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Property Value Losses Following a Freshwater Chemical Spill 1 

 2 
 3 
ABSTRACT  4 

In 2014, an above ground tank storing coal processing chemicals leaked into the Elk River near 5 

Charleston, West Virginia. This study quantifies the extent of home value losses associated with 6 

that event using difference-in-difference spatial regression models. Various buffer distances and 7 

timeframes are used to determine the magnitude and spatial-temporal persistence of changes in 8 

the sale price of single-family properties. Results suggest that homes sold within a year of the 9 

spill experience a significant price reduction—between $10,000 and $25,000—based on their 10 

proximity to the spill. However, sale prices rebound to pre-spill levels within 2 to 3 years.  11 
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The Temporal and Spatial Extent of Property Value Losses 26 

Following a Freshwater Chemical Spill 27 

 28 
1. INTRODUCTION 29 

On the morning of January 9, 2014, residents of Charleston, West Virginia began reporting a 30 

licorice smell present in their drinking water. Within hours, investigators discovered that a tank 31 

at Freedom Industries, a manufacturer of coal processing chemicals, had broken and liquid had 32 

subsequently leaked into the Elk River, the main water source for local water utilities (Manuel 33 

2014). The major water utility, West Virginia American Water Company (AWC), sampled and 34 

tested water in the river. By 5:50 in the afternoon, a “do not drink” order was announced for 35 

nearly 300,000 residents (Manuel, 2014). One day following the spill, 122 people sought medical 36 

attention for symptoms of nausea and vomiting (Guilfoos et al. 2018). While health impacts were 37 

generally mild and acute, an estimated 25,623 households had at least one person with symptoms 38 

attributed to the spill, including mild skin, respiratory, and/or gastrointestinal symptoms that 39 

resolved with no or minimal treatment. Within two weeks, approximately 10,000 gallons of 40 

contaminants1 had been reported spilled. The “do not drink” order remained in place for 10 days 41 

and residents were dependent on bottled water for everyday needs until January 18th (Manuel, 42 

2014). As a result of the spill, 40% of the working population did not attend work for the entirety 43 

of the drinking ban (Guilfoos et al., 2017), and economic losses were estimated at roughly $61 44 

million (Manuel, 2014). One week after the spill, Freedom Industries had roughly twenty-five 45 

 
 
 
1 Chemicals identified in the spill include 4-Methylcyclohexanemethanol (MCHM), 4-
Methoxymethylcyclohexylmethanol, Methyl 4-methylcyclohexanecarboxylate, 1,4-Cyclohexanedimethanol, 
Dimethyl 1,4-cyclohexanedicarboxylate, Propylene glycol phenyl ether, Dipropylene glycol phenyl ether, Crude 
MCHM, 4-Methylcyclohexanecarboxylic acid, Cyclohexanemethanol, 4-(ethenyloxy)methyl)-, 
Cyclohexanemethanol, alpha,alpha,4-trimethyl-, Phenoxyisopropanol, 2-methylcyclohexanemethanol, and Dowanol 
DiPPh glycol ether (NIH-NTP 2016). 
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lawsuits brought against them and subsequently filed for bankruptcy (White, 2014). Thus, the 46 

benefits of their production were privatized, but the costs of this spill were largely pushed onto 47 

the public. As such, the magnitude, temporal persistence, and spatial extent of these losses have 48 

significant implications for public welfare and policy. 49 

 50 

Given the well-documented connection between water quality and housing prices (see, for 51 

example, Leggett and Bockstael 2000; Nicholls and Crompton 2018), this paper returns to the 52 

Elk River spill to estimate the spatial extent and temporal persistence of contamination on 53 

property values in the affected region. Specifically, we:  54 

1. Estimate the impact of proximity to the contamination site on sale price of residential 55 

properties (before and after the spill);  56 

2. Investigate whether property value losses are temporally acute or persist across time;  57 

3. Estimate the effect of the spill on homes whose municipal water supply was 58 

contaminated, conditioning on spatial proximity to the spill site.  59 

To understand the costs imposed on the public, we must better understand the spatial and 60 

temporal extent of these losses. For example, if home values near the spill rebound within 61 

months, then the long-term wealth and welfare implications are quite small for most 62 

homeowners. Conversely, if value losses persist for years or otherwise decrease the ability of 63 

property owners to sell, losses may be substantial. McCluskey and Rausser (2003) find that 64 

stigma—a negative attribute of real estate acquired by environmental contamination—can have 65 

long-term price effects. Despite the acknowledgement of this phenomena, few studies quantify 66 

real estate losses beyond their immediate decline following such events. Since the Elk River spill 67 
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occurred in early 2014, sufficient time has passed (~6 years) to investigate the existence of 68 

stigma and measure the persistence of property value losses.  69 

As a necessary first-step, the spatial extent and magnitude of loss must be quantified. 70 

Surprisingly little hedonic work was conducted following the Elk River spill, such that the 71 

relationship between proximity-to-spill and sale price is largely unknown, though the impact of 72 

contamination events on property sales is generally believed to decrease with distance (Epley 73 

2012). To investigate these phenomena, hedonic valuation methods are used in spatially 74 

autocorrelated, difference-in-difference (DID) multivariate regression models.  75 

Hedonic valuation is a revealed preference technique commonly used to quantify the costs and 76 

benefits associated with environmental (non-market) features (Champ et al. 2003). In the absence 77 

of market frictions, variation in external exposure to (dis)amenities will be capitalized into 78 

housing prices (Bishop et al. 2020), making it possible to indirectly estimate the value of such 79 

