Table of Contents

I. Program Overview .. 3

II. Water Resources Curriculum and Requirements .. 4
 - **Engineering & Science Option Area** ... 4
 - **Science & Management Option Area** ... 7
 - **Law, Management & Policy Option Area** ... 10
 - **Concurrent J.D. Degree** ... 13

III. Student and Major Professor Expectations ... 15

IV. Interdisciplinary Requirements and Opportunities ... 16

V. Materials, Equipment, and Services ... 18

VI. Steps to the Degree .. 19
 - **M.S. Program** ... 19
 - **Ph.D. Program** ... 21

VII. Professional Conduct and Ethics ... 23
 - **Online Resources** ... 25
I. Program Overview

The Water Resources Graduate Program (WRGP) is an interdisciplinary graduate program. The term "Water Resources" is used here in the broadest sense: the study of how water moves through and interacts with natural systems, its chemical and biological components, and the physical, social, economic, and legal aspects of human interaction with the water cycle.

The WRGP is a University-wide program that integrates over 50 faculty in 15 departments in 7 colleges who share a common interest in research, education, and/or outreach in water resources. The program is housed in the College of Agricultural and Life Sciences which provides administrative support, but students are academically supported by faculty members across the University of Idaho campus. The program trains students to address complex water resources issues by building disciplinary depth in concert with interdisciplinary breadth to understand focused problems and communicate across disciplines. The program also allows students to develop a highly interdisciplinary academic program and/or thesis/dissertation with the approval of their academic committee. We strive to educate scientists and engineers to be more politically aware and policymakers to be more scientifically knowledgeable. To accomplish both objectives, the program is designed to have three overlapping degree option areas in both the M.S. and Ph.D. programs:

- Water Resources Engineering & Science
- Water Resources Science & Management
- Water Resources Law, Management & Policy

Additionally, concurrent JD/MS and JD/PhD degree options are available with any of the three option areas. Cross recognition of courses allows a JD/MS to be completed in 4 years and a JD/PhD in 6 years.

Overview of Graduate Degree Requirements and Recommendations

Students in the Water Resources Program must meet the general requirements set forth by the College of Graduate Studies (see Part Four) for the M.S. or Ph.D. degrees with the following exceptions. The degree of M.S. in Water Resources requires 21 credits of course work and completion of a thesis, equivalent to a minimum of 9 credits of Research and Thesis, for a total of 30 credits (note for transfers: An M.S. student must complete at least 18 of the total 30 required credits at the University of Idaho while matriculated in the College of Graduate Studies). A total of 18 credits must be at or above the 500 level.

The degree of Ph.D. in Water Resources requires a minimum of 33 credits of course work beyond the bachelor's degree and completion of a dissertation for a total of 78 credits (note for transfers: A Ph.D. student must complete at least 39 of the 78 required credits at the University of Idaho while matriculated in the College of Graduate Studies). A total of 52 credits must be at or above the 500 level. Students in the Water Resources concurrent J.D. track must meet the general requirements set forth by the College of Graduate Studies and Water Resources Graduate Program for the M.S. or Ph.D. degrees and the College of Law for the J.D. The following sections summarize specific requirements for the three option areas as well as for the joint M.S./J.D. and Ph.D./J.D.

PLEASE NOTE: We update this publication annually. However, changes can occur in academic regulations during the year. Please check with the College of Graduate Studies for the latest changes.

1 The Water Resources Graduate Program curriculum is currently undergoing minor revisions and requirements listed in Degree Audit can be aligned with the requirements in this handbook by completing a substitution/waiver form.
II. Water Resources Curriculum and Requirements

Engineering & Science Option Area

Entry Requirements

Coursework in the following is required for (M.S. and Ph.D.) admission to the Water Resources Engineering & Science Option Area. Provisional admission for M.S. students may be granted to those who have completed the majority of this coursework, provided the remaining coursework is completed as deficiency requirements.

- Calculus (minimum of 9 credits)
- Differential Equations (3 credits)
- Statistics for Scientists/Engineers (3 credits)
- Chemistry (minimum of 4 credits)
- Physics (minimum of 4 credits)
- Engineering Fluid Mechanics (minimum of 3 credits)

Water Resources Graduate Program Recommendations

- Water Resources Common Core (3 credits)
- Engineering & Science Option Core (MS 9 credits; PhD 18 credits)
- Quantitative and Statistics Courses (MS 3 credits; PhD 6 credits)
- Outside Track Core (MS 3 credits; PhD 6 credits)
- Elective Courses (MS 3 credits; PhD 6 credits)

Water Resources Required Common Core

The following courses are required of both M.S. and Ph.D. students in all of the Water Resources Option Areas. The objective of WR506 is to understand the epistemological foundations of different disciplines that contribute to natural resources science and management. The objective of WR501 is to expose students to diverse questions and challenges facing water resources in the region.

- WR 501 Water Resources Seminar (1 cr.)
- NRS/WR 506 Interdisciplinary Methods in Water Resources (2 cr.)

