Potato Sustainability Initiative (PSI) Survey and Audit Organizational Manual
for the 2018 Survey and 2019 Audit

Compiled by

Nora Olsen and Lynn Woodell, University of Idaho
Carrie Wohleb and Tim Waters, Washington State University
Idaho Association of Commerce and Industry Research Committee

Cooperation by Potato Sustainability Initiative (PSI) Committee, IPM Institute, potato industry of Idaho, Oregon and Washington, and Idaho State Department of Agriculture

Funding support by the Northwest Potato Research Consortium

Version date: October 2018
• Introduction and how to use this manual

 • This material was developed to coordinate and document your operation’s practices that answer questions outlined in the current version of Potato Sustainability Initiative (PSI) survey and audit. It is designed to provide a detailed template for a potato farm’s operations that is directly referenced to the PSI survey questions and the requested documentation/interview questions when audited.

 • Please note that this manual needs to be tailored to your specific farming operation and suggested answers or means to document your practices are for informational purposes only. Within this manual there are sections that include PSI survey questions (sustainable practice), reference guidance, audit guidance, and document/interview guidance; preformatted documents; areas to insert maps/documents; suggested information to help answer questions during the audit; and listings of resources for additional information. A Glossary of terms from the PSI Survey has been included in the back of the manual.

 • The survey is completed electronically. The current version of the survey has 108 questions that include topics within sustainable farming, and social, economic and environmental sustainability. All growers are requested by their processor(s) to submit answers to the survey annually, but only 20% of growers will be audited each year on the survey.

 • Questions are designated into three priority levels. There are 15 minimum questions (designated as minimum (mandatory) and orange heading in this manual) that must be asked at every audit. The auditor will select at least 15 questions from the Priority 1 category (yellow heading in this manual) and no more than 10 questions from the Priority 2 category (blue heading). You will be audited on no more than 40 questions. The Priority 1 and 2 questions are picked by the auditor regardless of whether the survey answer is yes or no. If you are certified by a food safety program (e.g. USDA or Canada GAP; see Question 1) some questions will be turned off and you will not be audited on them.
That will decrease the number of minimum questions audited, but you will still be audited on the same number for Priority 1 and 2 categories.

- The objective of the audit is to verify both yes and no answers you provided on the initial survey. There are two ways you may fail the audit:
 1. Do not complete required follow-up resolution report within six months.
 2. Change more than 20% of the audited survey answers from a “yes” to a “no” or downgrade answers from a higher to lower level.

- Each survey submitted is scored based on the responses provided to the survey questions. Each response option in the survey has been assigned a level between 0 and 4. A zero score is earned when a basic practice is not in place, for example, pesticide spill containment materials and clean water are not readily available at pesticide storage and mixing locations. Level 1 responses are typically basic practices that will be in place on most farms, for example, trash is not burned. Level 2 responses are more advanced, more impactful, and/or more challenging, and so on up to the maximum level of 4. Level 4 responses represent the most advanced approaches to improving sustainability and may be more impactful and also more challenging and/or expensive to implement. For example, implementing a written native species protection plan with the assistance of a third-party expert is identified as level 4. The total survey score is generated by calculated the percent of “yes” responses within each of the four levels. These “yes” answer percentages are the scores for each individual performance level. These individual performance level scores are summed to create the final index score. The maximum index score is 4 or 400 or 400% if all four levels have 100% “yes” answers. Not all of the available practices included in the survey are appropriate for every farm. For example, farms may or may not be irrigated, or may or may not provide housing for employees. Realistically, it can be expected that level 1 practices are near 100% and level 4 practices might be less than 30-50%.
This manual was designed to simplify the necessary responses to successfully and efficiently document your sustainable farming practices.

- In this manual, each question is broken into the following columns: 2018 survey question number, sustainable practice, reference guide, audit guidance given to auditors for the interview questions and documentation/interview questions required or requested by the auditor. At the end of each sustainable practice description there will be a letter “D” for document or “I” for Interview Question or both indicating the type(s) of information that will be required for successful completion.
- Below each question you will find clarification on documents to attach, common practices to help answer interview questions, document templates, and additional resources.
- Minimum (mandatory) questions in this manual are 1-15 (2.1-2.15).

Helpful hints for the audit:

- There are changes from the 2017 audit to the 2018 audit. Be aware question numbers, documents and questions have changed from the previous year.
- The person who filled out the PSI survey should attend the audit and bring a copy of the survey answers. This audit asks questions that encompass all aspects of the farming operation from how you clean between seed lots to employee compensation calculations.
- The first question concerns your food safety (e.g. GAP) certification. Depending upon which type of certification you have, subsequent questions will be turned off and you will not be audited on them. See Question 1 for a list of questions you will not be audited on depending upon which food safety certification program you have.
- Use the reference guide (“i” in the top right hand corner of the question box) associated with your PSI survey to help in answering questions when filling out the survey. It is also included in this manual.
- You may have any personnel in the room to help with the audit, and you may excuse people from the room if you wish.
- Have all documents easily accessible- computer, files, notebook, printed out, etc. You will need:
A list of field names exactly as inputted into the survey and names provided for processor information. See below for an example list.

A list of all 3rd party pesticide applicators, license # and expiration dates.

Access to all of your pesticide and fertilizer records that you provided to your processor. Electronic programs that collate all the information for you are ideal (e.g., Land.db; Agrian, etc.). Pesticide application records must include all the following: Time, Date, Locations, Target pest, Material applied, Rate, Applicator, Application method, Weather conditions (including wind speed and direction and temperature) in order to get credit for many questions. You can access electronically or have printed copies available for the audit.

Other documents to have readily available:
- Food safety certificate (e.g. USDA GAP, Global or Harmonized).
- Copies of seed tags, seed receipts or electronic records of seed purchases.
- Farm maps to identify sensitive areas, roads, conservation areas, etc.
- SDS (formerly MSDS) of pesticides used on farm.
- Pesticide application calibration records for all equipment used on farm.
- List of potato fields with previous rotational crops for past three years.
- Nutrient analysis results from soil or petioles.
- Copy of water rights, permits or water share certificate.

Changes to this manual will be done periodically/annually to adjust for the changes to the PSI survey. This manual along with additional resources are posted at www.uidaho.edu/potatoes. For additional information or comments regarding this manual, please contact us at:
- Nora Olsen, University of Idaho, 208-423-6634, norao@uidaho.edu
- Lynn Woodell, University of Idaho, 208-423-6622, lwoodell@uidaho.edu
- Tim Waters, Washington State University, 509-545-3511, twaters@wsu.edu
- Carrie Wohleb, Washington State University, 509-754-2011, cwohleb@wsu.edu
Fields Planted to Potatoes in year ____________

<table>
<thead>
<tr>
<th>Grower’s Field Name</th>
<th>Processor</th>
<th>Processor Field ID Number</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
No. | Sustainable Practice | Reference Guide | Audit Guidance | Documentation/ Interview Questions
---|---|---|---|---
2.1 | **Minimum (Mandatory)** | GAP - Good Agricultural Practice | Documentation |
 | | Harmonized GAP - Produce GAPs | | |
 | | Harmonized Food Safety Standard Audit | |
 | | GFSI - Global Food Safety Initiative (If you are part of the Global GAP program, then you meet this requirement.) | |
|1 | Mark all that apply Grower is certified in one of the following Good Agricultural Practice (GAP) food safety audits: a) USDA GAP (level 1) D b) Canada GAP (level 2) D c) Primus Standard GAP Harvest Crew and Ranch (level 2) D d) Harmonized GAP (level 3) D e) Global GAP Harmonized Produce Safety Standard (level 3) D f) Global GAP Integrated Farm Assurance Standard (level 3) D g) PrimusGFS (level 3) D h) None of the above (0 points) | | |

Attach the marked certificates here: Depending upon which certification you have; subsequent questions will be blocked from your ability to answer them. This is because your food safety certification validates your answer to those questions. Questions turned off are indicated in parentheses behind the certificate below.

a) USDA GAP (5,6,7,9,11,14,22,24,26,27,28,32,70)
b) Canada GAP (5,6,13,14,15,26,36,70,73,85,103,107)
c) Primus Standard GAP Harvest Crew and Ranch (2,5,6,7,8,9,11,13,14,19,22,24,26,28,71,72,73,83,85)
d) Harmonized GAP (9,13,70,77,85)
e) Global GAP Harmonized Produce Safety Standard (2,5,7,9,13,19,24,32,71,72,73,77,81)
f) Global GAP Integrated Farm Assurance Standard (2,4,5,6,7,8,13,19,24,26,28,29,32,33,36,46,47,54,59,71,72,73,77,81, 91,92,102,103,107,108)
g) PrimusGFS (2,7,11,13,14,22,24,26,28,70,71,83,85,103,108)
h) None of the above

Continue on to next question.
<table>
<thead>
<tr>
<th>No.</th>
<th>Sustainable Practice</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>Sustainable Practice</td>
<td>Minimum (Mandatory)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Mark all that apply</td>
<td>To avoid introducing pest or disease problems and reduce disease transmission potential:</td>
<td>Documentation</td>
<td>a) Certified seed receipts and/or certificates for the last three years. Tags are not required if written or electronic records of certified seed are kept.</td>
</tr>
<tr>
<td></td>
<td>To avoid introducing pest or disease problems and reduce disease transmission potential:</td>
<td>a) Only certified seed is used for the potato crop (level 1) D</td>
<td>b) Records of seed planted within the last year, including dates, field names and seed sources.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) Farm has a system in place to track seed planted in the field to a specific source to aid with disease traceability (level 2) D</td>
<td>b) A management system is used to track seed and seed sources in the event of a disease outbreak caused by diseased seed. Please find example documentation under PSI Sustainability Audit Information at https://www.uidaho.edu/cals/potatoes/food-and-farm-safety.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) None of the above (0 points)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you answer:

a) Show seed receipts or certificates for the past three years. Written or electronic records can also be used.

- If you used “year-out” seed as allowed in the Idaho state seed law, then provide documentation that the seed adhered to established requirements prior to planting. If uncertified seed potato lots are submitted to ISDA for testing they will issue a letter with results and guidelines to follow for using as seed. Under this circumstance the seed is not considered certified, but has been tested and passed equivalent requirements. You could still answer “yes” to this question (see reference guide; https://adminrules.idaho.gov/rules/current/02/0639.pdf).
- In Washington and Oregon, all commercial potato fields (> 1 acre in WA) must be planted with certified seed. Legally, “no” cannot be answered for this question if farming in the state of Oregon or Washington. Insert seed tags (blue, green or yellow) or seed receipts here.
b) Fill in form for each field planted with potatoes or use a form from your preferred electronic information program (e.g., Land.db, Agrian, etc.). Being able to track seed from seed grower to field planted is the intent here.

If you answer c):

Continue on to next question.
<table>
<thead>
<tr>
<th>Crop Year</th>
<th>Date</th>
<th>Operation</th>
<th>Seed Quantity</th>
<th>Variety</th>
<th>Seed Provider/lot number</th>
<th>Field Name (and location within field if not entire field)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>4/10/17</td>
<td>Seed planting</td>
<td>X cwt</td>
<td>Best variety</td>
<td>John Doe/ 123456</td>
<td>Example</td>
</tr>
</tbody>
</table>

For PSI question 2
Switch Question

<table>
<thead>
<tr>
<th>No.</th>
<th>Switch Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>Are genetically modified (GM) potatoes trialed on the farm in the current crop year? If no, disregard question 4.</td>
</tr>
</tbody>
</table>

- If you answer yes to question 3 then go to question 4, if no go to question 5.

<table>
<thead>
<tr>
<th>No.</th>
<th>Sustainable Practice</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/ Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>Minimum (Mandatory)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Yes or No GM farm trials are conducted following established regulatory and industry protocols and the commercial customer is informed D</td>
<td>Documentation</td>
<td>Written or electronic GM seed trial protocols and records.</td>
<td>Letter/email informing commercial customer of GM farm trials.</td>
</tr>
</tbody>
</table>

If you answer yes:

- Contact your seed source for all the required documentation and attach here. Provide copies of trial protocols and an example of a letter or agreement that your customer is aware of the GM crop.

If you answer no:

Continue on to next question.
If you answer yes:

- If your farming operation does not apply any pesticides or nutrients, then show a list of names, pesticide license numbers and expiration dates of all pesticide applicators used by the farming operation.
- Be prepared to show documents for all pesticide labels and SDS (formerly MSDS) for pesticides and nutrients used on farm. Access to an on-line source can be used such as CDMS.

<table>
<thead>
<tr>
<th>No. 2.5 Sustainable Practice Minimum (Mandatory)</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/ Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Yes or No Pesticides and nutrients are mixed, used, stored and disposed of according to legal requirements and farm meets all regulations for employee health and safety; in the absence of legal requirements all components of the reference guide must be followed D I</td>
<td>Pesticides and nutrients are applied and stored as per all label directions and applicable regulations. Products are properly labeled; concentrates are in original containers; and cross contamination between pesticides and fertilizers is prevented in storage. Pesticides stored temporarily for near-term use are secure, e.g., in a locked storage box. Empty pesticide containers and pesticides no longer in use are properly disposed of. Pesticides awaiting disposal are segregated and clearly marked for disposal at the next opportunity. All pesticide storage and mixing by a custom applicator or the grower is done away from sensitive areas (e.g., wells, surface water) and in a manner to prevent site contamination. Surplus spray mix and washings are used on the crop or disposed of according to applicable regulations and label directions. Applicators are certified or licensed if required by applicable regulations. Personal protective equipment is available and in working order. Pesticide labels, Safety Data Sheets and application postings are accessible to applicators and farm workers in appropriate language(s). Applicable regulations include the Emergency Planning and Community Right-to-Know Act of 1986 in the US, and in Canada, the Workplace Hazardous Materials Information System and Controlled Products Regulations.</td>
<td>Documentation Interview What personal protective equipment (PPE) do you use when applying pesticides and/or nutrients? Do you have any pesticides in storage that you no longer plan to use? If so, how are they segregated? How do you dispose of contaminated tank or container rinsate?</td>
<td>Documentation must include: i) Pesticide label and Safety Data Sheet (SDS) examples ii) Valid pesticide applicator licenses for those required by law to have them.</td>
</tr>
</tbody>
</table>
Be prepared to describe what PPE you use when applying pesticides or nutrients. This information is found on the label of the product applied. Common examples or required PPE include: chemical-resistant aprons, footwear, headgear, and suits; coveralls; gloves; protective eyewear.

Be prepared to describe if you have any pesticides in storage that you no longer plan to use and how they are segregated.

- Example responses would include - stored on separate shelf or separate area, disposal plan is in place.
- Disposal/recycling programs are available in each state:
 - WSDA has pesticide recycling/disposal program. You can contact them to come to your farm or drop them off at a designated site. See: http://agr.wa.gov/pestfert/pesticides/wastepesticide.aspx

You must be able to describe disposal practices of contaminated tank or container rinsate.

- Rinsate must be utilized according to the pesticide label. Many labels indicate it should be applied to an area that has already been treated. Do not apply rinsate to roads or parking areas etc. It can be further diluted so that the application to crop site is not illegal. It can be placed into the waste disposal program or used as make-up water for another batch.

If you answer no:

Continue on to next question.
If you answer yes:

- Be prepared to provide information from the system you use to record pesticide applications. Show on-screen or print out forms. Must have all requirements listed above; any missing information like wind speed or applicator’s license number will result in a “no” response.
- Agrian, Land.db or other similar program will typically have this information, but you must include/input all required information if the program does not include it. Have access to this information via computer, tablet, phone, or printed copies.
- See next page for example of a form. Forms are also available from WSDA at http://agr.wa.gov/PestFert/Pesticides/docs/RecForm4226.pdf.

If you answer no:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>Yes or No Complete pesticide application records are available and are maintained for at least three years</td>
<td>Pesticide records should include: grower/farm name with field location, date, time, weather (temperature, wind speed, wind direction), material applied including EPA or PCP numbers, crop, application rate with unit of measurement, applicator name and license number (if required), application method/type, acres applied and target pest. Please find example documentation under PSI Sustainability Audit Information at https://www.uidaho.edu/cals/potatoes/food-and-farm-safety.</td>
<td>Documentation</td>
<td>Written or electronic record of pesticide applications made in the last three years. All of the following information must be included; time, date, locations, target pest, material applied, rate, applicator, application method, weather conditions (wind speed and direction and temperature)</td>
</tr>
</tbody>
</table>
Field and Post-Harvest Pesticide Treatment Report Form* List all soil treatments, preplant soil and seed treatments, post plant soil and foliar treatments. Include all fumigants, herbicides, insecticides, fungicides, growth regulators, vine killers, etc.

<table>
<thead>
<tr>
<th>Farm Name:</th>
<th>Field Name:</th>
<th>Field Location:</th>
<th>County, State:</th>
<th>Total acres:</th>
<th>Crop/Variety:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed Source:</td>
<td>Planting Date:</td>
<td>Total Acres or Weight treated:</td>
<td></td>
<td>Harvest Date:</td>
<td>Storage/Processing Site:</td>
</tr>
</tbody>
</table>

*Application Method: G=Ground A=Air C=Chemigation W=Ground Application - Water Incorporated

** Pesticide Type: 0=Repellant 1=Seed Treatment 2=Fumigant 3=Nematicide 4=Herbicide 5=Fungicide 6=Insecticide 7=Grow Regulator 8=Sprout Inhibitor 9=Desiccant

*** Rate Type: Field: Acre, 1000ft/row, 1000 sq ft Seed: CWT (100 lbs) Dilution: 10 gal, 50 gal, 100 gal

**** Target Pest Type: 1=Bacterial 2=Fungal 3=Viral 4=Chewing Pest 5=Sucking Pest 6=Tuber/Root Pest 7=Broadleaf Weed 8=Grass 9=General Weed

<table>
<thead>
<tr>
<th>Treatment Date &Time Start/Finish</th>
<th>Field #</th>
<th>Acres Treated</th>
<th>App Method*</th>
<th>Pesticide Type**</th>
<th>Product Name and Formula</th>
<th>Rate</th>
<th>Unit of Measure</th>
<th>Rate Type ***</th>
<th>Primary Target Pest</th>
<th>EPA No.</th>
<th>Sensitive Area Y/N</th>
<th>Wind speed</th>
<th>Wind Direction</th>
<th>Temp</th>
<th>Applicators License # or Training Date if no license</th>
<th>Name of Applicator</th>
</tr>
</thead>
</table>

Grower Signature: __________________________ Date: ___________ Field Rep Review Initials: ___________ Date: ___________
If you answer yes:

- See documents used for question 26 on calibration of equipment.
- Information for the interview: remember large droplets travel less than smaller ones. Spray application equipment is adjusted and used in a manner to minimize spray drift. Maximum wind requirements from labels and local jurisdiction are abided, low pressure, course droplets and low release height of pesticides is used to mitigate drift. Air induction nozzles also minimize drift.
- If you do not apply pesticides, then supply name and applicator license number and expiration date of all applicators.
- Resource: Droplet size calculator: http://pat.unl.edu/droplet-size-calculator

If you answer no:

Continue on to next question.
No. 2.8 Sustainable Practice Minimum (Mandatory) Reference Guide Audit Guidance Documentation/ Interview Questions

<table>
<thead>
<tr>
<th>No.</th>
<th>Sustainable Practice</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/ Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Yes or No Nutrient application records are available and are maintained for three years D</td>
<td>Fertilizer records must contain: grower/farm name with field location, crop, date, product applied including fertilizer formulation, application type (dry, liquid, granular, etc.), application method (band, broadcast, seed placed, fertigated, etc.), acres applied with rate per acre. Please find example documentation under PSI Sustainability Audit Information at https://www.uidaho.edu/cals/potatoes/food-and-farm-safety.</td>
<td>Documentation</td>
<td>Records must contain grower/farm name with: i) field location ii) crop iii) date iv) product applied including fertilizer formulation v) application type vi) application method vii) acres applied with rate per acre.</td>
</tr>
</tbody>
</table>

If you answer yes:

- Have nutrient application records for the past 3 years available.
- Fill in top part of included form for each field planted with potatoes or use a form from your preferred electronic information program but make sure it includes all information required (asterisked in form and includes: field location, crop, date, product name including formulation, application type and method, acres applied with rate per acre).