(dis)amenities through property sale prices. In an environmental context, hedonic analysis uses 80 

housing markets to reveal the willingness to pay for marginal changes in those (dis)amenities. 81 

Since properties have easily identifiable attributes (e.g. size, quality), residual values—portions 82 

of the sale price unexplained by property characteristics—can be attributed to locational 83 

characteristics linked to environmental (or other) assets of importance (Gopalakrishnan and 84 

Klaiber 2014). For half a century, results from hedonic research have been consistent; 85 

disamenities (pollution, noise, etc.) significantly decrease property values (Smith and Huang 86 

1995; Nelson 2004; Turner et al. 2003; Deaton and Hoehn 2004; Walsh and Mui 2017).  87 

 88 

In a recent comprehensive review, a statistically significant relationship between water quality 89 

and home values was found in forty-six out of forty-eight studies (Nicholls and Crompton 2018). 90 
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While the review provides extensive background on the history of hedonic valuation applications 91 

in water quality, the majority of the included studies examine the effect of water clarity, quality, 92 

or general nuisance (e.g. pH, algal blooms, turbidity) on mainly waterfront properties, and are 93 

therefore less applicable to the Elk River context, where health and clean water supply concerns 94 

were more salient.  95 

 96 

Chronic pollution, such as Superfund sites or locations near the EPA’s Toxics Release Inventory 97 

(TRI), have also been linked to persistent home price depression (Decker, Nielsen and Sindt 98 

2005; Kiel and Williams 2007). The Cheat River Watershed—also located in West Virginia—99 

has been chronically impaired by acid mine drainage, which exerts an implicit cost of $4,783 on 100 

residential properties near the waterway (Williamson, Thurston and Heberling 2008). While, 101 

these and other studies justify the use of hedonic methods to value environmental contamination, 102 

they do not evaluate the persistence of value loss due to acute contamination events.  103 

 104 

One such event, was the Dan River coal ash spill. In a comprehensive evaluation of the Dan 105 

River accident, Lemly (2015) estimated total costs (ecological, health, recreational, etc.) to be 106 

nearly $300 million dollars within 6 months of the spill and highlights the need for accurate 107 

(short- and long-term) real estate losses associated with such events. Boyle and Kiel also 108 

acknowledge the need for hedonic studies with longer time horizons in order to capture the 109 

dynamics of environmental goods on home prices and preferences (Boyle and Kiel 2001). Yet, 110 

few studies have examined the temporal aspects of these acute chemical spill events beyond their 111 

immediate impact on property values, particularly where such spills have affected municipal 112 

drinking water systems.  113 
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 114 

Hedonic valuation studies of large-scale, chemical spills in the United States remain limited 115 

(Winkler and Gordon 2013). As Winkler and Gordon (2013) point out, acute events are 116 

inherently different from the effect of other, more permanent disamenities (e.g. power plants) 117 

since they involve more uncertainty and are less likely to provide positive effects such as 118 

increased employment. Although hedonic research of acute chemical spills is rare, a number of 119 

such studies exist in response to oil spills specifically. For example, the Deepwater Horizon 120 

accident precipitated several studies. Siegel, Caudill and Mixon (2013) and Winkler and Gordon 121 

(2013) estimate the property value losses from that event to range from 1% to 15%, and largely 122 

dissipate within five months. However, these studies focus chiefly on waterfront or vacation 123 

properties. Other research that has examined the effects of acute spill or contamination events, 124 

find property value losses around 10%. In April of 2000 an oil pipeline ruptured in Prince 125 

George County outside of Washington DC. This spill impaired ten miles along the Patuxent 126 

River, which decreased the value of affected homes by 11% on average (Simons, Winson-127 

Ceideman and Brian 2001). A similar decrease (10%) due to petroleum leakage from 128 

underground tanks was observed in Maryland (Zabel and Guignet 2012). Hansen et al. (2006) 129 

conduct an analysis similar to our own based on the perceived risk of living near an oil-pipeline 130 

after a spill event. Their work suggests that proximity to an oil pipeline decreases home values 131 

following a rupture (regardless of proximity to the actual spill), and such losses persist across 132 

time due to increased awareness. 133 

 134 

The Elk River study site allows us to investigate several phenomena simultaneously and 135 

separately identify the effect of proximity to spill from that of acute drinking water 136 
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contamination, which may affect property values across an entire city. Chemically degraded 137 

drinking water is not always visible, but once contamination events are identified, there are 138 

limited ways to mitigate risks. Such events often receive disproportionate televised coverage 139 

(Driedger 2007), which may indirectly decrease demand for real estate in the affected municipal 140 

water supply area regardless of actual risk. In the case of Elk River, local water utilities were 141 

contaminated, which resulted in a “licorice smell” across large service areas. Therefore, we can 142 

separately identify the effect of contaminated drinking water, which was present throughout 143 

American Water Company’s service areas and the effect of proximity to the spill site based on 144 

distance-buffer-treatments. Importantly, we revisit the spill after sufficient time has elapsed to 145 

estimate the temporal persistence of property value losses associated with such events. These 146 

findings are crucial to understanding the extent to which firm bankruptcies—following such 147 

event—push costs onto the broader public, since there is little recourse available to the average 148 

homeowner. Given the notoriety of the spill, other work has investigated its effect on health and 149 

economic growth in the area. Guilfoos et al. (2018) identified a 3% decrease in GDP in Kanawha 150 

