese heritage were forced to leave the comfort and solace of their homes and communities and relocate to internment camps spread throughout some of the harshest and destitute locales in the Western United States (Helphand 2006:156). Seen as enemies of the state during World War II, Japanese Americans were given an ultimatum: abandon their homes within six to twenty-one days or be imprisoned. The state of Idaho played a crucial role in Japanese internment as it was home to two sites of confinement: Kooskia (Wegars 2001) and Minidoka (Burton et al. 2003). Two hundred and fifty-six male Japanese internees occupied Kooskia Internment Camp (Figure 1) between May 1943 and 1945, while Minidoka Relocation Center housed over 7000 individuals of Japanese heritage from August 1942 to 1945.

Minidoka has been the subject of substantial historical and archaeological research, while Kooskia remains a neglected historic site, perhaps partially due to its remote location. As well-known Japanese and Chinese historian and archaeological scholar Priscilla Wegars poignantly describes, "except for a concrete slab where the water tower once stood, and level areas that held the former buildings, almost nothing remains to remind us of the Kooskia Internment Camp's place in Japanese American, and American, history" (2001:167). This proposal aims to put Kooskia back on the map of American and Idahoan history through both archaeological research and dissemination of the research's findings through public outreach efforts and academic publications.

The proposed research involves preliminary archaeological testing, minimal excavation, GIS work, and public outreach to be performed at the former location of Kooskia Internment Camp, a World War II U.S. Immigration and Naturalization Service (INS) detention facility and work camp for individuals of Japanese heritage. Built on the site of a former federal prison work camp (Canyon Creek Prison Camp) (Sappington and Carley 1989; Burton 1999; Wegars 2001), Kooskia Internment Camp was occupied by a diverse group of 256 Japanese internees between May 1943 and 1945. Internees were charged with the daunting and dangerous task of completing the construction of Highway U.S. 12 (located between Idaho and Montana). Besides being a relatively neglected and remote site of Japanese confinement, Kooskia Internment Camp represents the U.S. government's first attempt to use internees as a work force. In addition, many of the Japanese occupants of the camp were forcibly removed by the United States government from Latin American countries such as Peru, Mexico, and Panama. These understudied aspects of American history demand and require more exposure and research.
SITE HISTORY
Kooskia Internment Camp has a complex, multilayered occupational history that spans both prehistoric and historic periods. Though the site is a known camping and hunting ground of the Nez Perce (Sappington and Carley 1989), the work proposed in this research design focuses specifically on the historical period in which internees occupied the site.

Historic Period
Besides the Nez Perce's long-term occupation, the site witnessed new visitors in the 1800s and early 1900s. In September 1893, 27 year-old William P. Carlin of Vancouver, 28 year-old engineer A. L. A. Himmelwright, and 30 year-old John Harvey Pierce of While Plains, New York, met in Spokane and set out for a hunting trip along in the vicinity of Kooskia Internment Camp. They were guided by Martin C. Spencer and brought 52 year-old George Colegate of Post Falls, Idaho, along as a cook. During their trek, they camped at Apgar Creek and fished at the mouth of Canyon Creek (Space 1980:40). A Civilian Conservation Corps (CCC) camp, which also went by the names of Camp F-38 and Camp 38, was built along the Lochsa River in June 1933 (Sappington and Carley 1989:16). It housed 200 individuals who constructed roads, established telephone lines, and fought fires (Sappington and Carley 1989:16). The camp closed in October 1933.

Two years later (August 1935), the CCC camp was once again occupied by "federal convicts from Ft. Leavenworth, Kansas, along with officials and guards" (Elsensohn 1951:55 in Sappington and Carley 1989:16). Now known as Canyon Creek Prison Camp, its residents were charged with the task of constructing the Lewis and Clark Highway (Parsell 1986:40). The camp was closed in 1943 due to "war-related expenses" amassed by the Justice Bureau of Prisons (Wegars 2001:146). Many of the buildings and landscapes that the Japanese internees would later occupy were built in conjunction with Canyon Creek Prison Camp. These structures included "workshops, dormitories, a garage, a power plant, a storehouse, a barbershop, and a laundry" (Sappington and Carley 1989:16).