If you answer no:

Continue on to next question.
Nutrient Application Report Form*

List all soil treatments, pre-plant soil, in-furrow and seed treatments, post plant soil and foliar treatments.

<table>
<thead>
<tr>
<th>Farm Name:</th>
<th>*Field Name:</th>
<th>*Field Location:</th>
<th>County, State:</th>
<th>Total acres:</th>
<th>*Crop/Variety:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Seed Source:</th>
<th>Planting Date:</th>
<th>Total Acres or Weight treated:</th>
<th>Harvest Date:</th>
<th>Storage/Processing Site:</th>
</tr>
</thead>
</table>

*Application Method: band, broadcast, in-furrow, seed placed, fertigated, etc

** Application Type: dry, liquid, granular,

<table>
<thead>
<tr>
<th>*Treatment Date &Time Start/Finish</th>
<th>Field #</th>
<th>*Acres Treated</th>
<th>App Method*</th>
<th>Application Type **</th>
<th>*Product Name and Formulation</th>
<th>*Rate/ A</th>
<th>Unit of Measure</th>
<th>EPA No.</th>
<th>Sensitive Area Y/N</th>
<th>Wind Speed</th>
<th>Wind Direction</th>
<th>Temp</th>
<th>Applicators License # or Training Date if no license</th>
<th>Name of Applicator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Sustainable Practice</td>
<td>Reference Guide</td>
<td>Audit Guidance</td>
<td>Documentation/Interview Questions</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>Sustainable Practice</td>
<td>Minimum (Mandatory)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Choose one that applies:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) Biosolids have not been used within one year prior to planting of the potato crop and untreated sewage has never been used on fields currently in potato production (level 1)</td>
<td>Biosolids, i.e., residues generated during treatment of domestic sanitary sewage, are not used on fields within a year of planting to potatoes.</td>
<td>Documentation</td>
<td>Company policy prohibiting the application of biosolids the year prior to planting. Grower exempt if Food Safety Certification (such as USDA/GAP, Canadian equivalent, Global GAP etc.) is presented</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) Biosolids have been used within one year prior to planting of the potato crop or untreated sewage has been used on fields currently in potato production (0 points)</td>
<td></td>
</tr>
</tbody>
</table>

If you answer:

a) Have a written farm policy describing that you prohibit the application of biosolids within one year prior to planting and that no untreated sewage has been applied to any fields on the farm that will be in potato production.
 • Attach policy here.
 Sample policy (modify for farming operation): “Farm X prohibits the application of biosolids within one year prior to planting of the potato crop and no untreated sewage has been applied to any fields on the farm that will be in potato production.”
 or

 • Show GAP or food safety certification (see question 1 for certificate). GAP audits require documentation on the use of animal based soil amendments.

If you answer b): State biosolids have been used on current potato fields.

Continue on to next question.
If you answer yes to question 10 then go to question 11, if no go to question 12.

<table>
<thead>
<tr>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.10</td>
</tr>
</tbody>
</table>

Switch Question:
Is animal manure or compost containing animal manure spread on potato fields? If no, disregard question 11.

- If you answer yes to question 10 then go to question 11, if no go to question 12.

<table>
<thead>
<tr>
<th>No.</th>
<th>Sustainable Practice</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.11</td>
<td>Minimum (Mandatory)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Yes or No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Animal manure or compost containing animal manure used on fields on which potatoes are grown is managed following a nutrient management plan, to include sample analysis, and according to contract requirements, food safety requirements or federal, state/provincial or local regulations D</td>
<td>If animal manure or compost containing animal manure is used, a written or electronic nutrient management plan can be provided that includes manure/compost testing and analysis for nutrient value.</td>
<td>If animal manure or compost containing animal manure is used any year on any field potatoes are grown at any time, a written or electronic nutrient management plan is available that includes a science-based approach for determining the nutrient contribution from the manure or compost, e.g., periodic analysis, analysis provided by the compost or manure supplier, or specifications from a credible source such as a Land-Grant University or government reference publication.</td>
<td>Documentation: Written or electronic nutrient management plan meeting contract/legal requirements and incorporating nutrient contribution from manure or compost based on analysis or an applicable reference document.</td>
</tr>
</tbody>
</table>

If you answer yes to question 11:

- Attach a nutrient management plan that includes lab analysis results for all manure/compost applied within the last year including nutrient value. If applicable, request nutrient analysis from company/source of compost or manure if purchased and attach results. If nutrient analysis is not performed, provide recommendations/calculations on how you factor in nutrient release from compost or manure applications in your nutrient management plan.
- If you have a GAP certificate (see question 1), then manure/compost was applied according to food safety requirements. Manure cannot be applied to fields within 120 days of potato harvest.

If you answer no:

References:

1. Land-Grant University
2. Government reference publication
Continue on to question 12.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Yes or No Does farm comply with all bribery, corruption, extortion and embezzlement laws?</td>
<td>Farm is compliant with all federal, state/provincial and local laws.</td>
<td>Interview How does farm maintain awareness and compliance with all bribery, corruption, extortion and embezzlement laws?</td>
<td>"Response examples could include: farm follows all federal and state laws; uses a certified accountant; uses a third party auditor; does not sign checks made out to self; reviews payroll for unnecessary overtime or payments; reconciles all accounts and payroll records on a regular basis; does not falsify records; and is ethical in all transactions and employment."</td>
</tr>
</tbody>
</table>

If you answer yes:

- Describe how your farm complies with all federal, state/provincial and local laws including all bribery, corruption, extortion, and embezzlement laws.
- Interview response examples could include: you follow all federal and state laws; use a certified accountant; use a third party auditor; do not sign checks made out to self; review payroll for unnecessary overtime or payments; reconcile all accounts and payroll records on a regular basis; do not falsify records; and ethical in all transactions and employment.

If you answer no:

Continue on to next question.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.13</td>
<td>Yes or No Adequate first aid supplies are available at the farm to meet reasonably foreseeable emergency medical situations</td>
<td>First aid supplies are readily accessible and adequate for each work environment and foreseeable emergency. Please find example documentation under PSI Sustainability Audit Information at https://www.uidaho.edu/cals/potatoes/food-and-farm-safety.</td>
<td>Interview: In what locations do you keep first aid supplies? (e.g., in pesticide storage/mixing area, in equipment sheds, in packinghouse) How often are these supplies checked to ensure that supplies are replenished when stocks are low?</td>
<td>Explain or list locations and how often supplies are replenished.</td>
</tr>
</tbody>
</table>

If you answer yes:

- Explain or list locations and how often supplies are replenished.
- This is required for some GAP certifications. See attached form.

If you answer no:

Continue on to next question.
First Aid Kit Monitoring Log

<table>
<thead>
<tr>
<th>Date</th>
<th>Location or # of First Aid Kit</th>
<th>Checked & Stocked</th>
<th>List Added Items (bandaids, ointment, etc.)</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSI Question 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 2.14</td>
<td>Sustainable Practice Minimum (Mandatory)</td>
<td>Reference Guide</td>
<td>Audit Guidance</td>
<td>Documentation/Interview Questions</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>-----------------</td>
<td>----------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>14</td>
<td>Yes or No Pesticide applicator(s) has taken a pesticide safety course or passed an exam as required by local, state, provincial and federal law and participates in continuing education</td>
<td>To improve pesticide safety, all individuals who apply pesticides have taken a pesticide safety course and participate in continuing education opportunities at least every three years. This must be true whether the applicator is a farm employee or a contract applicator.</td>
<td>Documentation</td>
<td>Applicator license if required and pesticide training attendance records from a course taken within the last year.</td>
</tr>
</tbody>
</table>

If you answer yes:

- Pesticide applicator name, license number and expiration date are recorded on pesticide application records used for mandatory question 6.
- Show receipt or agenda from attending a pesticide training course or a meeting where you received pesticide recertification credits within three years.

 Resource: Training materials (English and Spanish) can be found at pesticideresources.org.

If you answer no:

 Continue on to next question.
<table>
<thead>
<tr>
<th>No. 2.15</th>
<th>Sustainable Practice Minimum (Mandatory)</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/ Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Yes or No Fuel is stored safely and securely, and consistent with all legal requirements</td>
<td>Fuel storage, including portable containers, meets requirements of applicable regulations and is located at a safe distance from potential heat sources, wells and surface water. Fuel storage containers are in good condition and inspected for leaks and signs of deterioration regularly.</td>
<td>Interview According to applicable regulations, how far does fuel storage have to be from potential heat sources, wells or surface water? How often are fuel storage containers checked for leaks and signs of deterioration?</td>
<td>Farm should be able to describe: i) Distance fuel storage must be from heat sources, wells or surface waters (e.g., in Idaho it is 100 feet). Contact your local fire marshal for more information. ii) Common practices include instructing employees to check for leaks or damage each time fueling. Requesting fuel provider to check container when re-fueling.</td>
</tr>
</tbody>
</table>

If you answer yes:

- Be able to describe in the interview question:
 - Distance fuel storage must be from heat sources, wells or surface waters (in Idaho it is 100 feet). Contact your local fire marshal for more information.
 - Common practices include instructing employees to check for leaks or damage each time fueling. Requesting fuel provider to check container when re-fueling.

- Additional resources:
 - Oregon Underground Tank Program: https://www.oregon.gov/deq/tanks/Pages/UST.aspx

If you answer no: Continue on to next question.
<table>
<thead>
<tr>
<th>No. 3.1</th>
<th>Sustainable Practice: Sustainable Farming</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Yes or No</td>
<td>To avoid introducing weed seeds into crop fields, seed for rotation crops is certified weed-free or cleaned to remove weed seeds. Cover crops, grown between cash crops to hold soil in place, increase organic matter content and/or retain moisture and or nutrients, should also be planted with certified weed-free or cleaned seed, however that is not a requirement to earn credit for this question, due to limited access to those options for cover crop seed at this time.</td>
<td>Documentation</td>
<td>Receipts of seeds purchased or receipts of seeds cleaned.</td>
</tr>
</tbody>
</table>

If you answer yes:

- Attach receipt of seed lots purchased for all rotational crops with potatoes or
- Certificate from a seed company confirming seed lots are certified or cleaned.

Note: If you only grow potatoes and plant certified or ISDA tested seed potatoes you can still answer “yes” to this question.

If you answer no:

Continue on to next question.
Switch Question

<table>
<thead>
<tr>
<th>No. 3.2</th>
<th>Switch Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Does the farm cut its own seed potatoes? If no, disregard question 18</td>
</tr>
</tbody>
</table>

- If you answer yes to question 17, then answer question 18. If no, continue to question 19.

<table>
<thead>
<tr>
<th>No. 3.3</th>
<th>Sustainable Practice: Sustainable Farming</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Yes or No Farm washes and sanitizes seed cutting equipment between seed lots</td>
<td>Seed cutting equipment is washed with water and soap-based detergent, rinsed and sanitized with disinfectant.</td>
<td>Interview How is seed cutting equipment cleaned?</td>
<td>Practices include three-step cleaning process: washing with water and soap-based detergent, rinsing, and sanitizing.</td>
</tr>
</tbody>
</table>

If you answer yes:

- Common cleaning practices include continuous disinfectant (labeled and registered) spray on cutting knives; Clean handling equipment and cutter with soap-based detergent and water, followed by disinfectant. Remember that cleaning is a three-step process: washing with a detergent and water; rinsing, and applying a disinfectant.

 Resource: University of Idaho CIS bulletin 1180: ‘Cleaning and Disinfecting Potato Equipment and Storage Facilities’ (https://www.cals.uidaho.edu/edcomm/pdf/CIS/CIS1180.pdf)

If you answer no:

 Continue on to next question.
<table>
<thead>
<tr>
<th>No.</th>
<th>Sustainable Practice: Sustainable Farming</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/ Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Choose the single best answer</td>
<td>Farm refers to a growing operation/business entity that consists of one or more fields. Field refers to an area of land used for agricultural purposes, whether cash or cover crops. Removing soil/weeds/debris can be done by knocking off soil, spraying with water, washing with water and soap-based detergent or following a three-step process: washing with a detergent and water; rinsing, and applying a disinfectant. Interview How is potato planting equipment cleaned?</td>
<td>Practices include: i) Knocking dirt off equipment ii) Rinsing with water iii) Washing with water and soap-based detergent iv) Cleaning with disinfectant. Frequency must be stated.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Farm cleans potato planting equipment to remove soil/weeds/debris:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) On a periodic basis (level 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) When moving between farms (level 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) When moving between fields with identified pest issues and clean fields (level 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d) Between fields on the same farm (level 4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e) None of the above</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you answer:

- a), b), c) or d) Describe standard cleaning practices such as removing soil from truck, handling equipment, and planter. This could include knocking or brushing off soil adhering to equipment. If necessary, the next step would be to clean with soap-based detergent and water. Rinse. Apply properly labeled and registered disinfectant.
- You will need to describe the frequency of cleaning planting equipment. Common frequency would be
 - a) Periodically cleaned as needed
 - b) When moving equipment between farms
 - c) When moving equipment between fields that have a known pest concern (eg. high nematode populations, powdery scab, etc.).
 - d) When moving equipment into all fields

Resource: University of Idaho CIS bulletin 1180: ‘Cleaning and Disinfecting Potato Equipment and Storage Facilities’ (https://www.cals.uidaho.edu/edcomm/pdf/CIS/CIS1180.pdf)

If you answer e):

Continue to next question.
No. 3.5 Sustainable Practice: Sustainable Farming

Reference Guide

Audit Guidance

Documentation/ Interview Questions

<table>
<thead>
<tr>
<th>No. 3.5</th>
<th>Sustainable Practice: Sustainable Farming</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/ Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Mark all that apply Potato planting is assessed by:</td>
<td>a, b) While planting, performance is assessed periodically by removing soil to examine seed position. c, d) To determine if improvements are needed in future potato planting operations, after tuber emergence from soil, the number of plants (e.g., per acre) is determined to evaluate performance of seed handling and planting systems on the farm. Please find example documentation under PSI Sustainability Audit Information at https://www.uidaho.edu/cals/potatoes/food-and-farm-safety.</td>
<td>Interview a) How do you assess seed placement performance? b) What adjustments have you made when placement wasn't adequate? Documentation c, d)</td>
<td>a) Practices must include checking: i) Seed spacing ii) Centering in row iii) Seed depth iv) Other b) Practices include: i) Recalibration of equipment ii) Increasing uniformity of seed size iii) Other c) Post-emergence plant stand records from the last crop cycle. d) Written or electronic record from a crop cycle within the last three years that documents post-emergence plant stand numbers, seed decay analysis and diagnosis of missing plants and diseased seed for all fields.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>Describe in interview that you uncover a certain amount of feet (recommend at least 25 feet) of row behind each planter unit and measure actual seed spacing (number of seed pieces divided by a given length of row), depth (measure top of hill to seed piece), and accuracy of placement centered in furrow.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td>Describe in interview examples that you adjusted equipment, depth, speed, sprocket size, seed size, etc. when the planting was not performed to desired specifications, if necessary.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
c) Documentation is required to show recorded plant stand records for each field. Count the number of plants within a given amount (e.g. 25 feet) of row in each field, or seed lot or variety within a field. Record the number of plants in and electronic format or in a sample document below. Insert document in manual here.

d) Written or electronic documentation is required to show plant stand records for all fields for the past 3 years. Any issues with emergence and missing plants are noted and diagnosed for lack of seed performance. Record the information in example document below. Insert document in manual here.

If you answer e):

Continue on to next question.
<table>
<thead>
<tr>
<th>Field name</th>
<th>Variety</th>
<th>Seed lot</th>
<th>Date counted</th>
<th>Number of plants/length</th>
<th>Intended number of plants</th>
<th>Comments (e.g., seed decay, cause of decay, planter skips, herbicide damage)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For PSI question 20
If you answer yes:

- List the varieties that you grew to assess performance.
- Interview question will require you to describe why you selected to test a new variety to your farming operation. Examples of reasons may include:

 o Processor requested you to grow it for larger sample testing.
 o Looking for a variety that would better suit your farm because fewer inputs may be required (e.g., water, pesticides or fertilizer); greater yield potential; better quality, storability, pest tolerance or resistance; or seeking a new market; better adapted to your grower location; greater return on investment.

If you answer no:

Continue on to next question.
If you answer yes:

- Describe in the interview the factors considered for specific field selections. Examples could include:
 - Previous crop history with pest pressure
 - Distance from housing, environmentally sensitive area, populated areas
 - Buffer at edge of fields located beside a road for foreign material pickup
 - Areas of old homesteads, corrals, etc.
 - Suitable topography

If you answer no:

Continue on to next question.
<table>
<thead>
<tr>
<th>No.</th>
<th>Switch Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8</td>
<td>Switch Question: Has any ground not previously farmed by you been entered into potato cultivation in the past three years? If no, disregard question 24.</td>
</tr>
</tbody>
</table>

- If you answer yes to question 23, then answer question 24. If no, continue to question 25.

<table>
<thead>
<tr>
<th>No.</th>
<th>Sustainable Practice: Sustainable Farming</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/ Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9</td>
<td>Yes or No</td>
<td>Potato ground being cultivated is evaluated, including adjacent property, for conditions that might affect crop production, or be negatively impacted by crop production. For example, insect pest or disease immigration, drift from or onto the crop, residual herbicide history of the field, excessive shade, proximity to roads leading to waste collection sites, proximity to golf courses or driving ranges, etc.</td>
<td>Interview What were the neighboring activities and potential impacts on or of crop production identified?</td>
<td>Characteristics include: i) Insect/ disease migration ii) Drift from or onto the crop iii) Residual herbicide history iv) Excessive shade v) Other</td>
</tr>
</tbody>
</table>

If you answer yes to question 24:

- Describe in the interview how you determine if a field is suitable for potato production in that cropping year and if there is any potential impact on or from neighboring areas. Comments could include:
 - Previous crops (herbicide carryover, pest host), rotation length, powerlines/houses to impact aerial applications, canal/waterway adjacent or through field, proximity to other potato fields/crops/natural areas that harbor pests to potatoes. In addition, proximity to sources of foreign material such as golf course, landfill, or major roads are considered in deciding suitability of field.
 - Wind patterns, field topography, soil type, availability of water.