County (although not statistically significant) as well as a statistically significant decrease in 5-151 

minute Agar scores, used to measure infant health (Guilfoos et al., 2017). However, they did not 152 

specifically investigate changes in property values, nor did they have the additional subsequent 153 

years to include in their analysis.  154 

 155 

Nevertheless, their (and others’) findings point to the complexity of perceptions and valuation of 156 

chemical contamination, since there are several mechanisms by which these events can affect 157 

value (perceived health risks, increased avoidance costs, reduced recreation, and numerous 158 

avenues of indirect effects related to changes in the local economy). Moreover, the 159 
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autocorrelation of home sales may outlast any measurable impacts of the spill or create long-160 

lasting stigma in the area. A neighborhood near the spill may see decreased home values in the 161 

short-term, and these lower prices are likely to affect future sales in nearby neighborhoods—162 

even without explicit knowledge of the spill. For example, most realtors provide a “comps list” 163 

that explicitly compares recent nearby home sale prices for potential buyers. Thus, the lower 164 

sales price of a home sold directly after the spill, may lead to long-lasting depreciation of other 165 

homes in the area. In cases of perceived water supply failures, trust in local public and 166 

government entities decreases (Driedger, Mazur and Mistry 2014; Morckel and Terzano 2019), 167 

which may indirectly decrease real estate value. In the case of Elk River, two months after the 168 

spill, less than 5% of the locals in the Charleston area were using municipal water for cooking or 169 

drinking (Guilfoos et al., 2017). This increased reliance on expensive water sources—a common 170 

avoidance cost—is notable because it persisted long after the do not drink order ended, 171 

highlighting the complexity of valuing acute contamination events. 172 

 173 

Although it is difficult to separately identify the underlying mechanisms of home-value losses 174 

associated with the chemical spill, a difference-in-difference (DID) regression analysis will 175 

provide an appropriate counterfactual by which the effect of the spill can be measured across 176 

space and time. Since randomized experimental design is not possible—or at least ethical—in the 177 

case of chemical contamination, the DID approach leverages the naturally occurring event to 178 

separate treatments from controls. The approach is well-established and one of the most widely 179 

applicable design-based estimators in the field on economics (Angrist and Pischke 2008). 180 

 181 

 182 
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2. METHODS 183 

This analysis follows best practices suggested by Bishop et al. (2020). Exogenous variation in an 184 

amenity is observable by prospective buyers (e.g. distance from an unexpected spill). Data on the 185 

prices and physical attributes of properties, together with location-specific measures for 186 

amenities are used to estimate flexible functions predicting sale price. The DID method in a 187 

natural experiment creates quasi-random treatments, thus reducing sources of endogeneity or 188 

bias. We do not directly survey residents as Bishop suggests and rely on the assumption that 189 

buyers and sellers have knowledge of the spill to influence their decisions, although such 190 

knowledge can be imperfect (see Kiel and McClain (1995) for a discussion on information sets 191 

in hedonic valuation).  192 

 193 

DID specifications are used to estimate the effect of the spill on property values across three 194 

model specifications. In Model 1, treatments are assigned based on property’s proximity to the 195 

spill. In Model 2, we test the persistence of these value losses across time, and in Model 3 we 196 

attempt to separate the effects of proximity from the effect of being on a municipal water system 197 

that has been contaminated. Each model assumes property prices, 𝑦𝑦, are comprised of their 198 

underlying attributes such that 𝑦𝑦𝑖𝑖 = 𝑓𝑓(ℎ𝑖𝑖 , 𝑙𝑙𝑖𝑖, , 𝑥𝑥𝑖𝑖 , 𝑠𝑠𝑖𝑖,𝑝𝑝𝑖𝑖), where:  199 

 200 
ℎ𝑖𝑖 represents property characteristics,  201 
𝑙𝑙𝑖𝑖 represents locational characteristics,  202 
𝑥𝑥𝑖𝑖 represents the year of the sale 203 
𝑠𝑠𝑖𝑖 denotes spill treatments, 𝑠𝑠𝑖𝑖 ∈ [0,1] 204 
𝑝𝑝𝑖𝑖 denotes if the sale occurred after the spill, 𝑝𝑝𝑖𝑖 ∈ [0,1].  205 

 206 
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2.1 Regression Models  207 

The initial DID models capture the property value loss using proximity to spill and post-spill 208 

occurrence as binary treatment variables, the interaction of which is the DID term of interest. 209 

The DID approach allows us to isolate the effect of the chemical spill, accounting for differences 210 

across housing groups before and after the spill occurred, separating the effect of the spill from 211 

overall trends in property values. The basic model is expressed as: 𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷 =  �𝑦𝑦𝑠𝑠=1,𝑝𝑝=1 −212 

𝑦𝑦𝑠𝑠=1,𝑝𝑝=0� − �𝑦𝑦𝑠𝑠=0,𝑝𝑝=1 − 𝑦𝑦𝑠𝑠=0,𝑝𝑝=0� where 𝑝𝑝 = 0 denotes the sale occurred before the spill and 213 

𝑝𝑝 = 1 denotes the sale occurred after the spill. The treatment 𝑠𝑠 = 1, defines whether the home 214 

falls within the “close to spill” treatment, with the expectation that value loss estimates decrease 215 

as the buffer size denoting treatment increases. The welfare loss to a property owner is therefore 216 

the price that would have been received without the spill minus the actual price observed in the 217 

sale. 218 

 219 

Although there is no consensus on the precise specification of hedonic housing models, 220 

explanatory variables were included based on previous work and intuition of household 221 

characteristics likely to affect property value, including parcel acreage, size of house, age, 222 

quality, home style (ranch, colonial, etc.), associated tax code (in- or outside of municipal taxing 223 

authority, structure used for business, etc.), flood risk, and proximity to amenities (Smith and 224 