Engineering & Science Option Core Courses

M.S. students are recommended to take 9 credits, and Ph.D. students are recommended to take 18 credits from the following:

- CE 507 River Restoration (3 cr.)
- CE 521 Sedimentation Engineering (3 cr.)
- CE 526 Aquatic Habitat Modeling (3 cr.)
- CE 532 Design of Water and Wastewater Systems II (3 cr.)
- CE 535 Fluvial Geomorphology and River Mechanics (3 cr.)
- ENVS 541 Sampling and Analysis of Environmental Contaminants (3 cr.)
- ENVS 546 Drinking Water and Human Health (3 cr.)
- HYDR 512 Environmental Hydrogeology (3 cr.)
- ENVS 579 Introduction to Environmental Regulations (3 cr.)
- ENVS/SOIL 450 Environmental Hydrology (3 cr.)
- FOR 515 Physical Hydrology (3 cr.)
- GEOG 524 Hydrologic Applications of GIS and Remote Sensing (3 cr.)
- GEOL 531/511 Chemical Hydrology
- SOIL 422 Environmental Soil Chemistry (3 cr.)
FISH 530 Stream Ecology (3 cr.)
SOIL 515 Soil and Environmental Physics (3 cr.)
GEOL 535 Glaciology and the Dynamic Frozen Earth
SOIL 552 Environmental Water Quality
SOIL 504 Landscape Nutrient Management
SOIL 514 Environmental Biophysics (3 cr.)

Quantitative and Statistics Courses

M.S. students are recommended to take 3 credits, and Ph.D. students are recommended to take 6 credits from the following:

CE/ME 520 Fluid Dynamics (3 cr.)
HYDR 509 Quantitative Hydrogeology (3 cr.)
STAT 514 Nonparametric Statistics (3 cr.)
STAT 516 Applied Regression Modeling (3 cr.)
STAT 517 Statistical Learning and Predictive Modeling (3 cr.)
STAT 519 Multivariate Analysis (3 cr.)
STAT 535 Introduction to Bayesian Statistics
STAT 555 Statistical Ecology (3 cr.)
STAT 565 Computer Intensive Statistics (3 cr.)

Outside Track Core

M.S. students are recommended to take 3 credits, and Ph.D. students are recommended to take 6 credits from the following:

AGEC 526 Master’s Microeconomics Analysis (3 cr.)
AGEC 532 Natural Resource Economics and Policy (3 cr.)
AIST 421 Native American Natural Resource Law (3 cr.)
ANTH 565 Environment, Policy, and Justice (3 cr.)
AGEC/WR 504 Water Economics and Policy Analysis
FOR 585 Natural Resource Policy Analysis (2 cr.)
GEOG 455 Societal Resilience & Adaptation to Climate Change (3 cr.)
HIST 524 American Environmental History (3 cr.)
LAW 852 Natural Resource and Environmental Law (2 cr.)
LAW 938 International Environmental and Water Law (3 cr.)
LAW 942 Water Law I (1-2 cr.)
LAW 948 Natural Resources Law and Policy (3 cr.)
LAW 949 Native American Law (3 cr.)
LAW 969 Water Law II (2 cr.)
NRS 504 Coupled Human-Natural Systems
PHIL 470 Philosophy of Law (3 cr.)
POLS 555 Public Administration Theory (3 cr.)
WR 544 Water Quality in the Pacific Northwest

Electives for Engineering & Science Option Area

As noted above, one elective must be in either the Science & Management or Law, Management & Policy Option Areas for PhD students. A core course may be considered an elective course once the core requirements are satisfied. Electives not listed below will be considered on a case-by-case basis.

ENGR 428 Numerical Methods (3 cr.)
FISH 415 Limnology (4 cr.)
FISH 430 Riparian Ecology (3 cr.)
FISH 515 Large River Fisheries (2 cr.)
FISH 530 Stream Ecology (3 cr.)
FISH 540 Wetland Restoration (3 cr.)
FOR 462 Watershed Science and Management (3 cr.)
GEOE 428 Geostatistics (3 cr.)
GEOG 401 Climatology (3 cr.)
GEOG 410 Applied Meteorology and Climatology (3 cr.)
LARC 440 Grading, Drainage, and Stormwater Management for
 Landscape Architecture (4 cr.)
LARC 504 GIS Applications in Land Planning

Additional courses may be substituted with the permission of the academic committee if they pertain to
water resources science, management, and/or outreach.

Course descriptions: http://www.uidaho.edu/registrar/classes/catalogs.
Science & Management Option Area

Entry Requirements

Coursework in the following is required for (M.S. and Ph.D.) admission to the Water Resources Science & Management Option Area. Provisional admission for M.S. students may be granted to those who have completed the majority of this coursework, provided the remaining coursework is completed as deficiency requirements.

- Calculus (6 credits)
- Statistics (3 credits for MS, 6 for PhD)
- Chemistry or Physics or Biology/Ecology (6 credits total)

Water Resources Graduate Program Requirements and Recommendations

- Water Resources Core (3 credits)
- Science & Management Option Core (MS 9 credits; Ph.D 18 credits)
- Quantitative and Statistics Courses (MS 3 credits; Ph.D 6 credits)
- Outside Track Core (MS 3 credits; Ph.D 6 credits)
- Elective Courses (MS 3 credits; Ph.D 6 credits)

Water Resources Required Common Core

The following courses are required of both M.S. and Ph.D. students in all of the Water Resources Option Areas. The objective of WR506 is to understand the epistemological foundations of different disciplines that contribute to natural resources science and management. The objective of WR501 is to expose students to diverse questions and challenges facing water resources in the region.

- WR 501 Water Resources Seminar (1 cr.)
- NRS/WR 506 Interdisciplinary Methods in Water Resources (2 cr.)