If you answer no to question 24:

Continue on to next question.
Global position system (GPS) navigation can be used to improve the following farm operations providing cost savings by increasing efficiency and conserving inputs:

If you answer a) b) or c), examples to describe in the interview include:

a) General tillage, minimizing overlap and skips in the field. Reducing a tillage step. No hilling operation prior to planting. Cultivation (dammer-diking) to minimize crop damage.

b) Planting to optimize row and seed spacing

c) For designating, then applying to specific regions of fields for variable rate fertilizer, fumigants, etc. Reducing overlap and skips when applying crop protection chemicals including insecticide, fungicide, and herbicides. Rate controllers for field application of crop protection chemicals.

If you answer d):

Continue on to next question.
<table>
<thead>
<tr>
<th>No.</th>
<th>Sustainable Practice: Sustainable Farming</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
</table>
| 26 | Yes or No
All pesticide and nutrient application equipment is appropriate for use and calibrated annually or more frequently if recommended by manufacturer’s instruction **D** | Application equipment includes seed treaters, in-furrow applicators, ground applicators (including side dressers), chemigation equipment, aerial applicators, storage pilers, etc. Please find example documentation under PSI Sustainability Audit Information at https://www.uidaho.edu/cals/potatoes/food-and-farm-safety. | Documentation | Written or electronic records of application equipment calibrations done within the last year.
Or
Third-party applicator license |

If you answer yes:

- And calibrate equipment, show records (see below for example or create own record).
- or use a third party, list license number, expiration date and name of certified applicator.

See examples of calibration:

http://extension.missouri.edu/p/G1270

Also, pesticide license information for your third party applicator can be found on-line for licensed applicators:

Washington: http://agr.wa.gov/PestFert/LicensingEd/Search/

Oregon: http://oda.state.or.us/dbs/licenses/search.lasso?&division=pest

Idaho: https://agri.idaho.gov/AGRI/Categories/Pesticides/licensing/indexApplicatorInformation.php

If you answer no:

Continue on to next question.
Equipment Calibration Log

<table>
<thead>
<tr>
<th>Date Calibrated</th>
<th>Equipment Name</th>
<th>Comments (Calibration Task)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For PSI question 26
<table>
<thead>
<tr>
<th>No.</th>
<th>Sustainable Practice: Sustainable Farming</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/ Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Yes or No Pesticide spill containment materials and clean water are readily available at pesticide mixing and application sites</td>
<td>Equipment required to contain pesticide spills and clean water are readily accessible from where pesticides are mixed and applied.</td>
<td>Interview What spill containment and clean up equipment and materials do you have available at mixing and application sites?</td>
<td>Spill containment material could include: i) Shovel ii) Absorbent material iii) Source of water iv) PPE v) Container for contaminated material vi) Other</td>
</tr>
</tbody>
</table>

If you answer yes:

- Describe in the interview where spill containment materials are located.
- A spill kit should be available wherever pesticides are stored or handled. A spill kit can be purchased or easily assembled and should contain the following items:
 - Telephone numbers for emergency assistance.
 - Personal protective clothing and equipment (gloves, footwear, and apron that are chemically resistant; disposable coveralls; protective eyewear; and a respirator).
 - Containment “snakes” or "tubes" to confine the leak or spill to a small area.
 - Absorbent materials, such as spill pillows, absorbent clay, kitty litter, activated charcoal, and vermiculite.
 - Plastic cover for dry spills.
 - A spray bottle filled with water to mist dry spills.
 - "Caution tape“ to isolate the area.
 - A shovel, broom, and dustpan.
 - Heavy duty disposal bags with ties.
 - Duct tape—a universal tool.
 - Sturdy plastic container that will hold the entire volume of the largest pesticide container being handled and that can be tightly closed; can also be used to store the contents of the spill kit.
 - A permanent marker to write the name of the spilled pesticide on the container.

If you answer no:

 Continue on to next question.
<table>
<thead>
<tr>
<th>No.</th>
<th>Sustainable Practice: Sustainable Farming</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/ Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Yes or No Pesticide containers are disposed of according to all applicable legal requirements. Disposable pesticide containers are triple rinsed. Refillable pesticide containers are handled as required by the manufacturer or local distributor</td>
<td>To avoid excessive pesticide residue on the inside of empty containers, reusable containers (e.g., plastic jugs) are re-rinsed with clean water three times in succession. Each time, the rinsate is added to the sprayer tank. Third-party contractors, e.g., custom applicators, are under the same requirement.</td>
<td>Interview What is the procedure for disposing of pesticide containers?</td>
<td>Practices include: i) Containers are triple washed ii) Returned to the manufacturer iii) Other disposal/recycling program is used</td>
</tr>
</tbody>
</table>

If you answer yes:

Describe in the interview your pesticide container disposal program. Common practices include:

- Pesticides no longer in use are properly disposed of by returning to the manufacturer or disposal through hazardous waste disposal companies or local/regional disposal programs. WSDA, OSDA and ISDA have pesticide container recycling programs. See question 5.

- Disposable containers must be triple rinsed, with rinsate added to the spray tank, and containers, made to not hold contents (punctured, cut out bottom of container) and recycled or disposed of in land fill.

- Do not re-use pesticide containers for anything! Including markers or trash barrels.

Recycling of disposable containers available through: http://agriplasinc.com/

If you answer no:

Continue on to next question.
<table>
<thead>
<tr>
<th>No. 4.4</th>
<th>Sustainable Practice: Sustainable Farming</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Yes or No Farm drift management plans are written and readily accessible</td>
<td>Written drift management plans should include the following components: staff roles and responsibilities; training protocol for staff; information to help applicator to determine when weather conditions are unsafe for specific types of pesticides; information to help applicator select or adjust formulations, additives, equipment, techniques, or other options to reduce drift; and contact information for those requiring notification if unexpected drift has occurred.</td>
<td>Documentation</td>
<td>Written drift management plan must include: i) Staff roles and responsibilities ii) Training protocol for staff iii) Information to help applicator to determine when weather conditions are unsafe for specific types of pesticides iv) Information to help applicator select or adjust formulations, additives, equipment, techniques, or other options to reduce drift contact v) Information for those requiring notification if unexpected drift has occurred.</td>
</tr>
</tbody>
</table>

If you answer yes:

- Show a written farm drift plan. It must include employee responsibilities, training protocol for employees, how to determine appropriate weather conditions, options to minimize drift, and protocol if off-target drift occurs. Also be able to describe the conditions that lead to an air inversion.
 - An example that could be adapted:

Note: Pesticide labels and local laws may be conflicting on maximum wind speed allowable for applying pesticides. When a conflict exists, use slowest allowable wind speed as the maximum.

If you answer no: Continue on to next question.
<table>
<thead>
<tr>
<th>No. 4.5</th>
<th>Sustainable Practice</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Informational Only: does not impact score. Yes or No Has farm been cited by a regulatory agency for off-target application of agrochemicals within the last three years?</td>
<td>Informational Only: does not impact score Off-target applications may include drift incidents or applications to the wrong site.</td>
<td>Interview Please describe any violations for off-target pesticide applications or drift in the past three years.</td>
</tr>
</tbody>
</table>

Only need to answer yes or no (and interview question if yes) for information purposes. This question will not be audited.

<table>
<thead>
<tr>
<th>No. 4.6</th>
<th>Sustainable Practice: Sustainable Farming</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/ Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Yes or No Weather forecast is considered prior to nutrient applications to minimize off-target movement</td>
<td>Off-target movement may include drift during application or runoff or leaching after application due to heavy rain.</td>
<td>Interview What factors do you consider prior to nutrient applications to minimize off-target movement?</td>
<td>Off target considerations include: i) Drift during application ii) Runoff and/or leaching after application due to heavy rain. iii) Runoff with snowmelt iv) Other</td>
</tr>
</tbody>
</table>

If you answer yes:
- Describe how you minimize off-target movement, for example where you get your weather forecast or current weather information and how you use this information to minimize nutrient drift, runoff and/or leaching.
- An example would be to not apply if heavy rain or snow is expected or wind speeds are above appropriate levels for proper distribution.
 - If conditions arise that may favor off-site movement to occur, wait to make the application.

If you answer no: Continue on to next question.
Sustainable Practice: Sustainable Farming

<table>
<thead>
<tr>
<th>No.</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>Yes or No Farm minimizes run-off of pesticides, fertilizers, manure and soil amendments by not applying on water-logged, steep, cracked, compacted or frozen ground.</td>
<td>Where applications subject to runoff are made, appropriate measures are taken to reduce runoff such as buffers or filter strips.</td>
<td>Interview What ground conditions on the farm do you avoid when applying inputs to minimize run-off?</td>
</tr>
</tbody>
</table>

If you answer yes:

Describe in the interview that applications are not made when conditions are favorable to runoff. Possible conditions include:

- Water-logged ground (greater than 100% field capacity of soil; or less if application method would be conducive to drainage)
- Steep ground (greater than or equal to 20% slope)
- Compacted ground
- Frozen ground

If you answer no:

Continue on to next question.
<table>
<thead>
<tr>
<th>No. 5.1</th>
<th>Sustainable Practice: Sustainable Farming</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/ Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>Mark all that apply:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Farm staff member or crop advisor:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) Can identify the major and emerging insect pests, diseases and weeds for the region (level 1)</td>
<td></td>
<td>Interview</td>
<td>If individual is available:</td>
</tr>
<tr>
<td></td>
<td>b) Understands the life cycle of major and emerging insect pests, diseases and weeds for the region (level 2)</td>
<td></td>
<td>Please identify who on the farm, or contracted for the farm, is able to:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) Can identify beneficial insects, such as natural predators of crop insect pests (level 3)</td>
<td></td>
<td>a) visually identify the major and emerging insect pests, diseases and weeds present in the region</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d) None of the above (0 points)</td>
<td></td>
<td>b) describe the life cycle of the major and emerging insect pests, diseases and weeds present in the region typically require a control measure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>At least one individual employed by or under contract with the farm can:</td>
<td>c) visually identify the major beneficial insects present in the region, for example, lady beetles, lacewings, syrphid flies, tachinid flies, predatory mites, bigeyed bugs, minute pirate bugs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>a) visually identify the major and emerging insect pests, diseases and weeds present in the region</td>
<td>If the specified individual is not available, ask those present to describe the most recent event they are aware of when that individual performed that role.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) describe the life cycle of the major and emerging insect pests, diseases and weeds present in the region that typically require a control measure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c) visually identify the major beneficial insects present in the region, for example, lady beetles, lacewings, syrphid flies, tachinid flies, predatory mites, bigeyed bugs, minute pirate bugs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you answer a) b) or c):

Name at least one person, either on the farm or contracted by the farm, who is able to a) identify the major and emerging pests, diseases and weeds in the region, b) understands their lifecycles, and c) can identify natural predators of pests. If that person is present, they should be prepared to explain their role and to answer the questions. If not, then those present should be prepared to describe a recent event when that person demonstrated their ability to do a) b) or c). For the latter, an example could include, your agronomist found potato psyllids in your field, knowing the life cycle of the pest, the agronomist recommended immediately applying an insecticide but not one that would harm natural predators of the psyllid.
The Northwest Potato Research Consortium Website (www.nwpotatoresearch.com) has insect and disease libraries with images of the major and emerging insect pests and diseases of potato in the PNW, and includes descriptions of the life cycles of insect pests and biology of pathogens. Weeds are not covered. The website also has images and descriptions of beneficial organisms.

Integrated Pest Management for Potatoes in the Western United States (2nd edition, 2006) is a book with images and descriptions (including life cycles) of insects, pathogens, and weeds that are found in potatoes in the Western U.S. Weeds of the West (11th edition, 2012) is a reference book with images and descriptions of weeds.

If you answer d):

Continue on to next question.
| No.
Sustainable Practice: Sustainable Farming	Reference Guide	Audit Guidance	Documentation/Interview Questions	
34	Yes or No Farm has access to Integrated Pest Management (IPM) information resources	Farm manager and farm personnel have access to IPM resources such as crop and region-specific production guides, in-season update bulletins and newsletters, association publications, industry publications, bookmarks to online resources, and Extension bulletins.	Interview What Integrated Pest Management (IPM) information resources do you use?	Describe or show examples of newsletters (email or hard copy) or bulletins that can be used as IPM resources.

If you answer yes:
- Describe or show examples of newsletters (email or hard copy) or bulletins that can be used as IPM resources. Although not required, you can print some examples and attach here.

Oregon - https://catalog.extension.oregonstate.edu/search/content/potato

Sign up for Potato IPM Newsletters in the Pacific Northwest:
- WSU Potato Pest Alerts – for the Columbia Basin in Washington
 http://wsu.us13.list-manage.com/subscribe?u=2eff8714011ff4bfba18a0704&id=9dc1a6349a
- Potato Update – from OSU Hermiston
 http://oregonstate.edu/dept/hermiston/trap-reports
- Pacific Northwest Pest Alert Network – for Idaho and Malheur County
 http://pnwpestalert.net/user/join/
- Potato Bytes – from OSU Klamath Falls
 http://oregonstate.edu/dept/kbre
- Western Regional IPM Center:
 http://westernipm.org/

If you answer no:
Continue on to next question.
35 Yes or No

Noxious weeds in areas bordering potato fields are controlled, by mowing, cultivation, burning (when recommended as a Best Management Practice) or chemical methods.

Noxious weeds (as defined by local authority as damaging to humans, crops or ecosystems) immediately adjacent to fields are not allowed to produce seed by mowing, cultivation, burning (when recommended as a Best Management Practice) or chemical methods.

Interview

How do you control noxious weeds on field edges?

Measures include:

i) Herbicide application
ii) Mowing
iii) Cultivating
iv) Other

If you answer yes:

- Describe in the interview how you control noxious weeds on field edges. Control measures can include applying herbicides, mowing weeds before they go to seed, cultivation, or burning (if it is allowed and recommended as a management practice).

For more information about noxious weeds:

If you answer no:

Continue on to next question.
<table>
<thead>
<tr>
<th>No. 5.4</th>
<th>Sustainable Practice: Sustainable Farming</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>Mark all that apply Management decisions regarding soil-borne pests or diseases are based on: a) Historical experience (level 1) I b) Documented results of monitoring, scouting or sampling (level 3) D c) None of the above (0 points)</td>
<td>Soil-borne pest and disease management decisions (e.g., fumigation, potato variety selection, cover crops) are determined by monitoring, scouting or sampling for pests or diseases to improve timing and results. For example, soil samples are taken and checked for nematodes prior to planting potatoes in ground with potential for nematode problems. Please find example pest scouting documentation under PSI Sustainability Audit Information at https://www.uidaho.edu/cals/potatoes/food-and-farm-safety.</td>
<td>Interview a) How do you determine when and how to take action against soil-borne pests and diseases? b) Pest scouting records from a month of agricultural activity within the last year.</td>
<td>a) i) Based on pest patterns from previous years b) Pest scouting records from a month of agricultural activity within the last year.</td>
</tr>
</tbody>
</table>

This question addresses management of soil-borne pests (ex. wireworms, nematodes, voles) and pathogens associated with common diseases (ex. Verticillium wilt, black dot, Fusarium, Rhizoctonia, white mold, silver scurf, powdery scab, common scab, pink rot, Pythium leak).

If you answer:

a) Explain how you decide when and how to control soil-borne pests and diseases. For example, decisions are based, in part, on field history (past problems) or scouting/sampling.

b) Show documents or records of previous monitoring, scouting, or soil tests for soil-borne pests (nematodes) and/or pathogens (Verticillium) or wireworm baiting records. See document used for question 38.

If you answer c):

Continue on to next question.
<table>
<thead>
<tr>
<th>No.</th>
<th>Sustainable Practice: Sustainable Farming</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
</table>
| 37 | Yes or No | Methods of non-chemical pest control include tilling, thermal control, bio-herbicides, rolling, releasing organisms that feed on pests, soil solarization, green manures, crop rotation, eliminating cull piles or removing weeds that could carry potato diseases or be habitats to insect pests. | Interview What non-chemical methods have you used to control pests in the past year? | Methods of non-chemical records including:
 i) Tilling
 ii) Thermal control
 iii) Bio-herbicides
 iv) Rolling
 v) Releasing organisms that feed on weeds
 vi) Soil solarization
 vii) Green manures
 viii) Crop rotation
 ix) Eliminating cull piles
 x) Removal of weeds that could carry potato disease or be habitats to insect pests
 xi) Other |

If you answer yes:

- Describe in the interview the non-chemical methods you use to control weeds in potato fields. This does not exclude the combined use of non-chemical weed controls and application of herbicides. Non-chemical methods could include tillage, cultivation, hand-weeding, rolling, flaming, utilizing bio-herbicides (use of plow-down Brassica cover crops or application of Brassica seed meals; other available products), incorporating use of a biocontrol (release of organisms that feed on weeds), and maintaining a vigorous potato canopy that outcompetes weeds.

If you answer no:

Continue on to next question.
<table>
<thead>
<tr>
<th>No.</th>
<th>Sustainable Practice: Sustainable Farming</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>Sustainable Practice: Sustainable Farming</td>
<td>Reference Guide</td>
<td>Audit Guidance</td>
<td>Documentation/Interview Questions</td>
</tr>
</tbody>
</table>
| | Choose the single best answer from the options below: Pest scouting, sampling and monitoring is performed:
a) In random fields across the farm (level 1) I
b) Systematically in potato fields and scouting is adjusted according to pest, crop stages and high risk areas (level 2) D
c) Systematically in potato fields on a weekly basis during the growing season (level 3) D
d) None of the above (0 points) | a) All farm fields are randomly selected for pest scouting once during the season.
b) Potato fields are scouted systematically according to a schedule dictated by crop phenology, pest life cycles and recommended by local/regional experts. High risk sites within the farm are scouted, e.g., new ground brought into cultivation, field edges near Colorado potato beetle overwintering sites or fields planted to potatoes the prior season. Please find example pest scouting documentation under PSI Sustainability Audit Information at https://www.uidaho.edu/cals/potatoes/food-and-farm-safety.
c) Once a week during the growing season, potato fields are scouted systematically using a planned travel path (e.g., X, W, Z pattern) to ensure a representative sample and accurate determination of action thresholds. | Interview
a) How do you randomly select fields for pest scouting, sampling and monitoring?
Documentation
b) Using a farm/field map/diagram for reference, please identify and explain high risk areas that have been selected for pest scouting.
c) **Documentation:** Written or electronic records documenting scouting and control results for the past year, including scouting date, person scouting, location, pest/disease type and counts. Timing is based on crop or pest life cycle. | b) Documentation: Written or electronic records documenting scouting and control results for the past year, including scouting date, person scouting, location, pest/disease type and counts. Scouting frequency is weekly during the growing season. |

If you answer a) b) or c):

a) Describe in the interview how you randomly select fields for scouting, sampling and monitoring for pests. Random indicates there is no selection criteria and no at-risk areas are specifically scouted or monitored.

b) Describe by showing on a farm map and the high risk areas where you expect to find certain pests. Discuss neighboring crops and pests that might move from them into potatoes. Discuss where you grew potatoes last year and the pests that might emerge from those fields and move into the current crop.
b) and c) Be prepared to show documents of your pest and disease scouting records. Example of record document is given on next page. Ensure the document has the field identification, date, scout’s name, pest monitored, and prevalence (count or rating) of pest on the record. You must be able to show weekly scouting records to get credit for c).