Huang 1995; Cameron 2006; Williamson et al. 2008; Paterson and Boyle 2002; de Koning, 225 

Filatova and Bin 2019). A thorough set of control variables is therefore included in each model 226 

specification (complete list presented in Table 1), such that the variation in price leftover is likely 227 

due to environmental factors.  228 

 229 
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All models are estimated using log transformed sale price as the dependent variable. The log 230 

linear model is commonly used in hedonic residential studies to reduce the influence of outliers, 231 

allow price to change proportionally, and generally improve the normality of residuals (Winkler 232 

and Gordon 2013; Bigelow, Ifft and Kuethe 2020; Moore et al. 2020), however it also leads to 233 

biased predicted sale values if not corrected.2  234 

 235 

As is common in hedonic studies of real estate, the model includes a spatial weighting matrix, 236 

since residential home sales are likely to suffer from high levels of spatial correlation (Basu and 237 

Thibodeau 1998; Neill, Hassenzahl and Assane 2007; Anselin 2013).3 In our own data, Moran’s 238 

I test strongly rejects the null of no autocorrelation (p-value<0.00). Thus, an inverse distance 239 

weighting matrix, truncated at 0.25 miles, is used to account for any unobserved features that 240 

result in correlation of sale price among nearby homes. Model 1 is therefore: 241 

 242 
 𝑦𝑦𝑖𝑖 = ℎ𝑖𝑖′𝜙𝜙 + 𝑙𝑙𝑖𝑖′𝜏𝜏 + 𝛽𝛽0𝑠𝑠𝑖𝑖 + 𝛽𝛽1𝑝𝑝𝑖𝑖 + 𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷(𝑠𝑠𝑖𝑖 ∗ 𝑝𝑝𝑖𝑖) + 𝑥𝑥𝑖𝑖′𝛿𝛿 + 𝛾𝛾𝛾𝛾𝑦𝑦𝑖𝑖 + 𝜖𝜖𝑖𝑖   (1) 243 

    244 
where y is the observed sale price of house 𝑖𝑖, ℎ𝑖𝑖 is a vector of property characteristics, including 245 

presence of a full basement, age, flood risk, parcel size, a set of 11 dummies denoting home 246 

style, and a vector of square-footage-quality interactions. Quality ranges from A+ to F- within 247 

Kanawha county, with 15 distinct categories. This size-quality specification improves fit 248 

considerably but is rarely seen in previous literature. The interaction is also more likely to 249 

represent the underlying data-generating process, since an additional square-ft of high-quality 250 

 
 
 
2 𝐸𝐸[𝑦𝑦│𝑥𝑥] ≠ 𝑒𝑒(𝑥𝑥`𝑏𝑏) See Woolridge (2010) or Ciane and Fisher (2018) for a full discussion on the need for this 
correction. 
3 The ongoing debate around spatial autocorrelation methods is not discussed here (See Gibbons and Overman 
2012).  
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marble is more valuable than that of vinyl. Locational characteristics are represented by vector 𝑙𝑙𝑖𝑖, 251 

which includes waterfront (binary) designations and distance to downtown, 𝑥𝑥𝑖𝑖 is a vector of 252 

dummy variables for each year in our sample. Annually dummies are used to account for interest 253 

rates and other macroeconomic conditions that may vary from year to year. 𝑊𝑊 is the spatial 254 

weighting matrix and 𝜖𝜖𝑖𝑖 represents idiosyncratic error.4 𝜙𝜙, 𝜏𝜏, 𝛿𝛿,𝜌𝜌, are vectors of parameters to be 255 

estimated, 𝛾𝛾 is the estimated parameter for spatial correlation. The set of 𝛽𝛽’s are coefficient 256 

parameters associated with control-treatment and 𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷 represents the primary coefficient of 257 

interest. Model 1 is run 5 times with different buffer distances denoting 𝑠𝑠𝑖𝑖 = 1 as within one, 258 

two, three, four, or five miles of the spill site and 0 otherwise.   259 

 260 

Model 2 estimates the persistence of these losses across time. This model includes binary 261 

“treatments” as years-since-spill, for each year following the spill. As such, 5 binary variables, 262 

𝜈𝜈𝑖𝑖𝑖𝑖, are interacted with the “close to spill” dummy. In this model, close to spill designation is 263 

informed by results from Model 1 and defined as within 3 miles from the spill. Thus, a set of 5 264 

year-specific treatments is created, where each is specific to the number of years between the 265 

spill and the sale. This model is used to estimate the persistence of value loss across time. By 266 

introducing year-treatment as a dummy variable, we allow the spill effect to vary across time 267 

without imposing linear (or quadratic) decay, though the annual step imposes its own 268 

assumption. Model 2 is similar to Equation 1, but replaces 𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷(𝑠𝑠𝑖𝑖 ∗ 𝑝𝑝𝑖𝑖) with ∑ 𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗�𝑠𝑠𝑖𝑖 ∗ 𝜈𝜈𝑖𝑖𝑖𝑖�
5
𝑗𝑗 , 269 

where 𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗  is five, year-specific coefficients.  270 

 
 