Water Resources & Science Option Core Courses

M.S. students are recommended to take 9 credits, and Ph.D. students are recommended to take 18 credits from the following:

- ENVS 546 Drinking Water and Human Health (3 cr.)
- ENVS 579 Introduction to Environmental Regulations (3 cr.)
- ENVS/SOIL450 Environmental Hydrology (3 cr.)
- FISH 415 Limnology (4 cr.)
- FISH 530 Stream Ecology (3 cr.)
- FOR515 Physical Hydrology (3 cr.)
- FS 509 Principles of Environmental Toxicology (3 cr.)
- GEOG 401 Climatology (3 cr.)
- GEOG 410 Applied Meteorology and Climatology (3 cr.)
- GEOG 524 Hydrologic Applications of GIS & Remote Sensing (3 cr.)
- GEOL 410 Techniques of Groundwater Study (3 cr.)
- GEOL 531/511 Chemical Hydrology
- GEOL 535 Glaciology and the Dynamic Frozen Earth
- HYDR 509 Quantitative Hydrogeology (3 cr.)
- HYDR 512 Environmental Hydrogeology (3 cr.)
- HYDR 576 Fundamentals of Modeling Hydrogeological Systems (3 cr.)
- LARC 504 GIS Applications in Land Planning (3 cr.)
- POLS 555 Public Administration Theory (3 cr.)
- SOIL 422 Environmental Soil Chemistry (3 cr.)
SOIL 504 Landscape Nutrient Management
SOIL 515 Soil and Environmental Physics (3 cr.)
SOIL 552 Environmental Water Quality
WR544 Water Quality in the Pacific Northwest

Quantitative and Statistics Courses

M.S. students are recommended to take 3 credits, and Ph.D. students are recommended to take 6 credits from the following:

- GEOL 534 Geostatistics (3 cr.)
- GEOL/GEOE 428 Geostatistics (3 cr.)
- MATH 539 Theory of Ordinary Differential Equations (3 cr.)
- MATH 540 Partial Differential Equations (3 cr.)
- STAT 431 Statistical Analysis (3 cr.)
- STAT 507 Experimental Design (3 cr.)
- STAT 514 Nonparametric Statistics (3 cr.)
- STAT 519 Multivariate Analysis (3 cr.)

Outside Track Core

M.S. students are recommended to take 3 credits, and Ph.D. students are recommended to take 6 credits from the following:

- AGEC/WR 504 Water Economics and Policy Analysis
- AGEC 526 Master’s Microeconomics Analysis (3 cr.)
- AGEC 532 Natural Resource Economics and Policy (3 cr.)
- AIST 421 Native American Natural Resource Law (3 cr.)
- ANTH 565 Environment, Policy, and Justice (3 cr.)
- FOR 585 Natural Resource Policy Analysis (2 cr.)
- GEOG 455 Societal Resilience & Adaptation to Climate Change (3 cr.)
- HIST 524 American Environmental History (3 cr.)
- LAW 852 Natural Resource and Environmental Law (2 cr.)
- LAW 938 International Environmental and Water Law (3 cr.)
- LAW 942 Water Law I (1-2 cr.)
- LAW 948 Natural Resources Law and Policy (3 cr.)
- LAW 949 Native American Law (3 cr.)
- LAW 969 Water Law II (2 cr.)
- NRS 504 Coupled Human-Natural Systems
- PHIL 470 Philosophy of Law (3 cr.)

Electives for Science & Management Option Area

As noted above, one elective must be in either the Science & Management or Law, Management & Policy Option Areas for PhD students. A core course may be considered an elective course once the core requirements are satisfied. Electives not listed below will be considered on a case-by-case basis.

- ENGR 428 Numerical Methods (3 cr.)
- FISH 430 Riparian Ecology (3 cr.)
- FISH 515 Large River Fisheries (2 cr.)
- FISH 530 Stream Ecology (3 cr.)
- FISH 540 Wetland Restoration (3 cr.)
- FOR 462 Watershed Science and Management (3 cr.)
- FOR 516 Hydrological Effects of Forest Management (1 cr.)
LARC 440 Grading, Drainage, and Stormwater Management for Landscape Architecture (4 cr.)

Additional courses may be substituted with the permission of the academic committee if they pertain to water resources science, management, and/or outreach.

Course descriptions: http://www.uidaho.edu/registrar/classes/catalogs.
Law, Management & Policy Option Area

Entry Requirements

A background in government, public policy, or management is required for M.S. and Ph.D. admission to the Law, Management, and Policy Option Area. Students without an undergraduate degree in Political Science, Public Policy, Government, Constitutional Law, Civil Procedure, or related field may be granted provisional admission, but will be required to complete coursework (in addition to standard program and option area requirements) that demonstrates a minimum level of competency. This should include:

- American Government (6 credits at the 400 level)
- Public Policy (6 credits at the 400 level)
- Both requirements above may be met by taking equivalent law courses including:
 - Constitutional Law and Civil Procedure (12 credits at the 900 level, as approved by major advisor)

Subject to approval of the Water Resources Program curriculum committee, other relevant completed courses (or professional experience) may be substituted to meet these requirements.