If you answer d):

Continue on to next question.
<table>
<thead>
<tr>
<th>Field ID</th>
<th>Date</th>
<th>Scout’s Name</th>
<th>Pest observed</th>
<th>Count or rating</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For PSI questions 36, 38
If you answer yes:

- Discuss in the interview how you are a grower-cooperator in a regional scouting program that publishes findings, or discuss how you notify neighbors, field representatives, university personnel or newsletter authors when a pest occurs on your farming operation that has community impact (e.g., psyllids, late blight).

Potato IPM Newsletters in the PNW:

WSU Potato Pest Alerts for the Columbia Basin in Washington http://wsu.us13.list-manage.com/subscribe?u=2eff8714011ff4bfba18a0704&id=9dc1a6349a

Potato Update from OSU Hermiston http://oregonstate.edu/dept/hermiston/trap-reports

Pacific Northwest Pest Alert Network for Idaho and Malheur County http://pnwpestalert.net/user/join/

Potato Bytes from OSU Klamath Falls http://oregonstate.edu/dept/kbrec

If you answer no:

Continue on to next question.
<table>
<thead>
<tr>
<th>No.</th>
<th>Sustainable Practice: Sustainable Farming</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Yes or No Pesticide application decisions and timing are based on techniques such as action thresholds, degree-day models and decision-support/predictive systems where available.</td>
<td>Where available and recommended by Extension or other regional experts, action thresholds are used to determine whether or not and when to take action against pests such as Colorado potato beetle, aphids, leafhoppers, nematodes. Where models are recommended to estimate when pests or diseases will reach a critical time period, for example, disease inoculum is present and plants are susceptible, or insect pests reach a damaging life stage or migrate into a region, these are used to determine when to take action.</td>
<td>Interview Please describe any thresholds, degree day models or decision support/predictive systems that you use to guide pesticide application decisions</td>
<td>Systems include: i) Thresholds ii) Degree-day models iii) Blight prediction tools iv) Other decision tools</td>
</tr>
</tbody>
</table>

If you answer yes:

- Describe in the interview how you utilize support/predictive systems. An example is if you subscribe to one of the pest alert newsletters in the Pacific Northwest; receive information about late blight, certain insect pests, and other problems that show up in potatoes in the region. Degree-day models and blight-prediction models are often included in the alerts. Although not required, print out a copy of one of these reports to show as an example.

If you answer no:

Continue on to next question.
<table>
<thead>
<tr>
<th>No.</th>
<th>Sustainable Practice: Sustainable Farming</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>Choose the single best answer from the options below: Biological controls recommended to manage pests, e.g., green manures used as biofumigants or weed suppressants, introduced natural enemies, biopesticides (living organisms or products of living organisms): a) Have been tested on the crop (level 2) D b) Are used on at least 25% of the potato crop acres (level 3) D c) Are used on at least 50% of the potato crop acres (level 4) D d) None of the above (0 points)</td>
<td>Biological controls include living organisms or products of living organisms such as releasing predatory insects or parasites, or applying pesticide formulations containing living organisms or products of living organisms. For example, parasitic insects released, Bacillus thuringiensis (Bt) formulations, green manures used as biofumigants to suppress Verticillium wilt. For a list of biopesticide active ingredients, see: https://www.epa.gov/ingredients-used-pesticide-products/biopesticide-active-ingredients. For an international directory of biopesticides, see: https://www5.agr.gc.ca/MPDD-CPM/search-recherche.do?lang=eng. For more information about biological controls, please refer to: http://anbp.org/index.php/what-is-biocontrol. a) At least one biological input has been tested on part of the potato crop for insects, diseases, weeds or nematodes in the past three years. b) and c) Biological methods are used on the portion of acreage indicated.</td>
<td>Documentation includes measures such as: i) Biopesticide application records ii) Green manure production or application records iii) Natural enemy application records or purchase receipts iv) Other</td>
<td></td>
</tr>
</tbody>
</table>

If you answer a) b) or c):

Be prepared to show by field documentation (acres for each field) that biological products to control or suppress pests were used on either

a) Part of the crop/field up to 24% of your acreage.
b) On 25 to 49% of your crop.
c) Above 50% of your crop acres.

- Show pesticide records or label of bio-pesticide applications or other documentation (green manures planted or receipt of predatory insects that were released). Additional biological methods could be described and documented.

Using Green Manures in Potato Cropping Systems:
https://research.libraries.wsu.edu:8443/xmlui/bitstream/handle/2376/6283/FS218E.pdf?sequence=1

Biological Control: https://biocontrol.entomology.cornell.edu/purpose.php

If you answer d):

 Continue on to next question.
<table>
<thead>
<tr>
<th>No. 5.10</th>
<th>Sustainable Practice: Sustainable Farming</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>Yes or No In areas bordering potato fields, pests are partially controlled through chemical treatment or non-chemical management (e.g., mowing, disking) of alternate hosts or sites</td>
<td>At least once during the past year, insect, disease, weed or other pest management included management actions are taken on edges of fields planted to potatoes, e.g., pesticide applications or non-chemical management tactics were used to suppress alternate hosts such as nightshade.</td>
<td>Interview What control measures have you taken to control alternate hosts on potato field edges?</td>
<td>Measures include: i) Mowing insect and disease hosts ii) Disking insect and disease hosts iii) Chemical treatment of insect and disease hosts iv) Other</td>
</tr>
</tbody>
</table>

If you answer yes:

- In the interview, talk about how you control potato insects, diseases, and/or weeds in fields that are not planted to potatoes or along field edges of potato fields. Common examples include: mowing, tilling, or applying herbicide to field edges or non-potato planted areas, or identifying host plants and removing by tillage, herbicide or controlling pest on host plant(s) via pesticide application.

If you answer no:

Continue on to next question.
<table>
<thead>
<tr>
<th>No.</th>
<th>Sustainable Practice: Sustainable Farming</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.11</td>
<td>Yes or No Has treated seed, an in-furrow application or a banded application been made when a pesticide application was needed? D</td>
<td>Banded application involves applying the pesticide to the planted row. Please find example documentation under PSI Sustainability Audit Information at https://www.uidaho.edu/cals/potatoes/food-and-farm-safety.</td>
<td>Documentation</td>
<td>Pesticide application records showing treated area as fraction of field area</td>
</tr>
</tbody>
</table>

If you answer yes:

- Show pesticide application records (See question 6). This will show use of seed treatment, band or in-furrow application of a pesticide.
- Agrian, Land.db or other similar program will typically have this information.
- Forms are also available from WSDA http://agr.wa.gov/PestFert/Pesticides/docs/RecForm4226.pdf.

If you answer no:

Continue on to next question.
<table>
<thead>
<tr>
<th>No.</th>
<th>Sustainable Practice: Sustainable Farming</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/ Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>Yes or No Has a spot spray pesticide application been made within a field, when a pesticide application was required, to reduce the need for whole field applications? D</td>
<td>Spot spray application involves directly spraying an area to reduce the need for whole field applications. Please find example documentation under PSI Sustainability Audit Information at https://www.uidaho.edu/cals/potatoes/food-and-farm-safety.</td>
<td>Documentation</td>
<td>Pesticide application records showing treated area as fraction of field area</td>
</tr>
</tbody>
</table>

If you answer yes:

- Show pesticide application records (See question 6). The record should note that only a fraction of the total acreage was treated. Include spot spray pesticide applications made both within the field and/or on field edges.
- Land.db, Agrian or other similar program will typically have this information.
- Forms are also available from WSDA http://agr.wa.gov/PestFert/Pesticides/docs/RecForm4226.pdf
 Section (6.) on the form allows you to indicate the total area treated (in acres, etc.) but you should also note the size of the field and calculate the % of treated area.

If you answer no:

Continue on to next question.
<table>
<thead>
<tr>
<th>No. 5.13</th>
<th>Sustainable Practice: Sustainable Farming</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/ Interview Questions</th>
</tr>
</thead>
</table>
| 45 | Mark all that apply | a) The pesticide is approved for use on potatoes and follows Maximum Residue Limit (MRL) guidelines. | Interview | a) i) Noting approved crop list on label
| | When selecting a pesticide for potato crop, grower considers: | b) Acute toxicity to mammals is considered using signal word on label (Danger, Warning, Caution). Other factors considered in evaluating pesticides for chronic toxicity to mammals may include SDS information on chronic hazards, carcinogenicity rating by US EPA, international agency for research on cancer and/or California Proposition 65, reproductive/developmental toxicity (EPA, CA Prop 65) or endocrine system hazard rating. Most toxic products are targeted for use reduction. | a) Do you consider label restrictions to ensure the product is approved for use on potatoes? Are you applying at rates that follow MRL guidelines? | b) i) Noting signal word on label (Danger, Warning, Caution) and selecting those least toxic
| | a) Label restrictions and Maximum Residue Limit (MRL) guidelines as per market designation (level 2) | c) Toxicity to beneficial insects and aquatics and makes efforts to reduce use of most toxic (level 3) | b) How do you consider toxicity to mammals? | ii) Reviewing SDS for information chronic hazards, carcinogenicity or endocrines system hazard rating and selecting least toxic
| | b) Toxicity to mammals (by pesticide signal word) and makes efforts to reduce use of most toxic (level 3) | d) Site-specific features that may increase pesticide risk (such as close proximity to surface water, public roadways, schools, etc.), and makes efforts to reduce the use of pesticides with the greatest risk (level 4) | c) How do you consider toxicity to beneficial insects and aquatics? | iii) Other
| | c) Toxicity to beneficial insects and aquatics and makes efforts to reduce use of most toxic (level 4) | d) Site-specific features that may increase pesticide risk (such as close proximity to surface water, public roadways, schools, etc.), and makes efforts to reduce the use of pesticides with the greatest risk (level 4) | d) What site-specific features on the farm increase pesticide risk? | c) i) Reviewing pesticide label for insect or aquatic warning signs
| | d) Site-specific features that may increase pesticide risk (such as close proximity to surface water, public roadways, schools, etc.), and makes efforts to reduce the use of pesticides with the greatest risk (level 4) | e) None of the above (0 points) | | ii) Using pesticide risk estimation tools
| | e) None of the above (0 points) | | c) i) Reviewing pesticide label for insect or aquatic warning signs
| | | | ii) Using pesticide risk estimation tools
| | | | iii) Reviewing environmental toxicity data on active ingredients
| | | | iv) Other

If you answer a):

- Be prepared to explain how you review consideration in the use of a pesticide on potatoes such as listing of the crop on the label and ensuring the pesticide is approved for use from processors or other customers. A
list is often provided to contract growers on registered pesticides that cannot be used due to lack of MRL acceptance in export countries. A global MRL database can be found at https://www.globalmrl.com/.

If you answer b):

- Be prepared to explain how you consider toxicity to mammals when selecting a pesticide to use. They will expect you to mention the signal word (Caution, Warning, or Danger) on the label (see http://www.npic.orst.edu/factsheets/signalwords.pdf or https://edis.ifas.ufl.edu/pdffiles/PI/PI13700.pdf). Products with the DANGER signal word are the most toxic and those with the CAUTION signal word are the least toxic to mammals. If you marked a) you probably avoid using products with the DANGER signal word.

If you answer c):

- Explain how you consider toxicity to beneficial insects and aquatics when selecting a pesticide to use. In this case, you could mention scanning the product label for information about toxicity to non-targeted insects or aquatic organisms, or refer to Extension production guides that include information on toxicity of pesticides to beneficial insects. Pesticide labels include environmental hazard statements, including some very specific statements about toxicity to non-target organisms (like aquatic algae, animals and insects; birds; mammals; bees and other non-target insects). It is legal to apply products that have these hazard statements, but only in the manner described on the label (see http://edis.ifas.ufl.edu/pdffiles/PI/PI13600.pdf). Discuss avoidance in using products that have environmental hazard statements for bees or aquatic mammals and insects. If you use pesticide risk assessment tools, then you can mention their output relative to non-target organisms.

If you answer d):

- Describe sites on your farm that pose a greater risk to inadvertent pesticide exposure; i.e. site-specific features that increase pesticide risk. Think about fields that are in close proximity to surface water, public roads, schools and hospitals, or other environmentally sensitive areas. The environmental hazard statements on the label usually include information about protecting water sources and the potential of the product to drift or runoff.
Resources: Understanding Pesticide Labels

https://pesticidestewardship.org/homeowner/how-to-read-the-label/
http://extensionpublications.unl.edu/assets/pdf/g1955.pdf

If you answer e):

Continue to the next question.
<table>
<thead>
<tr>
<th>No.</th>
<th>Sustainable Practice: Sustainable Farming</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/ Interview Questions</th>
</tr>
</thead>
</table>
| 5.14 | Yes or No Pesticide uses at greatest risk of resistance have been identified and evaluated, and farm uses one or more strategies to delay resistance | Pesticide uses are evaluated for potential for resistant pests to develop. Strategies to delay resistance are implemented such as rotating annual crops, rotating or combining modes of actions for products most at risk of resistance and rotating chemical controls with non-chemical controls. | Interview What measures are taken to reduce pesticide resistant risks? | Measures include:
i) Rotate or combine modes of action for pesticide uses most at risk of resistance
ii) Rotating crops
iii) Establish refuges (untreated areas)
iv) Use maximum application rates for pesticide uses most at risk where appropriate
v) Rotate chemical controls with non-chemical methods where appropriate
vi) Other |

If you answer yes:

Be prepared in the interview to describe your resistance management strategy on the farm. Common information to include:

- Awareness of pesticide uses, i.e., pest and pesticide combinations, most at risk of resistance, e.g., Colorado potato beetle and neonicotinoid insecticides.
- Follow label requirements and rotate modes of action (knowing IRAC, HRAC, FRAC codes); “sandwiching” same mode of action against a target pest.
- Combining multiple modes of action in a single application.
- Integrate cultural methods with chemical methods
- Crop rotation

Additional resources:

- Insecticide Resistance Action Committee (IRAC) Website: www.irac-online.org
- Fungicide Resistance Action Committee (FRAC) Website: www.frac.info
- Herbicide Resistance Action Committee (HRAC) Website: www.hracglobal.com

If you answer no: Continue on to next question.
This question refers to variability within a field and if you take soil nutrient samples to test for pre-plant recommendations, and use the results to apply prescribed nutrient needs for the crop using variable rates.

If you answer a): Attach soil test results collected randomly from the field for a composite result.

If you answer b), c), d), e), f) and g):

- **Attach** grid or zone soil test results here that include date taken and field names.

 b) Show that some of the potato fields were grid sampled.
 c) Show that all potato fields were grid sampled.
 d) Show that all cultivated areas on the farm were grid sampled.
 e) Show that some of the potatoes fields were zone or smart sampled.
 f) Show that all potato fields were zone or smart sampled.
 g) Show that all cultivated areas on the farm were zone or smart sampled.
Resource for Idaho:
http://www.extension.uidaho.edu/nutrient/pdf/Potato/Nutrient%20Management%20Guidelines%20for%20Russ
et%20Burbank%20Potatoes.pdf

Soil testing methods are described in the above publication. Determine the best design, number and location of soil tests per field and number of fields tested using this design. Submit samples to certified soil testing laboratory.

If you answer h):

 Continue on to next question.
<table>
<thead>
<tr>
<th>No. 6.2</th>
<th>Sustainable Practice: Sustainable Farming</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
</table>
| 48 | Choose the single best answer from the options below: Based on results of soil sampling, variable rate application is used on:
 a) Potash and lime applications on some potato fields **D** (level 1)
 b) Potash and lime applications on all potato fields **D** (level 2)
 c) N, P or K on some potato fields **D** (level 3)
 d) N, P or K on all potato fields **D** (level 4)
 e) None of the above **D** (0 points) | Soil test results are used to determine application amounts within fields. Please find example documentation under PSI Sustainability Audit Information at https://www.uidaho.edu/cals/potatoes/food-and-farm-safety. | Documentation Nutrient application records from the past year. | |

If you answer a), b), c) or d):

- Use documents from question 8 to answer which nutrients were applied via variable rate nutrient application. If available, insert documents showing the variable rate application records detailing the areas and the amount of nutrient applied.

If you answer e):

Continue on to next question
In-season crop nutrition sampling, e.g., petiole or soil testing, is performed D.

To ensure adequate nutrition, sampling and testing is performed after the crop has emerged where this practice is recommended by regional experts. For example, leaf petiole sampling is used to determine nitrogen needs during the growing season.

Documentation

Petiole or soil test results taken during the last crop season, including date(s).

This question refers to in-season nutrient sampling. The below website and publication are good resources for petiole and soil testing methods and recommendations.

If you answer yes:

- Attach petiole and/or in-season soil tests here.

Resources:

- www.extension.uidaho.edu/nutrient/crop_nutrient/potato.html

If you answer no:

Continue on to next question.
Remote sensing technology is used to monitor crop health status. For all potato fields, plant health is assessed by aerial photography, satellite imagery or other technology designed to evaluate crop health indicators from a distance. Results of work performed by the remote sensing technology (e.g., aerial photo, satellite image), taken from analysis done within the last year.

If you answer yes:

- Show documents that demonstrate the use of remote sensing technology (e.g., aerial photo, satellite image, drone/UAV) taken within the last year. Show copies of the photographs either digitally or on paper.

If you answer no:

Continue on to next question.
Sustainable Practice: Sustainable Farming

<table>
<thead>
<tr>
<th>No. 6.5</th>
<th>Sustainable Practice: Sustainable Farming</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>Yes or No Nutrient application rates reflect available nutrients and projected crop need</td>
<td>Nutrient application rates are determined by methods such as soil sampling, foliar analysis, nutrient crediting from prior to concurrent crops, or other science-based techniques.</td>
<td>Documentation</td>
<td>Documentation can include: i) Petiole/soil test results ii) Nutrient management Plan iii) Records on crop grown in previous years iv) Records on nutrient application in previous years</td>
</tr>
</tbody>
</table>

If you answer yes:

- Show pre-plant soil test and nutrient calculations to be used on current crop based upon variety, soil type, rotational crop, yield goal. See questions 8, 47, and 48.

