IDAH₂O Quality Assurance Project Plan

22 October 2012

Prepared by:

IDAH₂O Master Water Steward Program University of Idaho Extension 1031 North Academic Way, #242 Coeur d'Alene, Idaho 83814

Prepared for:

US Environmental Protection Agency, Region 10 Watersheds Unit 1200 6th Avenue, Suite 900 Seattle, Washington 98101

A1. Approval Signature Page

IDAH₂O Quality Assurance Project Plan

22 October 2012

Approved by:

University of Idaho Extension IDAH ₂ O Program Coordinator Quality Assurance Manager	Ashley McFarland	Date
EPA EPA Project Manager	Jayne Carlin	Date
EPA EPA Quality Assurance Officer	Ginna Grepo-Grove	Date
University of Idaho Coeur d'Alene Laboratory Manager	Marie Pengilly	Date

A2. Table of Contents

A1 – Approval Signature Page	2
A2 – Table of Contents	3
A3 – Distribution List	4
A4 – Project/Task Organization	4
A5 – Problem Definition/Background	5
A6 – Project/Task Description	6
A7 – Data Quality Objectives for Measuring Data	9
A8 – Training Requirements and Certification	12
A9 – Documentation and Records	13
B1 – Sampling Process Design	15
B2 – Sampling Methods	15
B3 – Sample Handling and Custody	15
B4 – Analytical Methods	15
B5 – Quality Control	15
B6 – Instrument/Equipment Testing, Inspection and Maintenance	15
B7 – Instrument/Equipment Calibration and Frequency	16
B8 – Inspection/Acceptance of Supplies and Consumables	16
B9 – Non-direct Measurements	16
B10 – Data Management	16
C1 – Assessments and Response Actions	16
C2 – Reports to Management	16

Tables Table 1, Distribution list for the IDAH ₂ O Quality Assurance Project Plan Table 2, Project personnel	4 4
Table 3, Timeline	9
Table 4, Precision, accuracy and measurement range for the IDAH ₂ O quantitative assessment parameters.	10
References	17
Appendices	
Appendix A, Volunteer Monitoring Sites	18

Appendix B, Field Data Forms	19
Appendix C, Chain of Custody Form	28
Appendix D, Commitment to Comply	29

A3. Distribution List

Each person and/or agency on the following distribution list will receive a copy of the final approved Quality Assurance Project Plan for the IDAH₂O Master Water Steward Program as well as any subsequent revisions. The most recent approved plan will also be posted to the IDAH₂O website.

Table 1. Distribution list for the IDAH₂O Quality Assurance Project Plan

Name Ashley McFarland	Title IDAH₂O Program Coordinator	Address 1031 North Academic Way #242 Coeur d'Alene, Idaho 83814	E-Mail amcfarland@uidaho.edu
Jayne Carlin	EPA Project Officer	US EPA, Region 10 1200 6 th Avenue, Suite 900 (OWW-134) Seattle, WA 98101-3140	carlin.jayne@epa.gov

A4. Project/Task Organization

The IDAH₂O Master Water Steward program is funded through various grants acquired to support maintenance and expansion. Grant support is also utilized to fund the half-time program assistant. The program coordinator position is entirely funded through University of Idaho Extension as an Area Extension Educator position. University of Idaho Extension and the University of Idaho Coeur d'Alene Center also fund an operations and travel expense account for the coordinator position.

The program coordinator provides oversight and management for the assistant and an advisory board supports guidance of the overall mission. Duties of each role are outlined below. In addition to the project partners below, the program receives technical support from Idaho Department of Environmental Quality's surface water program.

Table 2. Project personnel

Staff Ashley McFarland Marie Pengilly	Title IDAH ₂ O Program Coordinator, Quality Assurance Manager IDAH ₂ O Program Assistant.	 Responsibilities Manage the IDAH₂O Master Water Steward program Conduct marketing and program outreach Conduct IDAH₂O certification workshops Facilitate continuing education opportunities for IDAH₂O volunteers Obtain external funding to support the program Oversee program budget, revenue and expenditures Supervise IDAH₂O staff, including the program assistant Facilitate snapshot events Host annual meeting Report and publish volunteer data Conduct duplicate sampling Perform clerical duties associated with the IDAH₂O Master Water Steward program
mane i enginy	Assistant, Laboratory Manager	 Prepares Quality Assurance for data collected under the QAPP
	-	