Water Resources Graduate Program Requirements and Recommendations

Water Resources Core (3 credits)
- Engineering & Science Option Core (MS 9 credits; Ph.D 18 credits)
- Quantitative and Statistics Courses (MS 3 credits; Ph.D 6 credits)
- Outside Track Core (MS 3 credits; Ph.D 6 credits)
- Elective Courses (MS 3 credits; Ph.D 6 credits)

Water Resources Required Common Core

The following courses are **required** of both M.S. and Ph.D. students in all of the Water Resources Option Areas. The objective of WR506 is to understand the epistemological foundations of different disciplines that contribute to natural resources science and management. The objective of WR501 is to expose students to diverse questions and challenges facing water resources in the region.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>WR 501</td>
<td>Water Resources Seminar (1 cr.)</td>
</tr>
<tr>
<td>NRS/WR 506</td>
<td>Interdisciplinary Methods in Water Resources (2 cr.)</td>
</tr>
</tbody>
</table>

Water Resources Law, Management & Policy Option Core Courses

M.S. students are recommended to take 9 credits, and Ph.D. students are recommended to take 18 credits from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 526</td>
<td>Master’s Microeconomics Analysis (3 cr.)</td>
</tr>
<tr>
<td>AGEC 532</td>
<td>Natural Resource Economics and Policy (3 cr.)</td>
</tr>
<tr>
<td>ANTH 565</td>
<td>Environment, Policy, and Justice (3 cr.)</td>
</tr>
<tr>
<td>AGEC/WR 504</td>
<td>Water Economics and Policy Analysis</td>
</tr>
<tr>
<td>ENVS 546</td>
<td>Drinking Water and Human Health (3 cr.)</td>
</tr>
<tr>
<td>ENVS 579</td>
<td>Introduction to Environmental Regulations (3 cr.)</td>
</tr>
<tr>
<td>FOR 585</td>
<td>Natural Resource Policy Analysis (2 cr.)</td>
</tr>
<tr>
<td>HIST 524</td>
<td>American Environmental History (3 cr.)</td>
</tr>
<tr>
<td>LAW 852</td>
<td>Natural Resource and Environmental Law (2 cr.)</td>
</tr>
<tr>
<td>LAW 938</td>
<td>International Environmental and Water Law (3 cr.)</td>
</tr>
<tr>
<td>LAW 942</td>
<td>Water Law I (1-2 cr.)</td>
</tr>
<tr>
<td>LAW 948</td>
<td>Natural Resources Law and Policy (3 cr.)</td>
</tr>
<tr>
<td>NRS 504</td>
<td>Coupled Human-Natural Systems</td>
</tr>
<tr>
<td>POLS 555</td>
<td>Public Administration Theory (3 cr.)</td>
</tr>
</tbody>
</table>
Quantitative and Statistics Courses

M.S. students are recommended to take 3 credits, and Ph.D. students are recommended to take 6 credits from the following:

- AGEC 525 Master’s Econometric (3 cr.)
- ECON 451 Econometrics
- STAT 431 Statistical Analysis (3 cr.)
- STAT 516 Applied Regression Modeling (3 cr.)
- STAT 517 Statistical Learning and Predictive Modeling (3 cr.)
- STAT 519 Multivariate Analysis (3 cr.)

Outside Track Core

M.S. students are recommended to take 3 credits, and Ph.D. students are recommended to take 6 credits from the following:

- GEOG 524 Hydrologic Applications of GIS and Remote Sensing (3 cr.)
- CE 507 River Restoration (3 cr.)
- CE 526 Aquatic Habitat Modeling (3 cr.)
- ENVS 541 Sampling and Analysis of Environmental Contaminants (3 cr.)
- ENVS/SOIL 450 Environmental Hydrology (3 cr.)
- FISH 415 Limnology (4 cr.)
- FISH 530 Stream Ecology (3 cr.)
- FOR 462 Watershed Science and Management (3 cr.)
- FS 509 Principles of Environmental Toxicology (3 cr.)
- GEOG 401 Climatology (3 cr.)
- GEOG 410 Applied Meteorology and Climatology (3 cr.)
- GEOL 410 Techniques of Groundwater Study (3 cr.)
- GEOL 535 Glaciology and the Dynamic Frozen Earth
- HYDR 509 Quantitative Hydrogeology (3 cr.)
- HYDR 512 Environmental Hydrogeology (3 cr.)
- HYDR 576 Fundamentals of Modeling Hydrogeologic Systems (3 cr.)
- LARC 504 GIS Applications in Land Planning (3 cr.)
- SOIL 422 Environmental Soil Chemistry (3 cr.)
- SOIL 504 Landscape Nutrient Management
- SOIL 514 Environmental Biophysics (3 cr.)
- SOIL 515 Soil and Environmental Physics (3 cr.)
- SOIL 552 Environmental Water Quality
- WR 544 Water Quality in the Pacific Northwest

Electives for Water Resources Law, Management & Policy Option Area

As noted above, one elective must be in either the Science & Management or Law, Management & Policy Option Areas for PhD students. A core course may be considered an elective course once the core requirements are satisfied. Electives not listed below will be considered on a case-by-case basis.

- FISH 530 Stream Ecology (3 cr.)
- ENGR 428 Numerical Methods (3 cr.)
- FISH 430 Riparian Ecology (3 cr.)
- FISH 515 Large River Fisheries (2 cr.)
- FISH 530 Stream Ecology (3 cr.)
- FISH 540 Wetland Restoration (3 cr.)
- GEOL/GEOE 428 Geostatistics (3 cr.)
- LAW 906 Natural Resources Law Seminar (3 cr.)