- Attach in-season soil/petiole tests or see question 49.

Additional resource:

If you answer no:

Continue on to next question.
If you answer yes:

- See questions 8, 48, and 49 for nitrogen management and documentation.
- If slow release fertilizers were used, denote on nutrient management plan. Indicate timing and type of nutrient application (e.g., fertigation, aerial, ground rig) type to show smaller applications were made.

If you answer no:

Continue on to next question.
<table>
<thead>
<tr>
<th>No. 6.7</th>
<th>Sustainable Practice: Sustainable Farming</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/ Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Yes or No Nitrogen-contributing crops, i.e., legumes (soybeans, alfalfa, lentils, peas, etc.), are included in the rotation as partial alternatives to commercial fertilizer prior to at least 25% of the current potato crop</td>
<td>On at least 25% of the current potato crop, one nitrogen contributing crop, such as legumes, or one nitrogen recovering crop, such as mustard or sudan, have been grown since last potato crop.</td>
<td>Documentation</td>
<td>Crop rotation records showing legume crops grown, such as: i) Soybeans ii) Alfalfa iii) Lentils iv) Peas v) Other legumes</td>
</tr>
</tbody>
</table>

If you answer yes:

- Show document of previous year(s) crop records for current potato fields when legumes (nitrogen contributing; such as alfalfa, beans, peas, vetch) or nitrogen recovering crop (green manure crops; such as mustards/brassicas, sorghum sudangrass, triticale) were grown. List potato fields and at least 25% of the fields must have had one of these crops in rotation prior to potatoes being planted.

Additional Resource:

If you answer no:

Continue on to next question.
If you answer yes:

Be prepared in the interview to describe the techniques you use when applying nutrients to avoid cropland losses and maximize uptake. Common information to include:

- Broadcasting and quickly incorporating – this strategy is particularly important to minimize nitrogen volatilization from urea and other N fertilizers, including manure. See also: Management to Minimize Nitrogen Fertilizer Volatilization, MSU Extension Bulletin EB0209. http://msuextension.org/publications/AgandNaturalResources/EB0209.pdf
- Applying in a sideband or in furrow – placement of fertilizer near the root system where uptake occurs.
- Applying to a growing crop – that is actively taking up nutrients.
- Fertigation – also called spoon-feeding, where nutrients can be applied in small increments as plants need them.

If you answer no:

Continue on to next question.
Mark all that apply
The farm has developed and implemented:

- a) A soil erosion prevention plan (level 2) D
- b) A nutrient management plan (level 2) D
- c) A whole farm soil and water conservation plan to maintain/improve soil health and water quality (level 3) D
- d) A whole farm soil and water conservation plan to maintain/improve soil health and water quality that is reviewed at least once a year and updated as needed (level 4) D
- e) None of the above

Reference Guide
- a) A written soil erosion prevention plan addressing the entire farm problem areas identifies areas at risk of erosion, and includes an action plan with timetable. Soil erosion best practices can include leaving crop residue on the field, reducing tillage or using specialized tillage practices to reduce wind erosion, bale busting (adding straw/hay to erosion zones), or planting a cover crop such as winter wheat. Practices are appropriate for regional conditions including season length, soil type and weather.
- b) A written nutrient management plan addresses testing options (e.g., soil analysis, tissue (petiole) analysis) and frequency, and nutrient management strategies for optimizing nutrient inputs (e.g., fertilizer, manure, legumes) including reducing nutrient losses from runoff and/or leaching. For more information, see http://www.extension.uidaho.edu/nutrient/pdf/Potato/Nutrient%20Management%20Guidelines%20for%20Russet%20Burbank%20Potatoes.pdf or http://www.hort.cornell.edu/expo/proceedings/2016/Potato.Nutrient%20management%20for%20Potato%20production.Rosen.pdf.
- c, d) A written whole-farm conservation plan describes soil and water resources on, under and adjoining the farm, potential threats to those resources including soil and nutrient losses and chemical contamination, and details strategies and actions taken to mitigate threats including monitoring and evaluation. The plan includes goals and addresses water

Audit Guidance
- Documentation

- a) Soil erosion prevention plan containing the following:
 - i) Problem areas
 - ii) Regional best practices to avoid soil erosion from wind and water
 - iii) Action plan and timetable

- b) Nutrient management plan containing the following:
 - i) Soil analysis
 - ii) Tissue (petiole) analysis
 - iii) Nutrient management strategies for fertilizer and manure (if applicable) to reduce pollution and maximize benefits of soil fertility

- c) Conservation plan containing the following:
 - i) Identifies soil and water resources on, under and adjacent to farm
 - ii) Identifies potential threats to resources, including erosion, nutrients, irrigation, pesticide contamination
 - iii) List economically feasible measures taken to mitigate threats, including erosion control, nutrient management, water conservation, pesticide risk management, building soil health, crop rotation and tillage options
quality, soil conservation, nutrient management, water management, pest management, soil quality, crop rotation and tillage. The entire farm is addressed, problem areas are identified, and an action plan with timetable is included.

d) The farm plan is reviewed at least once a year and updated as needed.

For more information on writing a whole farm plan, see: https://s3.wp.wsu.edu/uploads/sites/2073/2014/09/Successful-Whole-Farm-Planning.pdf.

d) Conservation plan containing the above and last review/update date

If you answer a), b), c) or d):

- Be prepared to show documentation of your farm’s written soil and water conservation plan.
 - a) The plan should include strategies to reduce soil erosion on the farm. Identify problems areas and develop a soil erosion prevention plan. Most plans pay special attention to wetland areas and highly erodible land. Mitigating measures may include windbreaks and cover crops to prevent wind erosion, buffer zones surrounding wetland areas, reservoir tillage (dammer diker) to limit runoff, etc.
 - b) Include in the nutrient plan information from soil analysis (see question 47), petiole testing (see question 49), manure or compost applications (see question 11), and other results from variable rate and nutrient applications provided for questions 11, 48 and 51.
 - c) Include in the plan a comprehensive soil and water program aimed at maintaining or improving soil health and quality. It should water sources on and adjacent to the farm and potential threats to water quality. Wetland areas and creeks/stream/seepage areas on the farm should be included. Include in the plan what measures are taken to reduce contamination and erosion of water and soil sources.
o d) The plan includes all of the above but is documented that it is reviewed yearly and updated as needed. Keep a date on the document and revise the date when reviewed or updated.

- An example from Benton County, WA is located on the website www.uidaho.edu/potatoes under PSI Sustainability Audit Information/ Resources/Soil and Water Conservation Plan example.
- Contact your state conservation service for assistance in developing conservation plans specific to your farming operations:
 Idaho: https://scc.idaho.gov/
 Oregon: http://www.oregon.gov/ODA/programs/NaturalResources/SWCD/Pages/SWCD.aspx
 Washington: http://scc.wa.gov/

If you answer e):

Continue on to next question.
<table>
<thead>
<tr>
<th>No.</th>
<th>Sustainable Practice: Sustainable Farming</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/ Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>Mark all that apply</td>
<td>At least once per season, overall crop performance is evaluated, including nutrient management, irrigation management, insect pest damage, disease incidence and severity and weed presence to assess which measures worked or did not work well to maintain productivity with minimum inputs. This information is used to adjust practices.</td>
<td>Interview a) How do you evaluate overall crop performance? Documentation b)</td>
<td>a) Grower can discuss evaluating: i) Nutrient management ii) Pest management iii) Irrigation Management iv) Yields v) Other b) Document must include: i) Evaluation of factors above ii) Record of changes made iii) Impact of changes iv) Other</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

If you answer a) or b):

a) Be prepared to talk about in the interview how you evaluate the success of crop management practices on your farm. This could be an end-of-season review of management programs for nutrients, pests, and irrigation. Explain how management practices will be adjusted next year based on the review.

b) Show documents that note how management practices have been adjusted and the outcome of the adjustments. Some farms maintain this kind of information in end-of-season reports. For example, a report might note that control of a recurrent pest/disease was improved by adjusting the timing of a pesticide application. A report might note that yields were improved by modifying the amount or timing of nitrogen fertilizer applications. Another example may include having an end of season meeting agenda and minutes indicating what was discussed and intended change for following year.

If you answer c):

Continue on to next question.
If you answer yes:

- Be prepared to show documentation that on-farm research was conducted within the past three years.
- On-farm research utilizes checks or controls and quantitative results are documented in writing. On-farm research may include potato variety trials and trials of reduced pesticide and fertilizer application rates or new reduced risk pesticides or new formulations of fertilizers.
- Documentation would include a brief report of what was done (methods) and resulting information for example differences in yield, quality, or pest presence. If research was conducted by University or private entity, ask for the report of what they did and attach.

Resources on how to do on-farm research:

If you answer no:

Continue on to next question.
For this question, stewardship relates to sensitive area/biodiversity protection, soil erosion control/improvements in soil quality, increased water and energy use efficiency, and reuse and recycling efforts.

If you answer a), b) or c):
 a) Be prepared to talk about in the interview who you share stewardship improvements with (employees, neighbors, community members, etc.). This could be done at an employee meeting, community event, etc.
 b) Show a written document that describes farm improvements in stewardship and how it was communicated.
 c) Show an annual report or a website that describes the farm’s stewardship improvements.

If you answer d):
 Continue on to next question.
If you answer yes to question 59, then answer question 60. If no, continue to question 67.

<table>
<thead>
<tr>
<th>No. 8.1</th>
<th>Switch Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>Does the farm have employees? If no, disregard questions 60 through 66.</td>
</tr>
</tbody>
</table>

- If you answer yes to question 59, then answer question 60. If no, continue to question 67.

<table>
<thead>
<tr>
<th>No. 8.2</th>
<th>Sustainable Practice: Social Sustainability</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>Mark all that apply</td>
<td>The farm is compliant with ALL applicable legislation regarding employment regulations including child employment (if applicable) for the farm's jurisdiction. In the absence of legislation, an employment policy is in place. Operation has a written health and safety plan and has designated an individual to ensure worker protection standards are adhered to.</td>
<td>Interview a) Do your employment policies comply with all federal, state/provincial or local laws? Documentation b, c)</td>
<td>b) Employee handbook, including translations if necessary.</td>
</tr>
<tr>
<td></td>
<td>a) Farm employment policies comply with all federal, state/provincial or local laws (level 1) I</td>
<td>b) Farm has a written employee handbook outlining employment practices that is available in an accessible language to all employees (level 2) D</td>
<td>c) Worker health and safety plan, including identified risks and mitigation strategies identified to ensure worker health, safety and welfare. Position description for responsible individual.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) Farm has a written employee handbook outlining employment practices that is available in an accessible language to all employees (level 2) D</td>
<td>c) A worker health and safety plan identifies and mitigates the risk for workers health, safety and welfare. A member of management has been designated as responsible for identifying and mitigating risks to worker health, safety and welfare (level 3) D</td>
<td>d) None of the above (0 points)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d) None of the above (0 points)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you answer

a): Be prepared to discuss in the interview how you comply with federal, state/provincial or local laws regarding employment.

b): Show a copy of your farm’s employment policy, employee handbook, and/or worker health and safety plan to the audit. The websites below provide templates or information to help design your farm employment policy, handbook and worker health and safety plan. Handbook should be translated into common language for employees.
c): Show the farm’s employment policy as stated above in b) and include who on staff is designated for identifying and mitigating risks to employees. Include name and position description of the responsible employee.

Resources and examples for a farm employment policy handbook:

- https://www.dol.gov/whd/ag/ag_flsa.htm
- https://farmanswers.org/Library/Record/agriculture_employee_handbook_template
- http://fyi.uwex.edu/ag-human-resources/resources-for-farmers-managers

If you answer d):

Continue on to next question.
If you answer yes to question 61, then answer question 62. If no, continue to question 63.

<table>
<thead>
<tr>
<th>No. 8.4</th>
<th>Sustainable Practice: Social Sustainability</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/ Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>Yes or No</td>
<td>The farm is compliant with ALL applicable legislation regarding housing laws. In the absence of legislation, a housing policy is in place that sets minimum standards for housing including how those standards are monitored and maintained.</td>
<td>Interview</td>
<td>Do your employee housing standards comply with all federal, state/provincial or local laws?</td>
</tr>
</tbody>
</table>

If you answer yes:

- Be prepared to discuss that you comply with federal, state/provincial or local laws.

If you answer no:

Continue on to next question.
If you answer yes:

- Be prepared to provide a document or written farm employment policy or employee handbook that includes farm policies on decision making, grievances, and expectations.
- An example from Michigan State University is shown below.

https://farmanswers.org/Library/Record/agriculture_employee_handbook_template

“Employee concerns/suggestions

...The policies and procedures listed in this handbook are meant to be consistent with, and in support of our Mission and Values. If at any time you find your work environment in conflict with these written policies and procedures, we encourage you to share your concerns about the areas that are diverging from these policies. These questions, as well as any concerns or suggestions, should be shared with your immediate supervisor. If he/she is not available, please share your concerns or suggestions with the owner. We understand that in order to be the best that we can be, we need your input.”

If you answer no:

Continue on to next question.
<table>
<thead>
<tr>
<th>No. 8.6</th>
<th>Sustainable Practice: Social Sustainability</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/ Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>Yes or No Compensation calculations are clear and accessible to workers</td>
<td>Calculation of workers’ wages are available to workers in an understandable format including in a language of their understanding.</td>
<td>Interview How/when are compensation calculations explained to workers?</td>
<td>Calculation explained by: i) Written compensation explanations, including translations if necessary. ii) Training sessions iii) Employee handbook iv) Other</td>
</tr>
</tbody>
</table>

If you answer yes:

Be prepared to describe in an interview how you explain compensation calculations to your employees. Examples would include

- Explained at employee orientation or training sessions.
- Described when filling out employment paperwork.
- Described in written farm employment policy or employee handbook.
- Described in letter with first paycheck.

Details on how wage is calculated should include amount earned, deductions taken, and net earnings per paycheck. Example given on next page.

If you answer no:

Continue on to next question.
Pay stub for an employee paid an hourly wage

SMITH AND COMPANY, INC.
123 West Street Smalltown, CA 98765

<table>
<thead>
<tr>
<th>EMPLOYEE</th>
<th>SOCIAL SECURITY NO.</th>
<th>PAY RATE</th>
<th>PAY PERIOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johnson, Bob</td>
<td>XXX-XX-6789</td>
<td>18.00 regular</td>
<td>2/11/02 to 2/17/02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27.00 overtime</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EARNINGS</th>
<th>HOURS</th>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
<td>40.00</td>
<td>720.00</td>
</tr>
<tr>
<td>Overtime</td>
<td>2.00</td>
<td>54.00</td>
</tr>
</tbody>
</table>

GROSS EARNINGS:	774.00
TOTAL DEDUCTED:	217.04
NET EARNINGS:	556.96

This pay stub is not applicable to an employee whose compensation is solely based on a salary and who is exempt from payment of overtime under Labor Code section 515(a) or any applicable IWC order.

www.dir.ca.gov/dlse/PayStub.pdf
<table>
<thead>
<tr>
<th>No.</th>
<th>Sustainable Practice: Social Sustainability</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/ Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.7</td>
<td>Yes or No</td>
<td>Farm provides employees the opportunity to advance by offering benefits such as cost share for education, leave time for education, in-house education and training and/or an internal advancement policy vs. external hires.</td>
<td>Interview What opportunities are provided for employee advancement?</td>
<td>Measures include i) Cost share for education ii) Leave time for education iii) In-house training iv) Internal advancement policy v) Other (describe)</td>
</tr>
</tbody>
</table>

If you answer yes:

Be able to explain in the interview what opportunities are provided for employee advancement at your farm. For example:

- As outlined in our employee manual, opportunities for employee advancement include:
 - Cost share and/or leave time for education
 - In-house training
 - Internal advancement policy
- Example template from Michigan State University: https://farmanswers.org/Library/Record/agriculture_employee_handbook_template

“Training and Continuing Education

Consider whether you wish to include a statement in support of training/education and/or a financial budget for such activities. An example policy is as follows: [Farm Name] believes in the continuing development of all of our team members, employees and management as well. We believe that professional and personal growth are both important. In order to encourage continuing education, we provide each team member with $500 annually to use for professional or personal development. This could be training around a specific skill that may help you with your job or it may be training that you wish to attend that relates to a favorite hobby. We ask that you present you request to your supervisor for pre-approval, and then we ask that you share back with us how the training helped you.

In addition to this employee directed improvement, [Farm Name] may from time to time ask that you attend a specific training. In these cases of farm directed professional improvement, we will cover the cost of your attending the event, and also pay you an eight hour day’s pay for each day spent at the training.”

If you answer no:

Continue on to next question.
Rewards and incentives are offered to employees, e.g., employee recognition, profit sharing, quality bonuses or safety incentives.

Rewards and incentives are offered for employee innovations or improvements, e.g., employee recognition (naming an Employee of the Month), profit sharing, bonuses or safety incentives.

If you answer yes:

- Describe in the interview the rewards or incentive program on your farm. Examples include:
 - “As outlined in our farm employee handbook incentives may from time to time be developed by the farm in order to encourage the fulfillment of farm goals. For this Employee Handbook version, the following current incentive(s) are available: (list for your operation).”
 - “Bonuses are provided periodically for quality, safety, good work, arriving at work on time to employees on your farm operation.” Describe type of bonus (monetary, clothing, food).
 - Employee recognition is periodically provided.

If you answer no:

 Continue on to next question.
If you answer a), b) or c):

Be able to describe how you contributed to the local community in the past year.

a) An example would be that you hired employees from local area.

b) Examples include farm personnel involvement as youth leader (coach, scout leader, etc.), community board member (library, school, Farm Bureau, etc.), advisory member (research committees, national industry committees, etc.).

c) Examples include donation of employee time for activities, events, committees; cash or fresh produce to local fundraisers, charities, community service organizations.