	·	 Manage data uploads to the HIS and web mapping application
	•	Manage correspondence to and from IDAH ₂ O volunteers
	•	 Supervise IDAH₂O interns and volunteer staff
	•	 Maintain the volunteer database
	•	 Develop promotional pieces for the program
	•	 Maintain the IDAH₂O website
	•	 Perform analysis on snapshot samples and duplicate samples
	•	 Maintain and calibrate laboratory equipment
Jayne Carlin	EPA Project • Manager	Review QAPP
Ginna Grepo-Grove	EPA Quality • Assurance Officer	Review QAPP
	IDAH ₂ O Advisory Board	 Represent organization or agency at all advisory board meetings
	•	
	•	Review IDAH ₂ O curriculum
	•	 Serve as a spokesperson for the IDAH₂O Master Water Steward program
	·	 Recruit volunteers for the IDAH₂O Master Water Steward program
	•	
	IDAH ₂ O Master • Water Steward	 Completion of the IDAH₂O Master Water Steward workshop
	Volunteers	Completion of 8 monitoring activities each year

A5. Problem Definition/Background

Maintaining water quality integrity in the state of Idaho is necessary to ensure a safe water source for drinking, recreating and to support fisheries and wildlife. Through education and outreach, citizens gain a better understanding of their interaction with the land and learn how to best preserve resources. Water monitoring is an integral tool in this outreach.

The primary goals of the IDAH₂O program are: (1) Increasing citizen knowledge on water quality issues, (2) Promote volunteer monitoring on Idaho streams and (3) Enhance watershed stewardship. IDAH₂O was developed into a 'Master' program to make use of a highly successful Extension model. IDAH₂O volunteers receive training and in return, conduct monitoring in Idaho watersheds. Standard monitoring assessments conducted by volunteers analyze habitat, physical, chemical and biological conditions of the water, channel and riparian area, and are all conducted in the field with provided water monitoring kits. Specific parameters; Nitrate-N, Total Phosphorus, Total Coliform and *E. coli* are analyzed through Snapshot Events, which are supported through the IDAH₂O program. Snapshots require volunteers to collect water samples that are analyzed in the University of Idaho Coeur d'Alene Lab. This Quality Assurance Project Plan covers water quality data collected from the standard IDAH₂O program and IDAH₂O sponsored Snapshot Events.

IDAH₂O data may be used to:

- Establish baseline conditions for determining stream health based on chemical, physical, biological and habitat parameters
- Analyze trends in water quality parameters over time
- Identify water bodies in need of more detailed monitoring
- Assess the health of a watershed and target areas within a watershed in need of water quality improvement
- Assist local watershed councils and partners in making environmental management decisions in their local and regional watersheds
- Enlist community involvement in their local watershed
- Prioritize areas in a watershed for Best Management Practices (BMPs)

The objective of IDAH₂O is to promote better coordination within citizens and agencies on water resource matters and in turn promote stewardship within Idaho watersheds which will ultimately lead to improved water quality.

Currently, there are 58 registered monitoring sites in the IDAH₂O program (Appendix A).

A6. Project/Task Description

Certified IDAH₂O volunteers are encouraged to select a stream site or sites that they agree to conduct regular monitoring on. They are encouraged to select sites that are accessible and that will collect the type of data they need to answer any questions they have on water quality issues or concerns. Guidance from and coordination by program staff occurs to ensure sites are not monitored too closely together to eliminate duplication of effort. All proposed sites are reviewed by IDAH₂O staff. Wadable streams are the target waterbody for this program, although larger river systems and standing water (wetlands, bays and lakes) are also permitted. Volunteers are encouraged to perform three different assessments at their monitoring sites throughout the years. These assessments and the parameters tested are listed below. Field data collection sheets are included in Appendix B.