Updated: August 17, 2020
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAW 907</td>
<td>Administrative Law</td>
<td>3</td>
</tr>
<tr>
<td>LAW 934</td>
<td>Land Use Law and Planning</td>
<td>3</td>
</tr>
<tr>
<td>LAW 937</td>
<td>Wildlife Law & Policy</td>
<td>3</td>
</tr>
<tr>
<td>LAW 939</td>
<td>Law, Science, and the Environment</td>
<td>2</td>
</tr>
<tr>
<td>LAW 946</td>
<td>Water and Energy Policy Seminar</td>
<td>2</td>
</tr>
<tr>
<td>LAW 947</td>
<td>Environmental Law</td>
<td>3</td>
</tr>
<tr>
<td>LAW 949</td>
<td>Native American Law</td>
<td>3</td>
</tr>
<tr>
<td>LAW 951</td>
<td>Environmental Policy</td>
<td>3</td>
</tr>
<tr>
<td>LAW 979</td>
<td>Native American Natural Resource Law</td>
<td>3</td>
</tr>
<tr>
<td>POLS 572</td>
<td>Local Government Politics and Administration</td>
<td>3</td>
</tr>
</tbody>
</table>

Additional courses may be substituted with the permission of the academic committee if they pertain to water resources science, management, and/or outreach.

Course descriptions: http://www.uidaho.edu/registrar/classes/catalogs.
Concurrent J.D. Degree

Entry Requirements
Completion of requirements for admission to both the College of Law and the specific Water Resources option area is required. Students are required to apply separately to the College of Law and the College of Graduate Studies, Water Resources Graduate Program. Acceptance to both colleges does not have to occur simultaneously. A law student can apply for summer or fall admission to the Water Resources Program in the College of Graduate Studies during the first year of law school. Then, during the second year of law school, a student can begin graduate school. A Steering Committee consisting of the Director of the Water Resources Graduate Program, the Associate Dean for Administration and Students of the College of Law, one non-law member of the Water Resources faculty and one member of the Law faculty will make admission decisions to the concurrent degree program.

Common/Core Courses
All students seeking to earn the Water Resources concurrent J.D. degree are required to complete coursework as specified for the particular Water Resources Option Area for the M.S. or Ph.D., as well as coursework required by the Law School for a J.D.

Electives
The student and faculty committee will select courses appropriate to satisfy the requirements of the College of Graduate Studies and College of Law.

Concurrent Degree Details
Students in the Water Resources concurrent J.D. track must meet all graduation requirements set forth by the College of Graduate Studies for the M.S. or Ph.D. degrees and the College of Law for the J.D.

Each student shall have a “graduate committee.” The student’s graduate committee must meet the requirements of the College of Graduate Studies and must have at least one member from the faculty of the College of Law.

A total of 18 credits may be double counted for a J.D./M.S. concurrent degree, and a total of 21 credits may be double counted for a J.D./Ph.D. concurrent degree under the following guidelines:

No more than 12 credits of M.S. and Ph.D. graduate school credit are allowed toward the J.D. degree. The courses must be approved by the student’s advisor in the College of Law with the following guidelines: 1) courses approved for credit toward a J.D. must be complementary to an emphasis in water law; 2) must enhance the candidate’s ability to serve clients and the legal profession in the area of water law; and, 3) must not be the substantive equivalent to a course offered in the College of Law and available to the student.

No more than 6 credits from Law are allowed toward the M.S. degree in Engineering & Science and Science & Management option areas, no more than 12 credits toward the M.S. degree in Law, Management & Policy option area, and no more than 9 credits toward the Ph.D. degree from the following list:

- Law 906 Natural Resources Law Seminar (3 cr)
- Law 907 Administrative Law (3 cr)
- Law 934 Land Use Law and Planning (3 cr)
- Law 937 Wildlife Law & Policy (3 cr)
- Law 938 International Environmental and Water Law (3 cr)
- Law 939 Law, Science and the Environment (2 cr)
- Law 942 Water Law I (1 cr)
Satisfactory completion of both degrees is required to qualify for the exchange credit, as the degrees are granted concurrently. The first year of study for concurrent M.S. or Ph.D. students must be exclusively in the College of Law. M.S. students are required to write a thesis. Ph.D. students are required to write a dissertation. If the student fails to complete the M.S. or Ph.D. in Water Resources, only 6 credits from the Water Resources Program are allowed toward the J.D. degree. If a student fails to complete the J.D. degree, the student must satisfy all requirements for the particular option area in the Water Resources Program to receive the M.S. or Ph.D. degree.

Once in the Program

Students should develop a study plan consulting with both their Law and Graduate advisors by the end of the second semester of graduate school.

Eighteen credits may be double counted toward both degrees [12 from the MS can count toward the JD, 6 from the JD can count toward the MS; this may be reversed for an MS in the Law, Policy and Management Option Area].

Students should be advised to take the full 4-5 years for both degrees. This is necessary if they want to double count the 18 credits. In addition, completion of the JD in 3 years followed by the bar exam reduces the level of integration with the graduate degree and the likelihood of timely completion of the graduate degree.

Students should be advised to take Water Law I and II in their 2L year and Water Resources 506 in the fall of their 3rd year.