If you answer d):

Continue on to next question.
<table>
<thead>
<tr>
<th>No. 8.10</th>
<th>Sustainable Practice: Social Sustainability</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/ Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>Mark all that apply
a) Farm meets all relevant legal requirements regarding times of operation (level 1)</td>
<td>a) Ordinances may require farm operations only take place at certain hours so as not to disturb residents nearby.
b) Waste and cull piles can become a visual or odor nuisance.
c) The most effective way to reduce nuisances from farm operations is to identify which farm activities may cause a nuisance, and identify and implement measures to reduce that possibility.
d) Visual ‘eye sores’ of equipment (retired or in-use) can be viewed as a nuisance by the community.</td>
<td>Interview
a) Are there any laws restricting your hours of operation?
b) What measures do you take to reduce nuisances from farm activities for your neighbors?
c) What nuisances are caused by farm activities?
d) How do you manage and where do you store equipment (retired and in-use)?</td>
<td>a) Grower can site times when farming operations are allowed (if any restrictions)
b) What measures do you take to reduce nuisances from farm activities for your neighbors?
c) Grower lists nuisances</td>
</tr>
</tbody>
</table>

If you answer:

a) Describe in the interview any laws pertaining to hours of farming operations. As there are no legal restrictions for hours of operation in the state of Idaho a) should be marked for Idaho growers.

b) Be prepared to describe how cull and waste potatoes are managed to avoid odor and sprouting. See CIS 814 Cull and Waste Potato Management at http://www.cals.uidaho.edu/edComm/pdf/CIS/CIS0814.pdf for more information.

c) Be prepared to describe in the interview question that when possible the farming operation avoids farm activities that are a nuisance to their community. Common practices would include avoiding slow moving equipment, irrigation water and mud on roads that would impact local community travel. Avoiding
drifting dirt and odors. Minimizing loud equipment and lights especially at hours that could cause a nuisance.

d) Describe that equipment is stored in an orderly manner and abandoned equipment is kept out of sight from major roads, if possible. Be able to describe or show on farm map where waste equipment is kept.

If you answer e):

Continue on to next question.
<table>
<thead>
<tr>
<th>No.</th>
<th>Sustainable Practice: Social Sustainability</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/ Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>Mark all that apply</td>
<td>a) Drills for fire and natural disasters are performed at least once per year and instructions are given in a language that is accessible to employees. b) Equipment required to contain fuel and hydraulic fluid spills and clean water are readily accessible from all fuel storage and fueling locations. c) Written emergency management plans include the following components: list of potential emergencies (e.g., fuel spills, pesticide spills, worker exposure to chemicals, fires) and responses, staff roles and responsibilities, training protocol for staff, resources for control/contain/cleanup, and emergency contacts. The plan or appropriate portions of the plan are in languages accessible to appropriate staff.</td>
<td>Interview a) What month or date was the drill conducted? What type of drill was conducted? (e.g., fire drill, tornado drill) b) What equipment is readily accessible at fuel storage and fueling location to contain fuel spills? Documentation c)</td>
<td>b) Containment materials could include: i) Clean water ii) Sorbent material iii) Equipment to stop the spill c) Written emergency management plan that includes: i) List of potential emergencies (e.g., fuel spills, pesticide spills, worker exposure to chemicals, fires) and responses ii) Staff roles and responsibilities iii) Training protocol for staff, resources for control/contain/cleanup iv) Emergency contacts.</td>
</tr>
</tbody>
</table>

If you answer:

a) Describe an emergency drill you had on farm within the past year. Be prepared to elaborate on the type of drill (e.g. fire, contamination) and the month of the year it occurred.

b) See question 27 for details on what is typically included in a spill containment kit. Provide additional information in the interview on supplies in these kits.

c) Have a written emergency plan for potential emergencies that could occur on farm.
 o List potential emergencies. Examples include tractor fire, fuel tank fire, pesticide spills, glass breakage causing foreign material, etc.
o Provide appropriate responses for each listed emergency. Describe what employee response should be. Typical response would include ensure it is safe to be present, call 911 if appropriate, and provide help as required. Indicate how an employee should contact their supervisor.

o Provide periodic training. Use a document to log topic, date and employees attending.
 o Supply a list of emergency contacts such as supervisors, safety personnel, fire and police department, and 911.

If you answer d):

 Continue on to next question.
<table>
<thead>
<tr>
<th>No.</th>
<th>Sustainable Practice: Social Sustainability</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.12</td>
<td>70 Yes or No Informational only, does not impact score. Has the farm experienced an environmental emergency in the past three years?</td>
<td>Informational only, does not impact score. Environmental emergencies are accidents or disasters resulting from natural, or human-induced factors, that use or threaten to cause environmental damage and/or the loss of human life or property. If yes, describe the emergency and response in memo.</td>
<td>Interview Describe the emergency, if any, and response.</td>
<td></td>
</tr>
</tbody>
</table>

If you answer yes:

- Be able to describe the emergency and the response that occurred. This is informational only and does not impact score.

If you answer no:

Continue on to next question.
If you answer yes:

- In the interview state that equipment possibly contaminated with pesticides is stored in another location, such as equipment shed or yard, separated from food, animal feed, living quarters and food preparation or eating areas.
- Examples where equipment is stored include: equipment yard, equipment shed, and edges of fields.

If you answer no:

Continue on to next question.
If you answer:

a) Discuss the training given at each new hire training. This could be reviewing videos and materials pertaining to their job and safety and demonstrations on how to carry out job and safety risks.

b) Discuss job duty and safety trainings given over their employment time. Examples could include first day on the job and review at start of season. Before an employee uses a piece of equipment the proper operation and safety information is demonstrated. This is reviewed before first use each season.

c) Show documentation of employee trainings. See example training log below. It should include training plan, including a plan with topics and date covered, annual review summary. If they followed a course in person or on-line, show certificate of completion.

If you answer d):

Continue on to next question.
Worker Training Log

<table>
<thead>
<tr>
<th>Employee name</th>
<th>Employee signature</th>
<th>Training date</th>
<th>Topic and Method</th>
<th>Trainer’s Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Training method - video, formal group presentation, one-on-one presentation, demonstration. Include follow-up or reviews.
If you answer:

a) Discuss topics of safety training provided to workers.

b) Discuss how frequent safety training is provided to workers. Trainings must be at least once a year.

c) GAP certification requires worker trainings and signed logs with dates but not topic. Add topic to current GAP records or add separate agenda for each training topic. See question 72, the attached log includes a space for training topic.

If you answer d):

Continue on to next question.
<table>
<thead>
<tr>
<th>No. 9.3</th>
<th>Sustainable Practice: Social Sustainability</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>Yes or No Farm workers and/or management have participated in training covering biosecurity (procedures to protect humans, animals and food supply against pathogens or other harmful organisms), sustainable agriculture or IPM topics within the past year D</td>
<td>At least one individual employed by or under contract with the farm participated in training covering issues related to sustainability such as water conservation and quality, nutrient use efficiency, energy conservation, IPM strategies, etc.</td>
<td>Documentation</td>
<td>Documentation can include: i) Receipts ii) Material from course iii) Other</td>
</tr>
</tbody>
</table>

If you answer yes:

- Provide documented proof of attendance for Idaho or WA/OR Potato Conference or other grower or regional meetings that provided training in biosecurity, sustainable agriculture or integrated pest management topics within the past year. Proof of attendance can include receipt, agenda or program, materials/handouts from course/workshop/meeting/conference, or certificate of participation.

If you answer no:

Continue on to next question.
If you answer yes:

- Discuss types of education the farm has hosted for the public. Describe how the farm was used as an educational site such as providing equipment, farm ground, plots, information, facilities, shop, or storage. Be able to denote the date since participation must have occurred within the last 5 years. Although not necessary, an agenda or flyer from the training or education event could be shown.

If you answer no:

Continue on to next question.
<table>
<thead>
<tr>
<th>No.</th>
<th>Sustainable Practice: Social Sustainability</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>Yes or No Farm personnel participate as educators in industry trainings on sustainable agriculture, IPM, pesticide safety or worker safety</td>
<td>At least once during the last five years at least one individual employed by or under contract with the farm has participated as a speaker in public, farmer or applicator education regarding issues related to sustainability. The educational event does not need to be held on the farm and is intended to demonstrate the sharing of best practices or new knowledge. This practice recognizes expertise present on the farm.</td>
<td>Written or electronic records of presentation at an educational event regarding issues related to sustainability held within the last five years, including date, location and topics covered (e.g., email correspondence with organizer of the event, program from the event).</td>
<td></td>
</tr>
</tbody>
</table>

If you answer yes:

- Provide an agenda/program of a meeting, workshop, seminar, or field day with the farm personnel as a speaker or participant and the title of their presentation. An email request to participate can also be used as documentation. Participation must have occurred within the last 5 years. Print out and place document here in manual.

If you answer no:

Continue on to next question.
If you answer:

a) Describe in the interview how the farm monitors cost of production. Examples include use of production database (Land.db, Agrian), accounting programs/firms, and/or spreadsheets. Describe how the farm uses cost accounting to keep production at desired costs.
b) Be prepared to explain your farm marketing plan. A marketing plan may include scenarios for above or below average yield and/or quality, where selling crop to (contract), etc.

c) Be prepared to explain the farm’s risk management plan. This may include scenarios for mitigating potential financial risks such as crop insurance or additional market outlets.

d) Be prepared to describe in the interview the farm’s succession plan. You do not need to give personal information, but be able to describe how and when you produced a plan and/or hired a company to help with this plan.

Resources:

Succession planning:

http://www.extension.umn.edu/agriculture/business/farm-transfer-estate-planning/

http://ofp.scc.wa.gov/succession-planning/

If you answer e):

Continue on to next question.
If you answer yes:

- Be prepared to discuss how you comply with source withdrawal regulations for water used on your operation.
- Attach one of the following documents or certificates here:
 - Water rights
 - Water permits
 - Canal company water share certificate

If you answer no:

Continue on to next question.
<table>
<thead>
<tr>
<th>No. 11.2</th>
<th>Sustainable Practice: Environmental Sustainability</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/ Interview Questions</th>
</tr>
</thead>
</table>
| | Are measures in place to conserve water used in facilities (e.g., farm offices, worker housing, etc.)? | A water conservation program is in place addressing water uses for washing, cooling and other non-irrigation uses that includes measures such as low-flow toilets and showerheads, waterless urinals, rainwater collection systems, grey-water recycling systems, etc. | Interview What measures have you taken to conserve water used in facilities? | Measures include:
i) Low flow toilets and showerheads
ii) Waterless urinals
iii) Rainwater collection systems
iv) Grey-water recycling systems
v) Other |

If you answer yes:

Common interview responses include:

- Low flow toilets and showerheads
- Waterless urinals
- Rainwater collection systems
- Grey-water recycling systems
- Routinely check faucets and pipes for leaks
- Planted drought resistant trees, shrubs and lawns around offices and/or worker housing

This question does not refer to water conservation related to irrigation. The Environmental Protection Agency sponsors a program (WaterSense) that labels water-efficient products and serves as a resource for water conservation (https://www.epa.gov/watersense).

If you answer no:

Continue on to next question.
If you answer yes to using irrigation answer question 80, if no (e.g., dryland crop) skip questions 80-85.

Table: Sustainable Practice: Environmental Sustainability

<table>
<thead>
<tr>
<th>No.</th>
<th>Switch Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>Switch Question</td>
</tr>
<tr>
<td>80</td>
<td>Is irrigation water used for the potato crop? If no, disregard questions 81 through 86 and irrigation metric.</td>
</tr>
</tbody>
</table>

- If you answer yes:
 - You will be asked to show records of total irrigation water applied to each potato field in inches over the past three years. The records must include information about rainfall from pre-planting to harvest for the past year. Rainfall information can be regional weather records or measurements you take using rain gauges in the field.
 - Irrigation records showing the amount of water applied to each field for the season is also included in your on-line agronomy database (e.g., Land.db or Agrian).

Resources for Water Measurement:

Resources for Recording Precipitation: AgWeaterNet (http://www.weather.wsu.edu/) provides easy access to weather data (including precipitation) from a network of weather stations in Washington and some in northern Oregon. Click on “Calculators” for rain totals for a given period of time at any of their 177 automated stations. Agrimet (https://www.usbr.gov/pn/agrimet/) is a similar resource with weather stations throughout the Pacific Northwest (including Idaho, Oregon, and Washington). Click on “Historical Weather Data” and then the “Historical Archive (Daily) Access” to calculate precipitation totals.

If you answer no:

Continue on to next question.
<table>
<thead>
<tr>
<th>No. 11.5</th>
<th>Sustainable Practice: Environmental Sustainability</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
<td>Yes or No Irrigation system maintenance is performed at system startup and repaired/adjusted as needed</td>
<td>All irrigation equipment is checked and calibrated prior to the potato crop to ensure intended amounts of water are delivered.</td>
<td>Interview How is irrigation equipment maintained?</td>
<td>Measures include: i) Calibration ii) Infra red monitoring iii) Other</td>
</tr>
</tbody>
</table>

If you answer yes:

- Describe how you evaluate irrigation system performance and improve uniformity of water application before planting the crop. Common practices include checking nozzles every year and replacing broken ones; measuring water output with catch cans.

If you answer no:

Continue on to next question.
<table>
<thead>
<tr>
<th>No. 11.6</th>
<th>Sustainable Practice: Environmental Sustainability</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
<td>Mark all that apply Irrigation is scheduled a) According to previous history and experience or water availability (level 1) b) In-field inspection such as the hand-feel method (level 2) c) Using an evapotranspiration (ET) model (level 3) d) Using a soil moisture sensor or other real-time instruments, such as neutron probes, tensiometers, Watermark sensors, etc. (level 4) e) None of the above (0 points)</td>
<td>a) Irrigation is scheduled to optimize yield, provide what is necessary for the crop, and minimize water waste based on experience, history and/or water availability, but without the use of ET models or soil probe/hand-feel methods. b) Crop water need is estimated by hand-feel. c) Crop water need is estimated using evapotranspiration (ET) estimates incorporating current weather, crop growth stage, etc. d) Crop water need is estimated using appropriate soil texture description charts, sensors placed in the soil, or through other instrumentation.</td>
<td>Interview a) How do you schedule irrigation to optimize yield, providing what is necessary for the crop, and minimize water waste? Documentation c, d)</td>
<td>a) Factors include: i) Water availability ii) Historical experience iii) Irrigation runoff b) Measures include i) Hand-feel method ii) Other c) Documentation of ET model used (e.g., results page from software/calculator used). d) Records of the results of soil probe/other instrumentation soil moisture testing, from the last year.</td>
</tr>
</tbody>
</table>

If you answer:

a) Discuss in the interview how you irrigate to avoid or minimize runoff. Examples include discussing the types of soils and water retention on your farm. Identify (if there are some) areas of the farm that are more prone to runoff (like slopes or areas with poor water infiltration). Explain what you do to minimize runoff in those difficult areas.
b) Describe checking soil moisture content and how that helps to minimize runoff. This can be done with a soil moisture monitoring tool or by the soil feel and appearance method, but data is not recorded. If recorded, see d) below.

c) Show a document of the output or report from ET calculators in your area. Evapotranspiration estimates are available online from Agrimet (Pacific Northwest States) (https://www.usbr.gov/pn/agrimet/) by clicking on “Crop Water Use”, or from AgWeatherNet (WA and northern OR) (http://www.weather.wsu.edu/) by clicking on “Calculators” and selecting the ET Table.

d) Show documented records of your soil moisture monitoring from the last year. This can be the output from soil moisture sensors like (neutron probes, tensiometers, Watermark sensors, etc.) or a hand-written record of your observations using the soil feel and appearance method.

If you answer e):

 Continue on to the next question.
<table>
<thead>
<tr>
<th>No. 11.7</th>
<th>Sustainable Practice: Environmental Sustainability</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/ Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>Choose all that apply</td>
<td>a) No surface or furrow irrigation is used on potato crop.</td>
<td>Interview a) What systems make up the balance of the irrigation on the farm?</td>
<td>a) Discuss the type of irrigation system(s) used on the farm for potato fields only. Furrow irrigation for potatoes is not allowed as a response.</td>
</tr>
<tr>
<td></td>
<td>For irrigating the potato crop:</td>
<td>b) 75% of potato fields are irrigated with pressurized irrigation systems with modified elevation sprinkler systems.</td>
<td>b) What percent of your irrigation is done with low pressure sprinkler systems and a modified elevation sprinkler system?</td>
<td>b) Identify the percent of your pressurized irrigation system with low pressure sprinkler systems and modified elevation sprinkler systems for potato fields only.</td>
</tr>
<tr>
<td></td>
<td>a) Pressurized irrigation systems are used exclusively (drip, reels, guns, wheel lines, solid set, center pivot or linear move) (level 2)</td>
<td>c) At least one potato field uses drip irrigation systems.</td>
<td>c) How many of your potato fields use variable rate irrigation systems with low pressure sprinkler systems?</td>
<td>c) Identify the number of potato fields on your farm that use drip irrigation systems.</td>
</tr>
<tr>
<td></td>
<td>b) Pressurized irrigation systems with modified elevation sprinkler systems, e.g., drop down nozzles, are used for at least 75% of fields (level 3)</td>
<td>d) At least one potato field uses variable rate irrigation systems with low pressure sprinkler systems. Variable rate irrigation systems work by applying water at a varying rate depending on water need along the center pivot or axis rather than one uniform rate along the entire length of the system.</td>
<td>d) How many of your potato fields use variable rate irrigation systems with low pressure sprinkler systems?</td>
<td>d) Identify the number of potato fields on your farm that use variable rate irrigation systems with low pressure sprinkler systems.</td>
</tr>
<tr>
<td></td>
<td>c) Drip irrigation systems are used on at least one potato field (level 4)</td>
<td>e) None of the above (0 points)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d) Variable rate irrigation systems are used on at least one potato field (level 4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e) None of the above (0 points)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you answer:

a) Discuss the type(s) of irrigation system(s) used on your farm for potato fields only. Furrow irrigation for potatoes is not allowed as a response.

b) Discuss and identify the percent of your pressurized irrigation system with modified elevation low pressure sprinkler systems (eg. MESA or LESA; mid or low elevation sprinkler application) for potato fields only. Examples include dropping nozzles partially or down to the top of canopy.

c) Discuss and identify that at least one potato field uses mobile drip irrigation.
d) Discuss and identify the number of potato fields on your farm that use variable rate irrigation systems with low pressure sprinkler systems

If you answer e):

Continue on to the next question.
<table>
<thead>
<tr>
<th>No.</th>
<th>Sustainable Practice: Environmental Sustainability</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>Choose the best answer from the options below: Irrigation system efficiency is evaluated: a) Only when there is an apparent problem (level 1) I b) Every 5-10 years (level 2) I c) Every 2-4 years (level 3) D d) Every year (level 4) D e) None of the above (0 points)</td>
<td>Irrigation system components are inspected to ensure they are operating at maximum efficiency.</td>
<td>Interview a, b) How does grower check irrigation system efficiency? Documentation c, d)</td>
<td>Measures include: i) Checking for pipe leaks ii) Calibration of nozzles iii) Infrared monitoring iv) Other (drones etc.) c, d) Documentation of frequency of evaluation including: i) Dates ii) Measures taken to evaluate efficiency</td>
</tr>
</tbody>
</table>

If you answer a) or b):

Explain how often (only if problem for (a) and (b) every 4-10 years) you evaluate the efficiency of your irrigation system and how you check it. Possible responses include:

- Look for leaks
- Inspect nozzles
- Ensure proper tire inflation
- Use catch cans to identify problems
- Use infrared images to identify problems

If you answer c) or d):

- Show records from your irrigation system evaluations. The auditor will expect to see dates when the system(s) were checked (it has to be done at least every 2-4 years (c) or every year (d) to qualify).