 
4 Each model presented is also estimated without the spatial correlation term, 𝛾𝛾𝛾𝛾𝑦𝑦𝑖𝑖 . Qualitative results are similar 
and included in the appendix.  
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 271 

Models 1 and 2 inform both the spatial and temporal extent of the spill on home values. 272 

However, in the case of the Elk River spill, water supplies for 300,000 citizens were 273 

contaminated. As such, proximity to the spill may not adequately reflect the impact of the 274 

contamination, since water mainlines supply areas many miles from the spill site. If property 275 

values decreased because they are within the water utilities’ affected service area, Models 1 and 276 

2 would underestimate the total and value loss, since the control group would also have 277 

experienced decreases in property values. As such, we include a third model, incorporating two 278 

treatment dummies, one for proximity (<3 miles) and one for being within the affected service 279 

area. Thus, this specification investigates the possibility that homes supplied contaminated water 280 

experience a decrease in value, regardless of proximity. Model 3 is similar to the Model 1 but 281 

includes additional interaction term, 𝑔𝑔𝑖𝑖, to indicate if the property is within the affected service 282 

area: 283 

 284 
𝑦𝑦𝑖𝑖 = 𝜙𝜙ℎ𝑖𝑖 + 𝜏𝜏𝑙𝑙𝑖𝑖 + 𝛽𝛽0𝑠𝑠𝑖𝑖 + 𝛽𝛽1𝑝𝑝𝑖𝑖 + 𝛽𝛽3(𝑠𝑠𝑖𝑖 ∗ 𝑝𝑝𝑖𝑖) + 𝛽𝛽4𝑔𝑔𝑖𝑖 + 𝛽𝛽5(𝑝𝑝𝑖𝑖 ∗ 𝑔𝑔𝑖𝑖) + 𝛿𝛿𝑥𝑥𝑖𝑖 + 𝛾𝛾𝛾𝛾𝑦𝑦𝑖𝑖 + 𝜖𝜖𝑖𝑖  (3) 285 

  286 
Each 𝛽𝛽 is estimated, such that we can separately identify proximity to the spill from being in an 287 

affected utility’s service area. However, a pure triple difference model, as used by Muehlenbachs 288 

et al (2012) or Maas and Watson (2018) is not possible because the triple-difference term 289 

(𝑠𝑠𝑖𝑖 ∗ 𝑝𝑝𝑖𝑖 ∗ 𝑔𝑔𝑖𝑖) is perfectly colinear with (𝑠𝑠𝑖𝑖 ∗ 𝑝𝑝𝑖𝑖) since homes close to the spill are necessarily 290 

within the utility service areas. Thus, there are two “treatments” in this model such that each 291 

household is either 1) next to the spill and within the public utility service area, or 2) within the 292 

public utility service area, but far from the spill. The baseline of comparison is therefore homes 293 

far from the spill (>3 miles) and not within the utility service area.  294 
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2.2 Data 295 

Models 1 and 2 are estimated using county assessors’ data for Kanawha county only. The sample 296 

for these models was limited to Kanawha county over concerns that more rural counties would 297 

not be an appropriate counterfactual. To estimate Model 3, the sample was expanded to include 298 

nine counties adjacent to the spill (Boone, Clay, Jackson, Kanawha, Lincoln, Logan, Putnam, 299 

Roane, and Cabell county.  Figure 1 outlines the extent of the affected spill area and provides 300 

reference for readers unfamiliar with region.   301 

 302 
FIGURE 1: Map of spill location and counties included in analysis. 303 

 304 
All parcel characteristics were accessed through the GIS department of West Virginia University 305 

which include: 1) parcel-level assessor’s data, 2) recorded sale price tables, 3) and shapefiles. 306 

Property characteristics that were not directly available in assessors’ data (e.g. distance to 307 

downtown) were calculated using GIS. Each parcel in the sample was assigned a distance to 308 

spill—the coordinates of Freedom Industries, distance to downtown Charleston (nearest city), 309 

and a binary variable to indicate waterfront property (defined as <50 meters to a body of water).  310 

 311 

Sales data were cleaned to a sample of single-family residential properties based on reasonable 312 

criteria. Observations were omitted from the analysis if lot size exceeded 4 acres because this 313 

may reflect agricultural activity, which provides revenue and therefore is inherently different 314 

than a residential home sale. Transactions less than $10,000 and sale prices that were outside of 315 

one standard deviation of the assessed value were also dropped to include only “arm’s length” 316 

transactions and avoid other potential sale factors unobserved to the researcher. Sales with 317 

otherwise missing data were also dropped. 318 

 319 
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After cleaning, properties identified as single family residential that sold within 3-years before 320 

and 1-year after the spill total 2,705 for Kanawha county (used in Model 1). Model 2 includes 321 

houses sold up to 5 years after the spill, increasing total observations to 4,288. Model 3 uses the 322 

same timeframe as Model 1 but includes nine adjacent counties for a total of 5,072 observations. 323 

Descriptive statistics for the final sample are presented in Table 1. Mean home size for properties 324 

in Kanawha is ~1,400 sq-ft and the sale price follows an approximate log normal distribution 325 

with mean of $98,000. Mean calculated acre in the sample is 0.32 acres (Table 1). The 9-county 326 

sample on average has slightly larger lots, (0.37 acres), bigger houses (1,520 sq-ft) and higher 327 

sale prices (~$113,000).  These differences are, in part, why the sample used in Models 1 and 2 328 

is limited to Kanawha.   329 

 330 
TABLE 1: Descriptive statistics of property sales 331 

 332 
The DID approach requires that treatment and control groups trend together pre-treatment, such 333 

that any pre- and post-spill comparisons are not simply a result of existing trends (Kahn-Lang 334 

and Lang 2020). Figure 2 shows 10 years of average home sale prices before the spill occurred. 335 