A portion of the proposed research involves reexamining resources cited by historians and archaeologists who have written about the region or site. This will involve a thorough scan of local newspapers and publications for information on Kooskia. These resources include the Kooskia Mountaineer, Lewiston Morning Tribune, Lochsa Pioneer (literary magazine written by prisoners at Canyon Creek Camp), Orofino Idaho County Free Press, and the Clearwater Tribune. Dr. Camp will also examine archival information held at the National Archives in Washington, DC. One file, in particular, has been identified by Dr. Priscilla Wegars (2001) as containing a significant amount of information on Kooskia; the name of this file is "INS Records Related to the Detention and Internment of Enemy Aliens during World War II, Records of the Immigration and Naturalization Service, Record Group 85."
RESEARCH THEMES AND QUESTIONS
For comparative purposes, studies at Kooskia Internment Camp will share the research themes investigated by other scholars of Japanese confinement. Previous archaeological and historical studies of Japanese confinement sites have focused on two principal themes: internee gardening practices and cultural maintenance in light of camp officials' Americanization attempts. According to these accounts, Japanese internees found ways to transform their inhospitable living conditions into places that embodied some semblance of home and Japanese culture. One of the visible and archaeologically identifiable ways internees responded to their oppressive camp environment was through the time-honored Japanese tradition of gardening (c.f. Dusselier 2008:51; Helphand 2006; Tamura 2004). Though the practice of gardening has its roots in 5th century Japanese culture (Thacker 1979), landscape design was imbued with an entirely new and politicized set of meanings in early 20th century internment camps. Plant selection, garden design, and the location of camp gardens not only communicated internees' resistance to internment, but also served as material expressions of their caretakers' and owners' personal beliefs. As Tamura elaborates, "the camp gardens exhibited tensions between camp authorities and inmates; between Japanese immigrants and their Japanese American descendents; between male and female gender roles; and between resisters of the incarceration, those who were compliant, and those who remained staunchly political" (2004:1).

Given their historical significance, internee-designed, grown, and tended gardens have been the focus of recent archaeological research on Japanese internment camps (Clark et al. 2008; Helphand 2006; Tamir et al. 1993). The archaeological investigation of historic gardens is a relatively new, albeit growing science. It is only in recent years that successful methodologies to extract and identify plant and floral remains have been developed and systematically tested (Currie 2005). The most intensive testing of historic garden excavation methodologies has been conducted at Granada Relocation Center (also known as "Amache") under the supervision of the University of Denver's Dr. Bonnie Clark. Dr. Clark, in consultation with historic garden specialist Dr. Steven Archer, has used ground-penetrating radar (GPR) at Amache to detect both structural and plant remains associated with internee gardens. After garden features have been identified using GPR, Dr. Clark has collected samples for soil chemistry and archaeobotanical analysis from them. Soil chemistry analysis can identify the presence of non-native soil, while archaeobotanical analysis can provide evidence of non-native trees and plants and identify the specific species of botanical remains.

Clark's implementation of these sophisticated methodologies has allowed her team to identify different styles of gardens as well as different types of gardens planted by different types of internees. Based on their location, size, and botanical contents, she has noted the presence of three forms of gardens - victory, ornamental, and entry - at Amache (Clark 2010:6). Clark's intensive study of Amache gardens has also revealed a difference in plant selection, orientation, and design between women and children's gardens. The all-male Kooskia Internment Camp presents a unique opportunity to compare both gendered and age-specific gardening practices across internment camps. As a result, research at Kooskia Internment Camp will be primarily focused on locating, interpreting, and recovering data from internee gardens.
PROJECT METHODOLOGIES
This preliminary phase of archaeological fieldwork will involve the following steps: site mapping using GIS technology, ground penetrating radar and electromagnetic resistivity studies, surface survey and collection, and minimal archaeological testing to determine the extent and distribution of archaeological residues.

Ground Penetrating Radar & 3-D Electromagnetic Resistivity Survey
Non-invasive fieldwork will begin in June with the application of ground penetrating radar and electromagnetic resistivity technologies to the landscape of Kooskia Internment Camp. Ground penetrating radar (GPR) and electromagnetic resistivity surveys (ERS) can identify sub-surface features and soil bioturbation, which may indicate the presence of a garden or privy. Ground penetrating radar "sends short radio pulses into the earth that can reflect from stratification boundaries and objects in the soil" (Bevan 1994:74). It has also been used by archaeologists to detect large tree or plant roots, decayed roots of historic trees, and "filled-in pits of uprooted trees" (Bevan 1994:75) that are located up to one meter below the surface. This follows the methodologies outlined by other researchers studying the archaeology of internment camp gardens and garden archaeology in general (Currie 2005). The goal of these activities is to locate internee gardens not depicted in camp photographs. Soil Physicist Dr. Robert Heinse of the University of Idaho will help assist with and direct this portion of the research. During this phase, approximately 3-4 students will be on site along with Dr. Camp and Dr. Heinse for a period of 1-2 days.