If you answer e):

Continue on to the next question.
<table>
<thead>
<tr>
<th>No.</th>
<th>Sustainable Practice: Environmental Sustainability</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/ Interview Questions</th>
</tr>
</thead>
</table>
| 86 | Yes or No Written or electronic plans and/or records documenting all water withdrawal sources for irrigation have been prepared and implemented; the plans define efforts to mitigate or minimize detrimental impacts on the water source (unless from a municipal water system) and surrounding area D | Written or electronic plans and/or records documenting water withdrawal sources for irrigation have been prepared and implemented. The plans define efforts to mitigate or minimize detrimental impacts on the water source(s) and surrounding area(s). | Documentation | Documentation includes:
 i) List of all water sources
 ii) Documentation of water uses (e.g., irrigation records)
 iii) List of potential detrimental impacts (e.g., overdraining aquifer or threatening aquatic habitats)
 iv) List of measures to mitigate detrimental impacts (e.g., State mitigation plan or variable rate pumps to mitigate depletion of aquifer) |

If you answer yes:

Be prepared to provide a documented water withdrawal plan. This should include:

- A list of all water sources (groundwater or surface water) that are used for irrigation on the farm.
- Irrigation records showing the amount of water applied to each field for the season. This is included in your on-line agronomy database (e.g., Land.db or Agrian). See question 81.
- A list of potential detrimental impacts on the water source and neighboring aquatic areas.
- A list of measures that can be taken to mitigate detrimental impacts. Print out and place here in manual.

If you answer no:

Continue on to next question.
Choose the single best answer from the options below:

At least 75% of potato fields are on a:

- a) Two-year rotation (level 1)
- b) Three-year rotation (level 2)
- c) Four or more-year rotation (level 4)
- d) None of the above (0 points)

A three-year rotation means potatoes every third calendar year, a four-year rotation means potatoes every fourth calendar year. To conserve soil and reduce carryover disease and insect pressure, potatoes are rotated with other crops. At least one crop in the rotation conserves soil by providing nearly full soil coverage such as small grains, grasses or forages. A two-year rotation means potatoes are planted every other year.

Documentation
Crop rotation records, including crops, years involved and field names.

If you answer a), b) or c):
Use document described in question 53 to show rotation. This could include list of fields and previous crops with years indicated, spreadsheets, or mapping program.

- a) At least 75% of potato fields are in a 2-year (every other year) rotation
- b) At least 3-year potato rotation on farming operation
- c) Four or more-year rotation

If you answer d):
Continue on to next question.
<table>
<thead>
<tr>
<th>No. 12.2</th>
<th>Sustainable Practice: Environmental Sustainability</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>Mark all that apply</td>
<td>a) Farm uses active strategies such as flotation tires, tracks, avoiding operations in wet soils, and GPS tracking to limit trafficked areas, to minimize compaction and enhance crop health by improving infiltration and air circulation in the root zone.</td>
<td>Interview a) What practices are taken to mitigate soil compaction? b) How is soil compaction monitored? c) When compaction is present, what cultural practices do you try to relieve compaction?</td>
<td>a) Equipment used to avoid compaction: i) flotation tires ii) tracks iii) GPS tracking</td>
</tr>
<tr>
<td></td>
<td>a) Soil compaction is avoided or minimized by at least one of the following: flotation tires, tracks, avoiding traffic when soils are wet, GPS tracking, etc. (level 1)</td>
<td>b) Compaction has been monitored with a testing device (compaction rod or meter) within the past year on one or more fields where compaction has been suspected.</td>
<td>b) Equipment to monitor soil compaction includes: i) Compaction rod ii) Compaction meter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) Soil compaction is monitored through measurements taken to determine the existence or lack of compaction zone (level 2)</td>
<td>c) Testing has confirmed that compaction is not present or if compaction is present, cultural practices are used to reduce the compaction.</td>
<td>(c) Measures include: i) Deep ripping ii) Deep-rooted cover crops iii) Other</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) Soil compaction is monitored and if compaction is present, existing compaction is reduced by cultural practices, e.g., deep ripping or deep-rooted cover crops (level 3)</td>
<td>d) None of the above (0 points)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you answer a), b) or c):

a) Discuss in interview about using active strategies such as flotation tires, tracks, avoiding operations in wet soils, and GPS tracking to limit trafficked areas, to minimize compaction and enhance crop health by improving infiltration and air circulation in the root zone.

b) Discuss compaction monitoring with a testing device (compaction rod or meter) within the past year on one or more fields where compaction has been suspected. A penetrometer is a common device for use, see guide: http://extension.psu.edu/plants/crops/soil-management/soil-compaction/diagnosing-soil-compaction-using-a-penetrometer
c) Provide examples of practices to alleviate compaction include crop rotation and timing, deep ripping, and planting deep-rooted crops (eg. alfalfa) or cover crops.

If you answer d):

Continue on to next question.
Structural or cultural practices such as increased organic matter, strip cropping, contours, terraces, waterways, buffer zones, dammer diking, tile drainage, bale busting, cover cropping or leaving crop residue in the field are in place to reduce erosion or water collection problems.

Structural changes to the topography, slope length, runoff passages, etc., are in place for long-term erosion control and plant/root health. Cultural practices such as increasing organic matter over time, dammer diking, bale busting, cover cropping or leaving crop residue in the field are used for erosion control.

Can you describe examples of structural or cultural changes to fields implemented to control erosion?

Practices may include increasing organic matter content over time, strip cropping, contours, terraces, waterways, buffer zones, dammer diking, tile drainage, bale busting, cover cropping or leaving crop residue in the field to reduce erosion or water collection problems, etc.

If you answer yes:

- Be able to discuss in the interview examples of field cultural practices to control erosion. Common practices could include use of:
 - Tile drain
 - Dammer diking
 - Deep rooted cover crops
 - Strip, contour or terrace cropping areas
 - Grass waterways
 - Buffer zones
 - Leave crop residue in the field

If you answer no:

Continue on to next question.
<table>
<thead>
<tr>
<th>No. 12.4</th>
<th>Sustainable Practice: Environmental Sustainability</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>Mark all that apply Advanced soil testing is done to monitor soil health. a) At least one measure is evaluated (level 2) D b) More than one measure is evaluated (level 3) D c) Improvement over time on more than one measure has been documented (level 4) D d) None of the above (0 points)</td>
<td>In addition to basic sampling and testing for soil pH and nutrients, one or more advanced measure of soil quality and health has been monitored on fields used for potato production within the past three years, e.g., potentially mineralizable nitrogen, soil biological activity/respiration, earthworm populations, organic matter content, aggregate stability, available water capacity, bulk density, surface hardness, soil texture or infiltration rate.</td>
<td>Documentation</td>
<td>Soil test results from a collection of samples taken within the last year, including test results for one or more advanced measure of soil quality (e.g., potentially mineralizable nitrogen, soil biological activity/respiration, earthworm populations, organic matter content, aggregate stability, available water capacity, bulk density, surface hardness, soil texture or infiltration rate.)</td>
</tr>
</tbody>
</table>

If you answer a), b), or c):
- Be prepared to provide documented soil test results taken within the last year. See document used for questions 47 and/or 48 if they include soil health attributes.
- For a) at least one and for b) more than one measures characteristic. Common soil characteristics given on soil test results include mineralizable N (e.g., estimated N release from organic matter), % organic matter, available water capacity, soil texture, and bulk density.
- For c) show previous soil tests from that field to compare to the current test in order to show positive changes or lack of negative changes associated with a specific soil characteristic.

Additional resources:
- NRCS Maps: https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
- Infiltration rate can be tested as described:

If you answer d):

 Continue on to next question.
<table>
<thead>
<tr>
<th>No. 13.1</th>
<th>Sustainable Practice: Environmental Sustainability</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>Yes or No Maps identify sensitive areas at each farm D</td>
<td>Maps identify sensitive areas, e.g., aquifers, surface water, wetlands, endangered/threatened species habitat, roadways, residences, wells.</td>
<td>Documentation</td>
<td>Farm map/diagram. Sensitive areas are either identified on the farm map or communicated verbally to the auditor.</td>
</tr>
</tbody>
</table>

If you answer yes:

- Show or attach a farm map and indicate the sensitive areas. If the sensitive areas are not noted on the farm map, then point them out on a map to the auditor during your interview.

If you answer no:

Continue on to next question.
<table>
<thead>
<tr>
<th>No.</th>
<th>Sustainable Practice: Environmental Sustainability</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>92</td>
<td>Yes or No Measures are in place to protect sensitive areas at farm sites and these are monitored at least annually</td>
<td>Examples of measures to protect sensitive areas include establishing undeveloped reserves, filter strips, fencing, buffers and removing invasive plants.</td>
<td>Interview What measures are in place to protect each sensitive area? Practices include: i) Establishing undeveloped reserves ii) Filter strips iii) Fencing iv) Buffers v) Others</td>
<td></td>
</tr>
</tbody>
</table>

If you answer yes:

- Explain in the interview the measures that are in place to protect sensitive areas on the farm.
- Common practices for protection from soil erosion could include:
 - Creating banks to prevent water from running off into sensitive areas.
 - Fence areas or post “No Trespassing” signs to prevent vehicles from entering and causing erosion or disruption to sensitive areas.
- Common practices to protect breeding areas:
 - Maintain undeveloped areas as reserves for animals and native plant species.
 - Filter strips (areas of vegetation between disturbed farmland and environmentally sensitive areas).

If you answer no:

Continue on to next question.
This question asks whether you plant in environmentally sensitive areas. Know what constitutes a sensitive area such as wetlands, wildlife habitat, etc.

If you answer a):

- Simply state that production **has not** occurred in sensitive areas in the past three years.

If you answer b):

- State you have or had field production in sensitive areas within the past three years.

Continue on to next question.
If you answer a), b), and or c):

- Be prepared to show the auditor your written wildlife management and conservation plan.
 b) it must explain how you are protecting native species habitat and/or improving their habitat. Examples could include flagging wildlife breeding areas and maintaining habitat on the edges of fields.
 c) indicate that you have contacted a third party expert to help create and implement your plan.

Additional Resources:

- Visit your local USDA Farm Service Agency county office (http://offices.usda.gov) and ask about the Conservation Reserve Program (CRP), or go to www.fsa.usda.gov/crp for more information.

If you answer d):

Continue on to next question.
<table>
<thead>
<tr>
<th>No. 13.5</th>
<th>Sustainable Practice: Environmental Sustainability</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/ Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>Yes or No Farm resources have been invested in converting unproductive or marginally productive sites on the farm or in the community to conservation areas D</td>
<td>Unproductive or marginal lands include ground that generates minimal or negative net economic returns due to poor drainage, low fertility, high salinity or other factors. Conservation areas support a diverse population of wildlife, e.g., ponds used to retain water for irrigation or pesticide application may not qualify as a conservation area.</td>
<td>Documentation</td>
<td>Farm map/diagram. Conservation areas are either identified on the farm map or communicated verbally to the auditor. Conservation areas include: i) Aquatic habitats ii) Wild flower beds for pollinators iii) Trees planted for avian habitats</td>
</tr>
</tbody>
</table>

If you answer yes:

- Provide a farm map and indicate the conservation areas (aquatic habitats, wildflower/flowering shrubs for pollinators and beneficial insects, trees/shrubs/native areas for birds, etc.). If the conservation areas are not labeled on your farm map, then point them out on a map to the auditor during your interview. This includes the CRP lands on your farm, if you are enrolled in that program.

If you answer no:

Continue on to next question.
Invasive plant species are identified and measures are in place to avoid their presence and spread.

Efforts are taken to learn about and avoid the spread of invasive plant species through manual removal of plants, cleaning equipment or herbicide applications. Invasive species are defined as a non-native species whose presence causes or is likely to cause environmental and/or economic damage.

Interview

How do you manage invasive species on your farm?

Practices include:

i) Knowledge of invasive species present in area
ii) Manual removal of plants
iii) Cleaning equipment
iv) Herbicide applications
v) Other

If you answer yes:

- Explain how you prevent introduction and spread of invasive plant species on your farm. Spread prevention usually involves good sanitary practices (cleaning equipment, etc.). Control measures may include applying herbicides, mowing invasive weeds before they go to seed, cultivation, or burning (if it is allowed and recommended as a management practice). In some cases, there may be some biological control agents available. See also Questions 35, 37 and 42.

Additional Resources:

- University of Idaho CIS bulletin 1180: ‘Cleaning and Disinfecting Potato Equipment and Storage Facilities’ at https://www.cals.uidaho.edu/edcomm/pdf/CIS/CIS1180.pdf

If you answer no:

Continue on to next question.
<table>
<thead>
<tr>
<th>No.</th>
<th>Sustainable Practice: Environmental Sustainability</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
</table>
| 97 | Mark all that apply Farm minimizes particulate drift (dust and dirt) through:
| | a) Water or suppressants applied to unpaved roads (level 2) | Particulate drift (dust and dirt) can be minimized through applying water or suppressants to unpaved roads to reduce dust caused by driving on unpaved roads. Planting vegetation and/or building a berm on field edges can provide a wind break to reduce field dust and dirt drift. Avoiding operating equipment in fields during high winds can reduce particulate emissions. Pre-irrigation fields or operating equipment in the fields following a rain event can reduce particulate emissions but soil compaction should be avoided by using permanent drive rows, limiting to light equipment, flotation tires or other approaches. Organic material can be applied to unpaved roads and field edges to reduce dust. | Interview
| | b) Wind breaks on field edges (level 2) | a) What steps are taken to reduce air emissions from unpaved roads?
| | c) Avoiding field operations during high winds (level 3) | b) Can you identify wind breaks on a farm map?
| | d) Applying organic materials (straw, wood chips, etc.) to unpaved roads and field edges (level 3) | c) What weather conditions are taken into consideration for field operations regarding air emissions?
| | e) Pre-irrigating or following a rain event for field operations (level 4) | d) What organic materials are applied to unpaved roads and field edges?
| | f) None of the above | e) Examples of pre-irrigation or tillage following rain event | a) Grower can discuss using water or other material to reduce dust generation from unpaved roads
| | | | b) Farm map with wind breaks identified
| | | | c) Grower can discuss, provide examples of delaying farm operations in windy, dry conditions to avoid particulate emissions.
| | | | d) Grower can discuss using organic materials (straw, wood chips, etc.) to reduce dust.
| | | | e) Grower can explain pre-irrigation or following rain events for field operations |

If you answer:

a) Be prepared to discuss in the interview on dust prevention techniques used on unpaved roads. Common actions include using wind speed information to avoid driving during higher risk times, use of water trucks to wet dirt roads, and/or graveling roads.
b) Be prepared to discuss where windbreaks (e.g., trees, shrubs, wind fences) are located on field edges. Although not required, attach field map with windbreaks identified.

c) Be prepared to discuss wind speed, soil moisture and temperature considerations when driving in the fields to reduce dust.

d) Be prepared to describe how organic materials (e.g., wood chips, straw, etc.) were applied to unpaved roads or field edges to reduce airborne dirt and dust particulate.

e) Discuss how rainfall or pre-irrigation to tillage, planting, or harvest practices are used to minimize airborne dirt and dust particulate.

If you answer f):

 Continue on to next question.
<table>
<thead>
<tr>
<th>No.</th>
<th>Sustainable Practice: Environmental Sustainability</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>Choose one that applies: a) Ozone-depleting methyl bromide, carbon tetrachloride (tetrachloromethane, benzinoform, Carbona, CAS 56-235, Dowfume 75, ENT 4705, Flukoide, Halon 104) or methyl chloroform (trichloroethane, chloroethene NU, Aerothene TT) are not used in potato production D b) Ozone-depleting methyl bromide, carbon tetrachloride (tetrachloromethane, benzinoform, Carbona, CAS 56-235, Dowfume 75, ENT 4705, Flukoide, Halon 104) or methyl chloroform (trichloroethane, chloroethene NU, Aerothene TT) are used in potato production D</td>
<td>Ozone-depleting substances (ODS) are CFCs, HCFCs, methyl bromide, carbon tetrachloride, methyl chloroform. The most common ODS used in agriculture is methyl bromide as a soil sterilant/fumigant. The ozone layer in the atmosphere reflects harmful UV radiation from reaching the biosphere.</td>
<td>Documentation</td>
<td>Spray records show no use of methyl bromide or other ozone-depleting fumigants. Contract agreement to follow all federal regulations.</td>
</tr>
</tbody>
</table>

If you answer a):

- Show pesticide records indicating that **NO** methyl bromide was used in producing the crop. Methyl bromide is no longer labeled for potato production. See question 100 regarding use of CFCs and HCFCs (also known as R22) in refrigeration units.

If you answer b):

- Show pesticide records indicating that methyl bromide or other ozone-depleting fumigant was used in producing crop.

Continue on to next question.
If you answer yes to using refrigeration equipment answer question 100, if no skip to question 101.

- Switch Question: Does the farm own or lease refrigeration equipment to store potatoes? If no, disregard question 100.