The estimated annual trend coefficients for both the (future) treated group, properties sold within 336 

3 miles of the spill site, and the untreated group, properties sold outside of 3 miles of the spill 337 

site, are statistically identical at $765 and $612 respectively. The treated group exhibits larger 338 

deviations year to year, but this variation is likely a result of the fewer number of home sales 339 

classified as near the spill.   340 

 341 
FIGURE 2: Pre-treatment trends 342 

 343 
3. RESULTS 344 
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Given the large number of covariates, the results presented below are truncated to only include 345 

some house attributes and coefficients related to the Elk River spill (Full results tables are 346 

included in the Appendix). Estimates from Model 1 are presented in Table 2. We include results 347 

for treatment buffer distances starting at 1 mile and increasing to 5 miles from the spill site. 348 

 349 
TABLE 2: Model 1 Difference in Difference Results, 𝒍𝒍𝒍𝒍(𝒀𝒀𝒊𝒊) 350 

 351 
Coefficients for parcel characteristics are stable across each distant treatment and in-line with 352 

expectations. Direct interpretation of the logged model coefficients is difficult, but the marginal 353 

impact of household characteristics can be back-transformed to estimate the marginal impact of 354 

each attribute on estimated sale price.5 The price of homes in Kanawha county increase an 355 

average $7,000 per additional acre included in the sale. Having a full basement increases home 356 

value by approximately $5,800. Home price significantly decreases the farther the parcel is from 357 

downtown Charleston. Waterfront properties exhibit a strong price premium, increasing value by 358 

~$15,000. Older homes experience a decrease in value of between $288 and $330 for each year 359 

of age. Values associated with home style and quality-sf are highly significant but omitted here 360 

for conciseness. As an example, after accounting for direct and indirect effects, results indicate 361 

that an additional sq.-ft in a 1600 sq.-ft home is worth $97.80 in an A+ quality home, $85.92 in a 362 

B+ quality home, and $67.90 in a C+ home (See Appendix for complete results). Homes listed as 363 

D-, F, and F- have negative values associated with increased square footage, presumably because 364 

they may be “tear-downs” such that increased size increases the cost of demolition. Model fit is 365 

 
 
 
5 𝑦𝑦�𝚤𝚤� = 𝑒𝑒𝑦𝑦�𝑖𝑖𝑒𝑒�

∑(𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)
2(𝑁𝑁−𝑘𝑘) �. This correction assumes the errors in the log-model are normally distributed and may not 

appropriately capture spatial correlation if error is also spatially correlated.  
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high across all model specifications (R-squared values ~ 0.58).  Homes near the spill exhibit a 366 

slightly lower sale price on average, and the DID coefficient is significant at the 5% level for 367 

each treatment specification less than 3 miles.   368 

3.1 Model 1: Change in sale price of residential properties before and after the spill based 369 
on proximity to the contamination site.  370 

The DID coefficient estimates from Model 1 suggests that homes close to the spill experience 371 

large and statistically significant decreases in value after the spill (compared to homes farther 372 

away). As expected, the effect decreases as the size of the treatment buffer-ring increases across 373 

model specifications. Because coefficients from the log-transformed model are difficult to 374 

interpret directly; the estimates are back-transformed using the Duan correction (Duan, 1983). 375 

Pre- and post-spill DID estimates are presented in Figure 2 for each of the treatment (distance) 376 

classifications. Transformed estimated prices include the indirect effect due to spatial correlation.  377 

 378 
FIGURE 2: Before and After Spill Difference in Estimated Sale Price 379 

 380 
If treatment is defined as less than 1 mile from the spill site, treated homes experience a 381 

substantial decrease in sale price ($25,959) after the event. If treatment is defined as 2-miles, 382 

value loss is estimated at ~$14,200; when defined as 3-miles, loss is estimated at ~$9,900.  In 383 

line with regression results from Table 2, the change in sale price attributed to the spill dissipates 384 

with treatment specifications larger than 3 miles. Results therefore suggest a large value-loss 385 

conditional on proximity (< 3 miles) to the spill, though point estimates are sensitive to the 386 

choice of “treatment” distance.  387 

 388 

Given the average home sale price in Kanawha is about $100,000, the results defining treatment 389 

as 3 miles are in-line with the approximate 10% decrease in value observed in other studies 390 
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investigating acute spills (Simons, Mikelbank and Winson, 2001). However, when the model is 391 

specified to define treatment as within a mile of the spill, estimated losses are considerably 392 

greater. This additional loss may be attributed to the well-documented contaminated water 393 

supply in this case, which has been shown to reduce homes values by more than twenty percent 394 

(Case et al. 2006). 395 

3.2 Model 2: Temporal persistence of proximity effects.  396 

Here, the temporal effect of the spill on home prices is estimated. Although there is no clear 397 

buffer distance to define “treatment”, based on results from Model 1, the buffer distance used to 398 

define 𝑠𝑠𝑖𝑖 in Model 2 is < 3 miles. This term is interacted with each year after the spill to capture 399 

any temporal or dynamic effects of the spill on sale price. The transformed estimates of sales 400 

price within and outside of the treatment buffer price for five years after the spill are presented in 401 