Law Emphasis Areas

Students completing a JD/MS in water resources should have no difficulty also completing the requirements for a Natural Resources and Environmental Law Emphasis and are encouraged to do this.
III. Student and Major Professor Expectations

The student, not the major professor, is responsible for meeting all deadlines and academic requirements and for initiating a process of regular communication with major professor and committee. The student is responsible for his/her own program. This includes:

- Initiating regular communication and frequent meetings with Major Professor.
- Beginning work with the Major Professor on research topic immediately. To complete all requirements in a timely manner requires focus and diligence.
- Setting a timetable with short- and long-term goals and referring to it regularly.
- A meeting of the committee as early as possible to ensure that the program of study and/or research includes thinking from the physical, biological, and/or social science areas.
- Working with the Major Professor to create and present the research proposal including interdisciplinary integration of the proposed research, if appropriate.
- Completing the Interdisciplinary Thesis/Dissertation Approval Form after proposal presentation, if appropriate.
- Considering meeting with the academic committee each semester to keep them up-to-date on scholarly activities. At a minimum, the student should communicate with them regularly.
- Professional development activities such as attending conferences, presenting conference papers, presenting at departmental graduate student seminars, and writing papers for publication.
- Informing the committee of participation in professional development activities.
- Writing sections of the thesis/dissertation as soon as possible. Delaying writing is a common problem for many graduate students and substantial early progress on the introduction, background, and methods can be made by developing a detailed research proposal.
- Preparing drafts (proposal, thesis, etc.) in consultation with the Major Professor prior to sending it to committee members. Drafts should be grammatically correct and free of typographical and spelling errors and forwarded to the committee following approval by the Major Professor.
- Completing the Interdisciplinary Thesis/Dissertation Approval Form prior to thesis/dissertation defense, if appropriate.

* Adapted from Graduate Orientation, “Surviving (and Enjoying!) Graduate School” by Dr. Margrit von Braun, former Dean of the College of Graduate Studies.
IV. Interdisciplinary Requirements and Opportunities

“Interdisciplinary research (IDR) is a mode of research by teams or individuals that integrates information, data, techniques, tools, perspectives, concepts, and/or theories from two or more disciplines or bodies of specialized knowledge to advance fundamental understanding or to solve problems whose solutions are beyond the scope of a single discipline or area of research practice.” From Facilitating Interdisciplinary Research, National Academy of Sciences (NAS), 2004.

To ensure that each thesis/dissertation is interdisciplinary, the Water Resources Program requires the following:

1. Committee Requirements

Each Committee shall be composed of members from more than one discipline. For the M.S. a minimum of three members is required; for the Ph.D. a minimum of four members is required. All committee members must approve a) the student’s study plan, b) the interdisciplinary component(s) of the thesis/dissertation proposal by signing the Interdisciplinary Thesis/Dissertation Proposal Approval Form (if applicable), and c) the interdisciplinary component(s) of the thesis/dissertation at the time of the final defense by signing the Interdisciplinary Thesis/Dissertation Approval Form (if applicable).

2. Program Requirements

Each program of study and/or thesis/dissertation shall reflect integration beyond a single discipline. Integration can be achieved throughout the academic program and/or through a separate interdisciplinary chapter (possibly co-authored) that specifically integrates knowledge, methods, and/or information from at least two distinct disciplines. All chapters of the thesis/dissertation shall be integrated into a coherent whole. Each student may evaluate the interdisciplinarity of their thesis/dissertation, at the proposal stage by completing the Interdisciplinary Thesis/Dissertation Proposal Approval form, and prior to the final defense by completing the Interdisciplinary Thesis/Dissertation Approval Form.

Strategies for Interdisciplinary Research

Suggested ways to develop interdisciplinary work:

- From the beginning of your project, think about how the research includes aspects and implications of physical, biological, and/or social sciences, and/or humanities.
- Your research question and objectives should be created so that achieving the objectives requires work in at least two of the disciplinary areas.
- Consider and discuss with your Major Professor and committee how your research is different as a Water Resources student than in a single discipline.
- Think about devoting a chapter in the thesis/dissertation to explaining the interdisciplinary nature of the research or discussing the broader implications of the work.
- Engage in a process of planning and thought regarding how you would go about collecting and using data from at least one of the other disciplines. For example, why and how would social science and/or physical science data enrich a biological research project? What would you collect, given sufficient time and money, and how would you use it?
- Imagine that an agency is so impressed by your research that they decide to fund you to include the broader aspects of the problem including the other two areas. What would you do, how would you do it, and how would you use it?
- At the defense, your Major Professor and committee should ask at least one of the following questions (or another integrating question):
o How has this research used ideas or approaches from at least two of the areas of physical, biological, social science, and humanities?

o Could this work have been done in the same way in a single discipline?

o What are the broader implications of your work as they apply outside of your option area?

o If you went on to continue work on this project, how would you continue to gather data and integrate information from the different disciplines into your research?

o As you apply the results of your work in the field, how would you integrate information or methods from the different disciplinary areas?

o If you had to explain the implications of your research to a person with a completely different background (a manager, politician, or member of the public), what would you say?

o What is important about your research in solving environmental problems?

Further Readings in Interdisciplinarity

V. Materials, Equipment, and Services

The following is a list of policies and procedures for ordering materials, equipment and services related to the research. These are laid down by the university and the department as it pertains to graduate students. University equipment or material (including such things as tablets and paper clips) is for project use only as authorized by the project leader. University property may NEVER be used for personal use.

Travel

Discuss arrangements for travel to conferences and meetings with your major professor. Graduate students can apply for travel funding through the Graduate and Professional Student Association (GPSA). For more information, visit the GPSA website: http://www.uiweb.uidaho.edu/gpsa/.