<table>
<thead>
<tr>
<th>No.</th>
<th>Switch Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>Switch Question: Does the farm own or lease refrigeration equipment to store potatoes? If no, disregard question 100.</td>
</tr>
<tr>
<td>No. 14.4</td>
<td>Sustainable Practice: Environmental Sustainability</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>100</td>
<td>Mark all that apply Are any of the following refrigerants used to cool your potato storage(s)? The type of refrigerant used in your potato storage equipment can be found on the equipment label; look for "R" followed by a number a) Chlorofluorocarbons (CFCs, discontinued in 1996), refrigerants include: R11, R12, R13, R12B1, R113, R114, R500, R502, R503 (level 0) b) Hydrochlorofluorocarbons (HCFCs) phase out began in 2010 and will be limited by 2020, refrigerants include: R22, R123, R124, R401A, R401B, R402A, R403B, R408A, R409A, R414B, R416A (level 1) c) Hydrofluorocarbons (HFCs) are ozone-safe refrigerants and include: R134, R134a, R152a, R143a, R125, R32, R218, R116, RC218, R290, R404A, R407C, R410A, R417A, R422A, R422B, R422D, R507, R600a, R717 and others (level 3) d) Hydrocarbons are natural refrigerants and include: HC-12a, HC-22a and HC-502a (level 4)</td>
</tr>
</tbody>
</table>

To answer question 100:

- Be prepared to name the type of refrigerant used for storage refrigeration units. If you are leasing storage space, check with owner to see what type of refrigeration is being used. Your storage maintenance company can also provide information on the refrigerant used for the system.
- If your refrigeration units use (see list above):
- CFCs then answer a)
- HCFCs then answer b)
- HFCs then answer c)
- Hydrocarbons then answer d)

Continue on to next question.
<table>
<thead>
<tr>
<th>No. 15.1</th>
<th>Sustainable Practice: Environmental Sustainability</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/ Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Mark all that apply Farm protects and enhances pollinator abundance and species diversity by: a) Restoring or encouraging existing habitat and/or forage opportunities for pollinators (level 1)</td>
<td>a) E.g., establishing nesting sites for ground or wood and cavity-nesting bees; planting or maintaining vegetation that provides nectar and pollen to pollinators in non-crop areas, such as flowering cover crops in corners of pivot-irrigated fields; providing clean water sources. c) In addition to pollinator safety information on pesticide labels including the EPA Pollinator Protection Box, farm uses the New York State IPM Environmental Impact Quotient (EIQ) Calculator, Table 4 in the Pacific Northwest Extension Publication How to Reduce Bee Poisoning from Pesticides, The Pesticide Manual by the British Crop Production Council, or the Pesticide Risk Tool (PRT). d) Pesticide defined as toxic to bees can be identified using the resources listed in c above.</td>
<td>Interview a) Where are the pollinator habitats located? b) How wide are your pesticide application buffers? c) What tools do you use to inform your pesticide selection? d) What time of day do you apply your pesticides (i.e., in the evening or night when pollinators are not active)? e) How do you communicate with bee keepers on pesticides?</td>
<td>c) Tools can include Environmental Impact Quotient or Pesticide Risk Tool (PRT). d) Applications of pesticides toxic to bees should be made in the evening or night when pollinators are less active. e) Communication includes: i) Emails/ telephone calls ii) Driftwatch.org iii) Direct communication iv) Other</td>
</tr>
</tbody>
</table>

If you answer:

a) Describe in the interview or show (although not necessary) photos or maps of non-crop areas that encourage pollinator habitat. Native non-disturbed land is a great nesting habitat for ground nesting bees. Most farms have some non-disturbed areas for ground nesting bees. Other areas could include flowering plants and clean water sources.

b) Discuss or show farm map or photos indicating at least a 20 ft. buffer area around the pollinator habitats.
c) Discuss how you used the output from a pesticide risk assessment tools. Examples include: Environmental Impact Quotient or Pesticide Risk Tool (PRT). The output should compare your pesticide options and relative impact on pollinators. Or describe results from another tools used to assess risk.

d) Discuss or show (although not necessary) pesticide application records that indicate pesticides toxic to bees were not applied during bloom or during times of greatest bee movement, but rather in the evening or night. Indicate when the potato crop was in bloom, which is typically in June-July for potatoes in the PNW, but varies with the variety, planting date and growing location. Describe or show documents regarding time of day of application to demonstrate that pesticides toxic to bees were not applied when bees are most active.

e) Describe how you communicate and contact neighboring bee keepers or growers using pollinators (e.g., alfalfa seed) that you will be applying a pesticide. Examples include calling, texting, emailing, personal visit, or letter. Driftwatch.org is an example of an on-line resource or tool to aid in communication.

Additional resources:
- How to reduce bee poisoning from pesticides: https://catalog.extension.oregonstate.edu/sites/catalog/files/project/pdf/pnw591_1.pdf

If you answer f):

Continue on to next question.
<table>
<thead>
<tr>
<th>No. 16.1</th>
<th>Sustainable Practice: Environmental Sustainability</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/ Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>Mark all that apply</td>
<td>a) Energy use of the farm is evaluated, e.g., utility bills, fuel bills are reviewed for changes in consumption over time. b) Energy conservation practices are implemented, e.g., transitioning to use of alternative fuels, utilizing GPS for reduced field travel and fuel use, reduced tillage practices, and installing more efficient irrigation pump motors. d) A written plan setting goals and evaluating progress is available.</td>
<td>Interview a) How do you monitor energy use on farm? B) What practices have you implemented to conserve energy? c) Results of the most recent energy audit/review. d) Energy conservation plan must include: i) Energy conservation goals ii) Practices implemented iii) Results from measure implemented</td>
<td>a) Monitoring includes: i) Energy bills ii) Fuel receipts b) Energy conservation measures include: i) Efficiency irrigation pump motor ii) LED lighting iii) Efficient mechanical equipment iv) Insulation v) Other c) Results of the most recent energy audit/review. d) Energy conservation plan must include: i) Energy conservation goals ii) Practices implemented iii) Results from measure implemented</td>
</tr>
</tbody>
</table>

If you answer:

a) Explain in the interview how you monitor energy use. For most farms this will include a regular review of energy bills and fuel receipts.

b) Describe in the interview your practices to conserve energy. Energy conservation measures include using high efficiency irrigation pump motor, LED lighting, efficient mechanical equipment, insulation etc.
c) Be prepared to show documented results of your most recent energy audit/review. Check with your local power company if they provide energy audits.

d) Show a written plan that documents the farm’s goals and efforts to optimize energy use. The interviewer will expect to see:

 i) Energy conservation goals

 ii) Practices implemented

 iii) Results from any of the practices you have implemented

Additional resources:

If you answer e):

 Continue on to next question.
If you answer:

a) Discuss in the interview how a general manufacturer recommended preventative maintenance schedule is implemented on the farm for at least one piece of machinery. General maintenance on tractors (oil and air filter changes) occurs every 250-500 hours depending on the brand and size of tractor used.

b) Show that maintenance records from the past year that includes operating hours on machines, date of maintenance/repair and what procedures were done.

If you answer c):

Continue on to next question.
<table>
<thead>
<tr>
<th>No. 16.3</th>
<th>Sustainable Practice: Environmental Sustainability</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>Yes or No At least once during the past three years, farm has used or participated in the Cool Farm Tool, FieldPrint Calculator or other software tools to assess contribution to greenhouse gas production</td>
<td>Farm has used software or other tools, e.g., Cool Farm Tool, FieldPrint Calculator, at least once in the past three years to assess contribution to greenhouse gas production.</td>
<td>Documentation</td>
<td>Documentation of greenhouse gas assessment completed within the last three years (e.g., output from Cool Farm Tool or FieldPrint Calculator).</td>
</tr>
</tbody>
</table>

If you answer yes:

Provide a print out of a greenhouse gas assessment completed within the last three years.

Greenhouse gas assessments can be calculated from several on-line software tools. Examples include:

- CoolFarm Tool (https://coolfarmtool.org/)
- FieldPrint Calculator (https://fieldtomarket.org/)
- Farm Carbon Calculator (http://www.cffcarboncalculator.org.uk/)
- COMET-Farm (http://www.comet2.colostate.edu/)

If you answer no:

Continue on to next question.
If you answer a):

a) It is highly recommended not to burn trash on the farm, and reiterate in the interview question that you do not dispose of trash on the farm via burning.

b) Discuss how trash is disposed. Is it taken to a local disposal site by the farm or a contracted company? Be prepared to cite the landfill, transfer station, or disposal company you utilize to remove trash.

If you answer b):

Describe the materials you dispose of through burning.

Continue on to next question.

<table>
<thead>
<tr>
<th>No.</th>
<th>Sustainable Practice: Environmental Sustainability</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1</td>
<td>Trash should never be burned.</td>
<td>Interview</td>
<td>a) What materials do you dispose of through burning? (e.g., wire fencing, plastic)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) How is trash disposed? What company is contracted to pick up trash?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If you answer:

a) Explain in the interview how, when and where burning is practiced and identify the regional expert recommendation source: Example includes:
 - Burning ditch banks is described by regional canal companies as a routine and standard practice.
 - Check local regulations as well and cite those.
 - Washington Department of Ecology Outdoor Agricultural Burning
 https://ecology.wa.gov/Air-Climate/Air-quality/Smoke-fire/Agricultural-burning
 - Idaho Department of Environmental Quality
 - Oregon Department of Agriculture Burning
 http://www.oregon.gov/oda/programs/NaturalResources/Pages/Burning.aspx

b) Be able to describe the farm’s policy on burning vegetation. Example:
 - “This farm does not burn vegetation as a cultural practice.”

If you answer c): State that you burn vegetation with no consideration for Best Management Practices.

Continue on to next question.
If you answer yes:

- Describe cull or waste potato management.
 - Common practices include feeding to livestock, hauling to landfill, spreading on non-potato ground, burying or composting. If cull potatoes are piled, be able to describe methods to ensure potatoes do not sprout (herbicide, freezing, tillage. etc.).

Additional resources:

If you answer no:

Continue on to next question.
<table>
<thead>
<tr>
<th>No.</th>
<th>Sustainable Practice: Environmental Sustainability</th>
<th>Reference Guide</th>
<th>Audit Guidance</th>
<th>Documentation/Interview Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>Yes or No Waste water (e.g. tail-water, potato wash water) is managed according to all applicable federal, state/provincial and local regulations and requirements for the protection of surface and groundwater from direct and indirect pollution</td>
<td>Any irrigation tail water, potato wash water or other waste water discharges meet all applicable regulations.</td>
<td>Interview What are the applicable regulations pertaining to waste water discharge?</td>
<td>Grower has knowledge of: i) Local regulations on protection of water resources ii) State/Provincial regulations on protection of water resources iii) Federal regulations on protection of water resources</td>
</tr>
</tbody>
</table>

If you answer yes:

- Be able to describe in the interview:
 - Compliance with local canal company or irrigation district recommendations for surface runoff.
 - If you are chemigating/fertigating, describe how the farm follows regulations related to use of backflow prevention assemblies to prevent contamination.
 - If you wash potatoes prior to hauling, common practice would include not discharging the water, but rather pumping it back into a retaining pond.

- Additional resources:

This completes the survey questions.
<table>
<thead>
<tr>
<th>Glossary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action thresholds: The number of pests or level of pest damage at which action is required to prevent economic loss.</td>
</tr>
<tr>
<td>Aggregate stability: The ability of soil aggregates, or groups of soil particles, to resist disintegration when tillage, water, wind erosion or other disruptive forces act on the soil. Soil aggregates are an indicator of healthy soil and enhance plant growth by easing root penetration, water infiltration and access to nutrients.</td>
</tr>
<tr>
<td>Application equipment calibration: Process to ensure that input application equipment is operating properly by testing equipment measurements against a known value. Improperly calibrated equipment may cause either too little or too much of an input, e.g., pesticides, fertilizers, manure, compost, to be applied.</td>
</tr>
<tr>
<td>Aquatic ecosystems: Lakes, lagoons, rivers, streams, brooks, swamps, marshes, bogs and other surface water bodies and their immediate surroundings.</td>
</tr>
<tr>
<td>Available water capacity: The maximum amount of plant-available water a soil can provide. It is an indicator of a soil’s ability to retain water and make it sufficiently available for plant use.</td>
</tr>
<tr>
<td>Beneficial insect: Insects that provide a benefit, such as suppressing pests or providing pollination.</td>
</tr>
<tr>
<td>Biopesticides: Certain types of pesticides made up of living organisms or derived from the products of living organisms, such as microbes, bacteria, plant extracts, fatty acids or pheromones, and used to control pests.</td>
</tr>
<tr>
<td>Biosecurity: A strategic and integrated approach to analyzing and managing risks to animal and plant life and health from the introduction and spread of pests, diseases and invasive species.</td>
</tr>
<tr>
<td>Biosolids: Organic matter recycled from sewage for use in agriculture.</td>
</tr>
<tr>
<td>Blight prediction tool: Tool that monitors and forecasts weather to predict outbreaks of blight diseases in potatoes.</td>
</tr>
<tr>
<td>Buffer zone: An area of permanent vegetation that is maintained between agricultural fields and the water bodies to which they drain. Buffers are intended to intercept runoff from fields including water, soil particles, nutrients and/or pesticides, thereby protecting water quality and aquatic organisms.</td>
</tr>
<tr>
<td>Bulk Density: An indicator of soil compaction which is calculated as the dry weight of soil divided by its volume. This volume includes the volume of soil particles and the volume of pores among soil particles. Bulk density is typically expressed in g/cm³ and reflects the soil’s ability to function for structural support, water and solute movement and soil aeration.</td>
</tr>
<tr>
<td>Certified seed potato: Potato seeds that have been tested to verify they are without disease and are of a consistent variety.</td>
</tr>
<tr>
<td>Cover crops: Crops planted and later incorporated into the soil to help manage soil erosion, soil fertility, soil quality, water, weeds, pests, diseases, biodiversity and wildlife. Examples include legumes, cereals, grasses and more.</td>
</tr>
<tr>
<td>Cull pile: A discarded pile of plant material, especially potato tubers.</td>
</tr>
<tr>
<td>Cultural practice: Agricultural practices that aim to disrupt the pest’s environment without the use of chemical substances to enhance crop health and prevent weed, pest or disease problems. Examples include turning under crop residues, sterilizing tools and equipment and harvesting early.</td>
</tr>
<tr>
<td>Deep ripping: Mechanically disturbing the soil below the normal cultivation layer, without inverting the soil, to break up compaction layers which can reduce water infiltration and limit root growth.</td>
</tr>
<tr>
<td>Degree-day models: Models that use daily air temperature to help predict the best timing for pest management activities such as scouting or pesticide applications. These models are based on the fact that the growth and development of insects and microbes is closely linked to the temperature where it is found.</td>
</tr>
<tr>
<td>Disease monitoring: See Pest scouting</td>
</tr>
<tr>
<td>Disking: Working of the upper layer of the soil with disk implements, such as disk harrows and shallow plows, to prepare a field for planting, reduce weed growth, eliminate surface crusting or other purposes.</td>
</tr>
<tr>
<td>Drip irrigation: Irrigation method that saves water and fertilizer by allowing water to drip slowly, either onto the soil surface or directly onto the root zone, through a network of valves, pipes, tubing and emitters.</td>
</tr>
</tbody>
</table>
Environmental Impact Quotient (EIQ): Formula created to provide growers with data regarding the environmental and health impacts of their pesticide options so they can make better informed decisions regarding their pesticide selection.

Evapotranspiration (ET): Loss of water from a vegetated surface through the combined processes of soil evaporation and plant transpiration. ET information provides accurate estimates of daily water use and thus can inform when to apply water and how much water to apply.

Fertigation: Injection of fertilizers, soil amendments and other water-soluble products into an irrigation system.

Filter strips: An area of permanent herbaceous vegetation used to reduce sediment, organics, nutrients, pesticides and other contaminant movement in runoff.

Furrow irrigation: Irrigation of farmland by water run in open furrows created in soil between the crop rows.

Genetically modified organisms (GMOS): Organisms (i.e. plants, animals or microorganisms) in which the genetic material (DNA) has been altered in a way that does not occur naturally by mating and/or natural recombination.

Green manure: Living plant material incorporated into the soil, or killed and left on the surface, for soil improvement, or when composed of legumes to increase the soil N supply.

Greenhouse gases: Compounds that trap heat in the atmosphere. These gases include carbon dioxide, methane, nitrous oxide and fluorinated gases.

Grey-water: Wastewater generated in households or office buildings without fecal contamination, i.e., does not include wastewater from toilets.

Infiltration Rate: The rate at which ponded water on a soil surface enters the soil profile.

Infrared monitoring: Use of infrared sensors to monitor a crop’s water needs.

Integrated Pest Management (IPM): Integrated pest management (IPM) is an ecosystem-based strategy that focuses on long-term prevention of pests or their damage through a combination of techniques such as biological control, habitat manipulation, modification of cultural practices and use of resistant varieties. Pesticides are used only after monitoring indicates they are needed according to established guidelines, and treatments are made with the goal of removing only the target organism. Pest control materials are selected and applied in a manner that minimizes risks to human health, beneficial and non-target organisms, and the environment.

Invasive: Designated by state or national agricultural authorities as threatening to agricultural and/or horticultural crops and/or humans and livestock, e.g., an invasive weed.

Mode of action: Describes a functional or anatomical change, at the cellular level, resulting from the exposure of a living organism to a substance.

Native Species: Those species that occur naturally in the place where they are found. Naturalized species - exotic species that have adapted, grow and multiply as if they are native - are also considered as native if it is proven that they do not cause negative economic or environmental impacts.

Nutrient leaching: Loss of water-soluble plant nutrients from movement down through the soil profile, due to rain and irrigation. Soil structure, crop planting, type and application rates of fertilizers, and other factors are taken into account to avoid excessive nutrient loss.

Pest scouting: Process of precisely assessing pest pressure and crop performance to evaluate economic risk from pest infestations and disease, as well as to determine the potential effectiveness of pest and disease control interventions.

Pesticide drift: Airborne movement of pesticides, away from the intended target. Pesticide drift can affect everyone, both urban and rural communities, by having negative effects on human health and the environment.

Pesticide resistance: Ability of an organism to avert the attack of a potential pathogen up to a certain degree or to resist the effect of a harmful agent.

Petiole testing: Assessing the nutrient content of crops at a selected time in the growth of the plant through analyzing the petiole (stalk attaching the leaf to the stem).

Reduced tillage: Method of tillage in which the soil has been disturbed to a lesser extent relative to the conventional tillage (plowed/harrow till). Reducing tillage can reduce soil erosion, loss of carbon from the soil into the atmosphere, and reduce energy consumption and costs.

Refuges: An area of a field not treated with pesticides to allow beneficial insects and susceptible pest organisms to survive.
Rotation: Alternating plantings of one type of plant with at least one other (e.g., potatoes followed by oats); alternating pesticides of one type with at least one other type (e.g., an organophosphate followed by a biopesticide).

Sensitive areas: Sensitive areas are parts of the natural or built environment that may be impacted by growing operations. Most growing operations have sensitive areas that can be protected from production activities such as surface water bodies, aquifers, public travel ways, residences, wildlife habitat, etc.

Soil amendments: Material that can improve soil physically or chemically, making it more suitable for plant growth.

Soil compaction: A compression of soil that results in poor water drainage and air movement, and reduced root growth.

Soil-borne diseases: Plant diseases present in the soil.

Thermal control: Using heat to control pests (usually weeds).

Variable rate application technology: Any technology which enables producers to vary the rate of crop inputs. Variable rate application technology combines a variable-rate (VR) control system with application equipment to apply inputs at a precise time and/or location to achieve site-specific application rates of inputs.

Variable rate irrigation system: Irrigation system that works by applying water at a variable rate along the center pivot rather than one uniform rate along the entire length of the system.

Viral diseases: Plant disease caused by a virus.

Waste water: Any water that has been adversely affected in quality by man-made influence or pollutants. It comprises liquid waste discharged by domestic residences, commercial properties, industry and/or agriculture and can encompass a wide range of potential contaminants and concentrations.

Glossary definitions adapted from resources provided by the following organizations: Alabama Cooperative Extension System, Cornell University Northeast Region Certified Crop Advisor (NRCCA) Study Resources, eXtension.org, Food and Agriculture Organization of the United Nations, Gempler’s 1999-2000 IPM Almanac, IPM Institute of North America, Kansas Natural Resources Conservation Service (NRCS), Merriam Webster Dictionary, NRCS National Soil Survey Center, New York State IPM Program, Penn State Extension, Sustainable Agriculture Network, University of Arizona Cooperative Extension, University of Idaho Extension, University of Minnesota Extension, U.S. Environmental Protection Agency (EPA), Washington State University Extension, Western Australia Department of Agriculture and Food and the World Health Organization.