Phosphorous Testing and Analysis
Data collected from GPR and electromagnetic resistivity surveys will be put in dialogue with soil samples collected from areas identified by these technologies as potentially harboring historic gardens. These soil samples will be subjected to phosphate analysis at the University of Idaho's Analytical Sciences Laboratory (http://www.agls.uidaho.edu/asl/), which can detect the presence of cultivated and fertilized soil. Gathering systematic soil samples along transects of the GPR/electromagnetic resistivity identified garden areas will also assist in identifying the boundaries and extent of internee and internment camp workers' gardens, an approach employed by a number of archaeologists interested in historic and prehistoric gardens (c.f. Miller and Gleason 1994). Excavations of the garden areas will commence once they have been identified using GPR, electromagnetic resistivity, and phosphate analysis.

Establishing Site Grid & GIS Mapping
While Dr. Camp is away at Amache Internment Camp (see section entitled "Garden Archaeology" below), three staff members will be at Kooskia Internment Camp using GIS technologies (hand-held GPS unit, total station transit) to establish a site map and grid. At the bare minimum, these staff members will have M.A. degrees and extensive experience with GIS and pedestrian survey of historic sites. Since proper archaeological analysis requires detailed provenience information for features discovered during survey surface survey and excavation, staff members will create a GIS base map of extant features

1 Fertilized soil "usually consists of material that has been redeposited from elsewhere, and so possesses features that reflect its circumstances of origin" (Miller and Gleason 1994:26).
associated with Kooskia Internment Camp as illustrated by Watts and Kuester (1980) and D. Griffiths (Figures 2, 3). The features depicted in Watts and Kuester's sketch map (Figure 4) include a tin can dump, an incinerator, a dump, and a possible privy hole. Watts and Kuester also discuss the presence of a plum tree, cherry tree, and apple tree associated with the internment camp.

Two additional sketch maps drawn by former internees were made in 1982, two years after Watts and Kuester's initial survey of the landscape (Figures 2, 3). These maps depict both the internees' and camp administrators' housing quarters (Figures 2, 3), work areas, and gardens. According to Wegars (Pers. Comm. 2010), the "man-made boat shaped island" depicted in Figure 2 was home to an internee garden. Historic photographs held at the University of Idaho (Figures 5, 6, 7) also illustrate both the features described by Watts and Kuester (1980) as well as depict additional internee gardens lining the barracks that are not present in Watts and Kuester or D. Griffith's maps. Historic photographs of Kooskia Internment Camp will therefore be used to confirm the features' association with the period of Japanese internment and potentially identify new internment-era features.

The data collected from this GIS survey will be projected using ArcGIS software. Historic maps of Kooskia (Figures 2, 3, 4) will be overlaid on the base map created by staff members and Dr. Camp. As part of the project's mapping efforts, a permanent datum point and 2-3 sub-datum points will be established on site. These datum and sub-datum points will be marked physically by 10" metal spikes nailed into the ground and tied with brightly colored flagging tape. The datums and project grid will be aligned to the U.S.F.S.' preferred UTM coordinate system. Using a total station as a transit will allow the grid system to be recorded to the level of millimeter. When mapping features on the surface, the target margin of error will be +/-1 millimeter. The provenience system established in the summer of 2010 will be made replicable and accurate by anchoring the project grid to several fixed datum points as well as to permanent features on the landscape (i.e. the historic incinerator, concrete building foundations). This grid can be used in future archaeological work conducted by the United States Department of Forestry and Agriculture, cultural resource management firms, and other archaeologists.

Site Survey & Surface Collection
A reconnaissance survey and surface collection will be performed between July 12th and 16th. Project staff will walk transects two meters apart in the areas utilized by internees as identified by historic maps (Figures 2, 3, and 4). Artifacts pertaining to the internment camp will be flagged and their placement on the site's grid will be recorded using either a hand-held GPS unit or transit. This information will be manually recorded in a "Point Provenience" binder in the field. Only diagnostic surface artifacts will be collected. Diagnostic surface artifacts will be defined as: 1) glass materials that feature maker's marks, glass base fragments, or glass fragments featuring diagnostic finish or manufacturing characteristics; 2) ceramic materials that feature maker's marks, identifiable patterns, and ceramic base or rim fragments; and 3) personal effects and small finds (buttons, jewelry, clothing clasps, etc.). Surface collection artifacts will be placed in archivally safe plastic bags with the project's name (to be determined by U.S.F.S.), provenience information, collection method ("SC" for surface collection), date
collected (DD/MM/YYYY), and surveyor's name (i.e. S. Camp) written on it in permanent black ink. Each artifact collected will be assigned a unique catalog number once laboratory analysis is underway at University of Idaho's Laboratory of Anthropology in late August of 2010.