Copying, Printing, and Library Use

Many references are available on-line. See the library web site for a Journal List (http://www.lib.uidaho.edu/). U.S. Government documents, magazines and journals in the library holding cannot be checked out. A copy of a portion of a book or an article from a journal or magazine at the library can be scanned onsite or delivered directly to your email. Students are responsible for observing copyright rules (http://www.lib.uidaho.edu/copyright/index.html). Copies made for the project reference files will remain part of the project and cannot be removed after graduation. Students are advised to keep detailed record of sources of articles and books so they can be tracked at a later time.

Graduate students may check books out of the library for an entire semester. These books should be returned in a timely manner when they are no longer actively used. This also applies to books and references borrowed from fellow students and faculty members. Books or reference material cannot be taken from an office or lab without asking permission.

Computer Usage

All students have access to computer resources. Computer accounts are requested from the University Information Technology Services (http://www.uidaho.edu/its). When using a computer, students are responsible to adhere to the computer use policy for the University of Idaho (http://www.uidaho.edu/apm/30/12).

Research Records and Notebooks

During the course of the thesis/dissertation research, a voluminous amount of data will be collected along with many notes, reminders, procedures, etc. It is very important to keep these data in an organized fashion so all records are available when writing the thesis/dissertation chapters. Research records must be zealously protected from any harm. Consider purchasing a notebook that can be dedicated solely to your research. Also, be sure to back-up your files and keep copies of all important information.
VI. Steps to the Degree

M.S. Program

<table>
<thead>
<tr>
<th>Activity</th>
<th>Suggested Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appoint Major Professor</td>
<td>Prior to Admission</td>
</tr>
<tr>
<td>Appoint Committee</td>
<td>Beginning of 2nd semester</td>
</tr>
<tr>
<td>File Committee Form</td>
<td>2nd semester</td>
</tr>
<tr>
<td>Appointment of Major Professor and/or Committee</td>
<td></td>
</tr>
<tr>
<td>Prepare Study Plan</td>
<td>End of 2nd semester</td>
</tr>
<tr>
<td>File Study Plan via Vandal Web</td>
<td>End of 2nd semester</td>
</tr>
<tr>
<td>Research proposal to Committee</td>
<td>2nd semester</td>
</tr>
<tr>
<td>Present research proposal</td>
<td>2nd semester</td>
</tr>
<tr>
<td>Complete Thesis Proposal Approval Form</td>
<td>2nd semester</td>
</tr>
<tr>
<td>(File with Water Resources Office only)</td>
<td>See page 22</td>
</tr>
<tr>
<td>Research</td>
<td></td>
</tr>
<tr>
<td>Analyze data/summarize results</td>
<td>End of 3rd semester</td>
</tr>
<tr>
<td>Work with Major Professor & Committee on draft material</td>
<td>3rd and 4th semester</td>
</tr>
<tr>
<td>File application for degree via Vandal Web</td>
<td>End of 3rd semester</td>
</tr>
<tr>
<td>Thesis review by Major Professor & Committee</td>
<td>4th semester</td>
</tr>
<tr>
<td>Prepare final draft</td>
<td>4th semester</td>
</tr>
<tr>
<td>Grad school check of thesis format</td>
<td>End of 4th semester</td>
</tr>
<tr>
<td>File authorization for final defense</td>
<td>End of 4th semester</td>
</tr>
<tr>
<td>Request to Proceed with Final Defense</td>
<td></td>
</tr>
<tr>
<td>Pick up defense forms from Grad school</td>
<td>End of 4th semester</td>
</tr>
<tr>
<td>Complete Interdisciplinary Thesis Approval Form</td>
<td>End of 4th semester</td>
</tr>
<tr>
<td>(File with Water Resources Office only)</td>
<td>See page 23</td>
</tr>
<tr>
<td>Final defense</td>
<td>End of 4th semester</td>
</tr>
</tbody>
</table>
Prepare final copy of thesis, complete forms, & turn into the Grad school Checklist for Final Submission of Document

http://www.uidaho.edu/cogs/forms
Ph.D. Program

<table>
<thead>
<tr>
<th>Activity</th>
<th>Suggested Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appoint Major Professor</td>
<td>Prior to Admission</td>
</tr>
<tr>
<td>Appoint Committee</td>
<td>Beginning of 2nd semester</td>
</tr>
<tr>
<td>File Committee Form</td>
<td>2nd semester</td>
</tr>
<tr>
<td>Appointment of Major Professor and/or Committee</td>
<td></td>
</tr>
<tr>
<td>http://www.uidaho.edu/cogs/forms</td>
<td></td>
</tr>
<tr>
<td>Prepare Study Plan</td>
<td>3rd semester</td>
</tr>
<tr>
<td>File Study Plan via Vandal Web</td>
<td>End of 3rd semester</td>
</tr>
<tr>
<td>Qualifying Exam (if needed)</td>
<td></td>
</tr>
<tr>
<td>Research proposal to Committee</td>
<td>End of 3rd semester</td>
</tr>
<tr>
<td>Present research proposal</td>
<td>End of 3rd semester</td>
</tr>
<tr>
<td>Complete Dissertation Proposal Approval Form</td>
<td>End of 3rd semester</td>
</tr>
<tr>
<td>(File with Water Resources Office only)</td>
<td></td>
</tr>
<tr>
<td>See page 22</td>
<td></td>
</tr>
<tr>
<td>Preliminary Examination</td>
<td>End of 3rd semester</td>
</tr>
<tr>
<td>File Candidacy form</td>
<td>End of 3rd semester</td>
</tr>
<tr>
<td>Report of Preliminary Exam & Advancement to Candidacy</td>
<td>http://www.uidaho.edu/cogs/forms</td>
</tr>
<tr>
<td>Research</td>
<td></td>
</tr>
<tr>
<td>Analyze data/summarize results</td>
<td>End of 4th semester</td>
</tr>
<tr>
<td>Work with Major Professor & Committee on draft material</td>
<td>End of 4th semester</td>
</tr>
<tr>
<td>File application for degree via Vandal Web</td>
<td>End of 5th semester</td>
</tr>
<tr>
<td>Task</td>
<td>Semester</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>Dissertation review by committee</td>
<td>6th</td>
</tr>
<tr>
<td>Prepare final draft</td>
<td>6th</td>
</tr>
<tr>
<td>Grad school check of dissertation format</td>
<td>6th</td>
</tr>
<tr>
<td>File authorization for final defense Request to Proceed with Final Defense</td>
<td>6th</td>
</tr>
<tr>
<td>Pick up defense forms from Grad school Authorization to Submit Thesis or Dissertation</td>
<td>End of 6th</td>
</tr>
<tr>
<td>Complete Interdisciplinary Dissertation Approval Form (File with Water Resources Office only)</td>
<td>End of 6th</td>
</tr>
<tr>
<td>Final defense</td>
<td>End of 6th</td>
</tr>
</tbody>
</table>
VII. Professional Conduct and Ethics