Figure 3. As expected, a substantial decrease in price, approximately $9,000, occurred 402 

immediately following the spill within the treatment buffer. Homes outside the treatment buffer 403 

see a small increase in price across the same time. While the effect of the spill is initially large, 404 

prices begin to rebound in year 3. By year 4, there is no significant difference in estimated sale 405 

price within and outside of the 3-mile buffer. Thus, the effect of the spill on home prices is 406 

significant and negative, but ephemeral.  407 

 408 
FIGURE 3: Estimated sale prices for five years after the spill. 409 

3.3 Model 3: Effect of being within the contaminated municipal water supply service area 410 

Equation 3 is used to estimate the effect the “do not drink”—denoting contaminated municipal 411 

drinking water—had on home prices. In this model, two treatment dummies are included, one for 412 

proximity to spill (<3 miles) and another for being within the affected area. We find no evidence 413 
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that properties within the “do not drink” boundary experience a decrease in property value. 414 

Properties within the do not drink boundary sold for approximately $105,000 both before and 415 

after the spill occurred.  By comparison, homes within both the affected area and within three 416 

miles of the spill site experience a marked decrease in value (~$10,000).  It is difficult to 417 

estimate the value of homes post-spill, near the spill site, but outside of the “do not drink” order 418 

area, because all homes near the spill site are necessarily in the affected service area. Results are 419 

presented in Table 3. 420 

 421 
TABLE 3: Estimated Price of Homes from Model 3 422 

 423 
Overall, results support the underlying hypothesis that proximity to acute environmental 424 

contamination events negatively impact home values, though we do not observe a utility-wide 425 

effect caused by the subsequent “do not drink” order. Across all three model specifications, we 426 

observe a similar decrease in price for homes sold near the spill. While the initial loss is 427 

statistically and economically significant, home values rebound to pre-contamination levels 428 

within a few years. 429 

 430 
4. DISCUSSION AND CONCLUSIONS 431 

Hedonic valuation has been consistently used in valuing the impacts of water quality—and to a 432 

lesser extend other acute environmental contamination events—on property values (Nicholls and 433 

Crompton, 2018). Using home sales in West Virginia, we document the impact Freedom 434 

Industries’ chemical spill had on residential property values in the surrounding market. The 435 

immediate reduction in property value is largely limited to homes within three miles of the spill 436 

and is estimated between 10% and 25% of total value. Unlike Hansen et al. (2006), we find the 437 

loss in sale price is transitory such that prices rebound to their pre-spill levels within 3 years. 438 
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This difference in our results may be related to the nature of both events. Hansen et al. examined 439 

proximity to an active pipeline, which is likely to pose a more salient and continued threat than 440 

storage tanks from a nearby chemical company.  441 

 442 

Each estimated model includes different assumptions around the “treatment” designation, and it 443 

is clear that results are sensitive to this choice.  As expected, limiting treatment definitions to 444 

nearer distances results in larger loss estimates. At larger treatment buffers, the effect is small 445 

and insignificant.  446 

 447 

Given the divergence in results across studies and the sensitivity to treatment choices within our 448 

own study, future work should continue to elucidate the complexities of environmental 449 

contamination in human perception and housing markets. Further, loss estimates from this work 450 

should be viewed as a lower bound, since they only account for value losses associated with 451 

property sales and do not include avoidance (or other) costs imposed by the spill on communities 452 

in the region. Within three miles of the spill there are 20,122 homes implying a back-of-the-453 

envelope loss of $201,220,000. Although, the true welfare loss depends on how accurately 454 

observed sales reflect buyers and sellers in the area. In reality, consumers have heterogeneous 455 

preferences for water supply attributes (Awad et al. 2021), pollution risk perceptions and 456 

preferences are will likely drive changes in welfare and housing market equilibria. For example, 457 

if individuals with the strongest aversion to chemical spills list their homes immediately after the 458 

event, the reduced price may not reflect the disutility of those who did not list their homes. A 459 

similar argument could be made for buyers. The presence of such heterogeneity in buyers and 460 
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sellers seems reasonable and has implications for new market equilibria and total welfare 461 

estimates, which are beyond the scope of this paper, but a fertile area for future work.   462 

 463 

While the overall results of our models are compelling, it is possible that other factors also 464 

influencing home values close to the Freedom Industries spill site after 2014. Namely, our 465 

estimates may include a structural change in the regional economy following the bankruptcy of 466 

Freedom Industries. West Virginia coal production has been declining since 2008 to 40-year 467 

lows in 2016. Such a change in employment opportunities may spillover into housing markets.  468 

All such indirect effects are impossible to characterize but should be considered in similar 469 

analyses.   470 

 471 

The point estimates provided here are in line with previous work in other locations, but benefit 472 

cost transfers and external validity should be evaluated carefully before generalizing our results.  473 

Lastly, this analysis is applied in nature, and therefore relies on well-established methods in lieu 474 

of new methodological advancements.  Recent work suggests hedonic estimation results may 475 

depend on the estimation method. For example, gradient boosting methods may improve 476 

accuracy of predictions, though they also increase volatility (Mayer et al. 2019).  477 

 478 

Despite limitation, our results have implications for property owners and policy makers as they 479 

provide insight into the implicit and potential long-term costs of environmental contamination. 480 