Test Excavations
Minimally invasive fieldwork will begin on July 12th and conclude on August 13. It will comprise of four components: 1) testing previously identified features for archaeological deposits, 2) testing and sampling internee gardens, and 3) testing newly identified features for archaeological deposits. For items one (1) and three (3), testing will involve performing shovel tests and, when necessary, auger coring. No more than 40 shovel tests will be performed on the landscape. Shovel tests will be approximately 50cm x 50cm in diameter, and will not exceed 50cm in depth. The Principal Investigator anticipates finding internment-era artifacts at approximately 0-20cm below surface, primarily due to the fact that no post-internment occupation activities have called for the filling or covering of the site.

Unlike surface collection, both diagnostic and non-diagnostic artifacts will be collected during shovel testing, auger coring, and test excavations. Units (including shovel test pits and auger core samples) will be excavated in arbitrary 10cm levels unless significant cultural or geological features are encountered. All excavated materials and sediment will be screened through 1/8 inch mesh archaeological screens on site. Any artifacts found through shovel testing, auger coring, or excavating test units will be placed in archivally safe bags with the following information written in black permanent ink on the bag's left hand corner: Project Name (to be determined by U.S.F.S.), Unit Coordinates (Southwest corner of excavation units and shovel test pits, center of auger core), stratum (approximate depth at which artifact was discovered), date (MM/DD/YYYY), and excavator's name. Large artifacts found in-situ, significant finds, and features will be photographed with a digital camera and mapped. Once excavation is complete, shovel tests, excavation units, and auger core pits will be backfilled with soil that has been screened.

All shovel tests, auger cores, and/or test excavation units will be mapped using GIS technology for future reference. A map detailing the locations of archaeological research will be provided to the United States Forest Service by May 2011.

Laboratory Analysis
Artifacts will be washed, cleaned, cataloged, and labeled at the University of Idaho's Laboratory of Anthropology. Laboratory procedures will follow U.S.F.S. protocol guidelines for catalog number assignment as well as will replicate catalog forms used by the U.S.F.S. and Amache Internment Camp (see "Garden Archaeology" section below). Detailed cataloging, curation, and qualitative analysis practices will be provided in a final report to the U.S.F.S. in May 2011.
Garden Archaeology

The archaeological investigation of historic gardens is a relatively new, albeit growing science. It is only in recent years that successful methodologies to extract and identify plant and floral remains have been developed and systematically tested (Currie 2005). The most intensive testing of historic garden excavation methodologies has been conducted at Granada Relocation Center (also known as "Amache") under the supervision of the University of Denver's Dr. Bonnie Clark. Unlike other previously excavated Japanese internment sites (such as Minidoka and Manzanar), gardens do not frequently appear in historic photographs of Amache. Dr. Clark, in consultation with historic garden specialist Dr. Steven Archer, has used ground-penetrating radar (GPR) at Amache to detect both structural and plant remains associated with internee gardens. After garden features have been identified using GPR, Dr. Clark has collected samples for soil chemistry and archaeobotanical analysis from them. Soil chemistry analysis can identify the presence of non-native soil, while archaeobotanical analysis can provide evidence of non-native trees and plants and identify the specific species of botanical remains.

Preliminary garden excavations at Amache were performed in 2008 and 2009. A third, more comprehensive field season will be held in June and July of 2010 where GPR will be used to detect gardens and sensitive soil chemistry, pollen, and archaeobotanical samples will be collected. Dr. Clark has extended an invitation to Dr. Camp to assist with and observe the excavations of Amache's ornamental and vegetable gardens. This is a unique opportunity for both Dr. Camp and her two undergraduate students, Josh Allen and Paige Davies, as it will allow them to learn how to locate, excavate, and analyze gardens at Kooskia prior to Dr. Camp's archaeological field school to be held in late July and early August of 2010. Gardens identified using either the methods acquired at Amache or historic photographs and maps (i.e. Figures 2, 3, 4) will be sampled using the procedures outlined by previous archaeological studies of Japanese internment camps. These procedures call for the excavation of a limited amount of 1m x 1m excavation units, which will not exceed more than 10 units in the summer of 2010.

Permanent Storage and Curation

In the event that the U.S.F.S. cannot provide proper curatorial space and storage facilities, the University of Idaho's Alfred W. Bowers Laboratory of Anthropology has space available for the curation and permanent storage as per formal communication with Laboratory Manager Dr. Leah Evans-Jenke. A letter stating guaranteeing curatorial and storage space is in the possession of Dr. Camp and can be provided to the U.S.F.S. upon request.