Stream Habitat Assessment – conducted annually

- Flow presence
- Stream habitat type
- Streambed substrate

- Pebble count survey
- Embeddedness
- Streambank type
- Channel shape
- Streambank condition
- Canopy cover
- Riparian zone width
- Riparian zone plant cover
- Stream sinuosity
- Adjacent land use
- Microhabitats
- Human use activities
- Evidence of human use activities

Physical/Chemical Assessment – conducted monthly

- Flow presence
- Weather
- Water color
- Water odor
- Air temperature
- Precipitation
- Transparency
- pH
- Dissolved oxygen
- Chloride
- Water temperature
- Stream width
- Maximum stream depth
- Stream Flow
- Stream depth along transect

• Stream velocity along transect

Biological Assessment - conducted no more than three times/year

- Flow presence
- Presence of benthic macroinvertebrate species
- Collection time
- Collection nets
- Stream reach length
- Microhabitats surveyed
- Stream habitat type
- Aquatic plant cover of streambed
- Algae cover of streambed

Water Quality Snapshots

Twice a year, water quality snapshots will be conducted (spring and fall) to analyze parameters, not easily measured in the field. Master Water Steward volunteers will have the opportunity to collect grab samples at their registered monitoring sites and have them analyzed at the University of Idaho Coeur d'Alene Center Water Lab. Parameters tested include Nitrate-N, Total Phosphorus, Total Coliform and *E. coli*. Chain of custody forms (Appendix B) are used to insure appropriate handling of these samples. All samples must be collected and returned to the lab within eight hours. Results from the snapshot are posted within seven days and are sent to participating volunteers and the advisory board. Results are also posted on our website. Participation in these snapshots is voluntary and a small fee is charged to cover expenses in the lab.

Evaluation of results

- Stream Habitat Assessment: changes over time will be evaluated to track major natural or artificial alterations in the riparian area and in-channel habitat. Because this assessment is only conducted on an annual basis, tracking these changes will take time for volunteers. They are encouraged to assess habitat conditions more frequently if major events occur at the monitoring location such as flooding or land development.
- 2. Physical/Chemical Assessment: these parameters will be evaluated against state water quality standards to ensure the appropriate levels are being met; however these results will not be used for the determination of impairment.
- 3. Biological Assessment: results from benthic macroinvertebrate surveys will be used to educate volunteers about the potential status of their water quality depending on the types of species they collect. These findings will be cross-referenced with physical and chemical assessments to determine whether or not the water quality levels are supporting the appropriate species.

4. Water Quality Snapshots: these parameters will be evaluated against state water quality standards to ensure the appropriate levels are being met; however these results will not be used for the determination of impairment.

Each year, annual monitoring reports will be sent to all certified volunteers that submitted data from registered monitoring sites. These reports will provide an overview by IDAH₂O staff of the results and to discuss with the volunteer if other monitoring strategies should be employed. Also, results will be discussed to determine whether or not further inquiry is needed into any apparent water quality issues.

Major Tasks	J	F	М	Α	М	J	J	Α	S	0	N	D
Volunteer recruitment and training						X	X	X	X			
Habitat Assessments (suggested month)					X							
Chemical/Physical Assessments (safety-dependent)	X	X	X	X	X	X	X	X	X	X	X	X
Biological Assessments (no more than)			X				X			X		
Water Quality Snapshots					X					X		
Continuing education seminars									X	X		
Annual meeting											X	
Data processing, monitoring reports	X											X

Table 3. Timeline

Volunteers are encouraged to only sample when weather conditions permit them to safely do so. Inclement weather is to be expected, which will result in occasional missing data.

A7. Data Quality Objectives for Measurement Data

The following data quality objectives are preliminary and are subject to revision.

Precision

Precision refers to the degree of variability in replicate measurements. Precision for laboratory analysis of samples will be evaluated through laboratory reporting of relative percent differences (RPDs) in duplicate sample analysis. RPD is calculated as follows:

 $RPD = (O-D) / ((O+D)/2) \times 100$, where O = original and <math>D = duplicate

For this project an initial precision goal of 15 percent will be established for water chemistry analyses. The program coordinator will conduct the same precision calculations on duplicate field measurements and record the findings on the field data sheets for each station.

Accuracy

Accuracy is a measure of confidence that describes how close an analytical measurement is to its "true" value, or the combination of high precision and low bias. Potential bias in the program procedures will be minimized through appropriate site selection and strict adherence to the QAPP. Because the "true" value of a field sample cannot be known, the primary tool for assessing accuracy of laboratory analysis will be the percent recovery of matrix spikes and control standards run against the field sample. Percent recovery is calculated as follows:

%R for matrix spikes = ((SSR - SR)/SA) x 100

Measurement Range

Measurement range is the range of reliable readings of an instrument or measuring device, as specified by the manufacturer. Laboratory measurement ranges are specified by the laboratory in accordance with the manufacturers of the analytical equipment. The measurement range is shown in parenthesis in Table 3.

Table 4. Precision, accuracy and measurement range for the IDAH₂O quantitative assessment parameters.