Freedom Industries declared bankruptcy shortly after the incident and has therefore largely 481 

negated any legal recourse or compensation to affected residents. One solution to address the 482 

sustained decrease in property values identified herein could be the use of reclamation funds for 483 
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industries with contamination risks, where an escrow account can be set aside to guarantee 484 

compensation in the event of a spill. The magnitude of these reserve funds should depend on the 485 

spatial and temporal extent of potential losses.  These fund may also provide benefits for water 486 

utilities, many of which are trying to address infrastructure investment needs as they move 487 

toward integratted water managment (Grigg et al. 2018). Indeed, while Freedom Industries 488 

declared bankruptcy to avoid making conpensaotry payments, American Water settled for over 489 

$100 million over the handling of the spill, a cost which is ultimately pushed to the rate payer.   490 

 491 

Understanding the extent to which property values and demand decrease after contamination 492 

events has significant implications for property owners, insurance companies, real estate agents, 493 

and brokerage and property management firms, investors, and regulators. While results from this 494 

analysis are robust, further work is needed to evaluate the indirect impacts of acute 495 

environmental contamination on residents and the economy. For instance, our analysis does not 496 

include demographic information, so we cannot say whether the change in housing prices 497 

disproportionately impacts minorities, the poor, or underrepresented groups. In addition, 498 

understanding how policies shape incentives for developers or industry decisions around 499 

industrial organization, risk mitigation, or production decisions is crucial in land-use planning 500 

and polices. Understanding these incentives could be used to induce firms to internalize potential 501 

hazards to water supply and health.  502 

 503 

  504 
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 612 
Figure 1: Map of spill location and counties included in analysis. 613 

  614 
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Table 2: Descriptive statistics of property sales  615 
  Model 1 Sample Model 3 Sample 
Variable Units Mean St. Dev. Mean St. Dev. 
Dependent Variable      
Sale Price USD  98,114 73,438 112,790 85,197 
DID Variables       
Sold Post Spill [0,1] 0.247 0.431 0.253 0.435 
Near Spill <2 [0,1] 0.08 0.28 - - 
Near Spill <3 [0,1] 0.18 0.38 0.098 0.298 
Near Spill <4 [0,1] 0.28 0.45 - - 
Near Spill <5 [0,1] 0.37 0.48 - - 
Control Variables      
Size of home (1,000sq) Sq.-ft 1.403 0.575 1.520 0.658 
Age of home (100 years) years 0.641 0.228 0.554 0.274 
Parcel size (acres) acres 0.323 0.423 0.369 0.488 
Full basement  [0,1] 0.469 0.499 0.367 0.482 
Distance to city center miles 6.833 4.395 16.29 12.60 
Waterfront  [0,1] 0.009 0.097 0.018 0.134 
  N=2,705 N=5,072 

Summary statistics for flood risk (3 dummies), home style (11 dummies), and home condition (18 dummies) are 616 
included in the Appendix 617 
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 619 
FIGURE 2: Pre-treatment trends 620 
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Table 2: Model 1 Difference in Difference Results, 𝒍𝒍𝒍𝒍(𝒀𝒀𝒊𝒊) 623 

      
VARIABLES 1 mile 2 miles 3 miles 4 miles 5 miles 
      
Post-spill -0.0089 -0.0029 0.0049 0.0044 -0.0077 
 (0.0273) (0.0279) (0.0287) (0.0305) (0.0319) 
Near site -0.193** -0.0986** -0.210*** -0.117*** -0.126*** 
 (0.0934) (0.0420) (0.0342) (0.0336) (0.0367) 
Post-spill* Near site -0.417** -0.181** -0.130** -0.0685 -0.0221 
 (0.209) (0.0918) (0.0641) (0.0534) (0.0497) 
Age of home -0.406*** -0.402*** -0.339*** -0.373*** -0.374*** 
 (0.0573) (0.0573) (0.0576) (0.0579) (0.0581) 
Parcel size (acres) 0.00731 0.00469 0.00307 0.00629 0.0113 
 (0.0269) (0.0270) (0.0267) (0.0269) (0.0269) 
Full basement  0.0968*** 0.0928*** 0.0921*** 0.0950*** 0.0974*** 
 (0.0224) (0.0224) (0.0222) (0.0224) (0.0224) 
Distance to city  -0.0066** -0.008*** -0.0158*** -0.0141*** -0.0159*** 
 (0.00296) (0.00308) (0.00323) (0.00361) (0.00411) 
Waterfront 0.291*** 0.275** 0.305*** 0.290*** 0.293*** 
 (0.108) (0.107) (0.106) (0.107) (0.108) 
      
Spatial Correlation       
W  0.0140*** 0.0131*** 0.0128*** 0.0139*** 0.0140*** 
 (0.00321) (0.00323) (0.00318) (0.00320) (0.00320) 
      
Observations 2,705     

Coefficients for sq. footage-quality interactions, county, year, style of home, flood risk, and condition of home are 624 
omitted from this table (See Appendix for complete results).  625 

Standard errors in parentheses 626 
*** p<0.01, ** p<0.05, * p<0.1 627 
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 629 
Figure 2: Before and After Spill Difference in Estimated Sale Price 630 
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 632 
Figure 3: Estimated sale prices for five years after the spill. 633 
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Table 3: Estimated Price of Homes from Model 3  636 

 Estimated  
Property Treatments Sale Price 
  
Baseline $111,777 
In affect area $104,826 
Post Spill $102,807 
Post Spill & In affected area $104,711 
In affected area & < 3-miles from spill $85,948 
In affected area & < 3-miles from spill & Post Spill $75,646 
  

 637 
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