Nez Perce Material Culture

In the event that artifacts associated with the Nez Perce are discovered, archaeological work will halt and the Tribal Historic Preservation Officer will be consulted immediately. If a human burial is discovered, work will likewise cease until the U.S.F.S. and Nez Perce Tribal Historic Preservation Officer have been consulted.
PROJECT OUTCOMES

Up until recent work performed by Priscilla Wegars (2001), Kooskia Internment Camp has received relatively little attention in both academic and public forums. The site lacks signage and has yet to be nominated to the National Register of Historic Places despite being, in the words of the U.S. Immigration and Naturalization Service (INS) in 1945, the "first experiment in the United States in the utilization of Japanese alien internee labor on a government construction project." The goal of archaeological research and public outreach efforts connected to archaeological research will be to extend this information to the public as well as to expose University of Idaho students to the history of Japanese American confinement during World War II. The findings of this research will also help build a compelling case for Kooskia to be placed on the National Register of Historic Places.

Mapping the site using GIS technology likewise provide additional data for any signage that is constructed at the site.

Due to the remote location of Kooskia, it is vital to establish different ways in which members of the public and interest groups can access and interact with the site's history. Maps detailing structures and features connected with Kooskia's internees will be produced for individuals able to physically visit the site, archaeological data recovered during the summer of 2010 will be detailed on a website dedicated to the project, and a "public archaeology day" will be held during the project and advertised widely. The results of the summer of 2010's fieldwork will be presented at the Society for Historical Archaeology's annual conference in 2011 as well as to the University of Idaho's campus during the 2010-2011 academic year. In collaboration with Priscilla Wegars, presentations of the research findings will also be offered to stakeholder and interest groups. These diverse modes of communicating information to the public will also ensure that individuals who have health and/or physical limitations can still experience and learn more about Kooskia's history.
<table>
<thead>
<tr>
<th>PROJECT TIMELINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 24, 2009</td>
</tr>
<tr>
<td>October 16, 2009</td>
</tr>
<tr>
<td>November 2009-Sept. 2011</td>
</tr>
<tr>
<td>January 25, 2010</td>
</tr>
<tr>
<td>February 22, 2010</td>
</tr>
<tr>
<td>March 5, 2010</td>
</tr>
<tr>
<td>April 24, 2010</td>
</tr>
<tr>
<td>April-June 2010</td>
</tr>
<tr>
<td>May 12, 2010</td>
</tr>
<tr>
<td>June 14, 2010</td>
</tr>
<tr>
<td>June 24, 2010</td>
</tr>
<tr>
<td>June 28-30, 2010</td>
</tr>
<tr>
<td>July 12-14, 2010</td>
</tr>
<tr>
<td>July 4-11, 2010</td>
</tr>
<tr>
<td>July 12-August 6, 2010</td>
</tr>
<tr>
<td>July 20, 2010</td>
</tr>
<tr>
<td>August 8, 2010</td>
</tr>
<tr>
<td>Date Range</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>August 9-13, 2010</td>
</tr>
<tr>
<td>May 2011</td>
</tr>
<tr>
<td>August 14, 2010-June 15, 2011</td>
</tr>
</tbody>
</table>
WORKS CITED

Sappington, Robert Lee and Caroline D. Carley (1989) *Archaeological Investigations at the Beaver Flat and Pete King Creek Sites, Lochsa River, North Central Idaho*. University of Idaho Anthropological Reports, No. 89. Moscow: Alfred W. Bowers Laboratory of Anthropology, University of Idaho.

Figure 1. Proposed project area, Lowell (ID) U.S.G.S. 7.5' Quadrant, 1984.
Figure 2. Internee Housing Area Sketch Map. Image courtesy of Priscilla Wegars.
Figure 3. Administration Housing Area Sketch Map. Image courtesy of Priscilla Wegars.
Figure 4. The Canyon Creek Prison Site, Site 10-IH-870 Sketch Map, April 1979. Image courtesy of the United States Forest Services (Watts and Kuester 1980).
Figure 5. Kooskia Internment Camp. Image courtesy of the University of Idaho Library Digital Collections.
Figure 6. Kooskia Internment Camp. Image courtesy of the University of Idaho Library Digital Collections.
Figure 7. Japanese internee tending to his garden at Kooskia. Image courtesy of the University of Idaho Library Digital Collections.
Figure 8. Location of Internee Barracks. Photo by Stacey Camp.
Figure 9. Water Tank Foundation above Internee Barracks. Photo by Stacey Camp.