As graduate students and professional scholars-in-training, you are expected to exercise high standards of ethical and professional behavior toward your peers and your professors. Science as a whole can only make progress if individual scientists are truthful and trustworthy. As academic professionals and members of the larger community of scientists, graduate students should practice intellectual honesty at all times. You should exercise scholarly discipline and good critical skills, while engaging in civil, collegial discussion of scientific and professional matters. Ideally, scientific professionals should strive to be objective and fair in their criticism and discussion of colleagues’ work. Graduate students must never engage in, permit or otherwise support professional misconduct, including plagiarism, falsification of information, or deception of any kind. Each of us is obligated to report professional misconduct to a supervisor or Program Director as appropriate.

Academic Honesty and Research Ethics

As stated above, graduate students are expected to uphold high standards of intellectual and academic honesty at all times, and to enforce university and departmental standards for academic honesty. The University Faculty and Staff Handbook states that “cheating on classroom or outside assignments, examinations or tests is a violation of [the academic honesty] code. Plagiarism, falsification of academic records, and the acquisition or use of test materials without faculty authorization are considered forms of academic dishonesty…” Should you encounter academic dishonesty, you should immediately bring it to the attention of your teaching supervisor. Other instances should be discussed with your major professor or the Program Director. There is an expectation that graduate students spend an appropriate amount of time researching and producing new papers for class research projects. If previous papers are to be expanded, you must have permission from the course instructor. A paper written for one course and turned in for a subsequent course will be considered a breach of academic honesty.

Harassment

Graduate students are expected to treat other students, peers, professors, and other colleagues in the university workplace respectfully at all times. By the same token, you are also entitled to respectful behavior on the part of your coworkers. “Harassment” in the workplace is often defined in sexual terms. However, harassment in a broader sense can also take the form of teasing, insults and other hostile or harsh speech, crude gestures, or otherwise acting toward another person in an extremely objectionable or humiliating manner, even when that behavior lacks a sexual context. Legally prohibited harassment includes not only sexual harassment but also harassment based on race, color, national origin, religion, age, disability, sexual orientation or status as a Vietnam-era veteran.

The University of Idaho Faculty and Staff Handbook Policy 3220 defines sexual harassment as “unwelcome sexual advances, requests for sexual behaviors, or other verbal or physical conduct of a sexual nature.” Such conduct is deemed especially deplorable when it occurs in a relationship where there is a significant power differential, such as harassment of a student by an instructor, “…creating an intimidating, hostile, or offensive learning environment,” or interfering with a student’s education. Under no circumstances should a graduate student engage in behavior that might be construed as harassment, sexual or otherwise. If you feel you have been harassed or are aware of a possible violation of the University’s harassment policy, you are strongly encouraged to contact the University’s Office of Diversity and Human Rights, the Women’s Center, your major professor, supervisor, or the Program Director.

Policy on Graduate Student Complaints

If a graduate student has a serious complaint regarding how they have been treated in class or research projects, this should be brought to the Program Director or the student graduate committee advisor. Complaints may include, but are not limited to, conflicts that involve a colleague, teaching supervisor, employer, or major professor. The student should attempt to resolve the problem by informal discussion.
with those involved in the grievance before a formal grievance is brought to the Program Director. The Program Director will work with the student to bring the situation to a reasonable conclusion. If necessary, the student may visit the College of Graduate Studies for additional assistance.
Online Resources

Water Resources Graduate Program Homepage
https://www.uidaho.edu/cals/water-resources

College of Graduate Studies
http://www.uidaho.edu/cogs

Admission Requirements
http://www.uidaho.edu/admissions

Financial Aid
http://www.uidaho.edu/financialaid.aspx

Schedule of Classes
https://webpages.uidaho.edu/schedule/

Student Accounts/Cashier
https://www.uidaho.edu/current-students/student-accounts

Graduate and Professional Student Organization
https://uidahogpsa.com

Brand Resources Center – logos, PowerPoint templates etc.
https://www.uidaho.edu/brand-resource-center

Copy and Print Center
https://printonline.uidaho.edu/home

UI Water Resources Facebook Page
https://www.facebook.com/UIWaterResources/