Parameter	Precision	Accuracy	Measurement Range
Physical Properties			
Air temperature	<u>+</u> 40%	n/a*	0-60°C
Water temperature	<u>+</u> 40%	n/a*	0-60°C
Transparency tube	<u>+</u> 40%	<u>+</u> 40%	0-60 cm
Pebble count	<u>+</u> 40%	<u>+</u> 40%	Variable quantity
Secchi disk depth	<u>+</u> 40%	n/a*	0-30 m
Stream width	<u>+</u> 40%	n/a*	0-30 ft
Maximum stream depth	<u>+</u> 40%	n/a*	0-30 ft
Stream depth along transect	<u>+</u> 40%	n/a*	0-30 ft
Stream velocity along transect	<u>+</u> 40%	n/a*	0-30
Field Chemistry			
Dissolved Oxygen	<u>+</u> 40%	n/a**	1-12 mg/L
Chloride	<u>+</u> 40%	n/a**	<25 – 650 mg/L
рН	<u>+</u> 40%	n/a**	4-9

Lab Chemistry

Total Phosphorus***	<u>+</u> 40% field duplicates	<u>+</u> 40% field duplicates	0.05 – 1.50 mg/L	
	<u>+</u> 20% lab process	<u>+</u> 25% lab process	0100 1100 mg/2	
Nitrate – N***	+ 40% field duplicates	<u>+</u> 40% field duplicates	0.23 – 13.50 mg/L	
	+ 20% lab process	<u>+</u> 25% lab process	5.	
	<u>+</u> 40% field	<u>+</u> 40% field		
Total Coliform***	duplicates	duplicates	0 – 2419.6	
Total Conjorni	+ 20% lab process	<u>+</u> 25% lab process	MPN/100 mL	
	<u>+</u> 40% field	<u>+</u> 40% field		
E. coli***	duplicates	duplicates	0 – 2419.6	
2. 0011	+ 20% lab process	<u>+</u> 25% lab process	MPN/100 mL	

*No accuracy quality control measurements for these parameters

**Accuracy measured during field audit performed by IDAH₂O personnel once a year

***Snapshot parameters analyzed at the University of Idaho Coeur d'Alene Center Water Lab within 8 hours of collection.

Field Quality Control

A duplicate assessment will be conducted on a random sample of 10% of the monitoring sites each year. These will be listed in a Memo (Annual Duplicate Sampling Schedule) and will be sent to the distribution list. During each snapshot monitoring event, quality control will be monitored by submitting a field duplicate from 10% of the participating monitoring sites along with a lab blank.

Duplicate samples – One duplicate sample per event is taken for each analyte and submitted as a quality check on sampling and laboratory analysis. Duplicate samples should be taken simultaneously and handled with the same procedures as the original.

Blank samples – One blank sample per event is taken for each analyte and submitted as a quality check on field procedures and equipment. Blank samples should be taken using the same equipment and methods as the originals with deionized water provided by the laboratory.

Representativeness

Volunteers in the IDAH₂O program are instructed to choose monitoring sites that are representative of the stream reach they are trying to analyze. A specific habitat type is not required, but instead should reflect the dominant habitat type in that reach. It should be noted, however, there are limitations to this due to access variability. On a statewide scale, those streams represented in this program largely reflect the location of the volunteer pool. For those that monitor on open water, they are encouraged

to choose the deepest point. If monitoring occurs instead off of a dock, it is noted in the monitoring comments. IDAH₂O staff are available to volunteers seeking assistance on site selection.

Comparability

All IDAH₂O volunteers are trained using the same methods by IDAH₂O staff outlined in the IDAH₂O Handbook and QAPP.

Completeness

Due to the volunteer driven nature of the $IDAH_2O$ program, completeness is difficult to quantify. The various water quality assessments listed in the *Project Description* notes the intended frequency of these events. However, due to site access, volunteer availability and other factors, monitoring may not occur at this rate.

A8. Training Requirements and Certification

Training protocol

IDAH₂O volunteers attend an 8-hour workshop, led by IDAH₂O staff, to become certified in the program. This workshop is split into two modules; one indoors going over basic water quality concepts and one outdoors held at a nearby stream site to train volunteers on monitoring methodology. The first module covers topics including:

- Program development and goals
- Code of Ethics
- Master Water Steward responsibilities
- Watersheds
- Water cycle
- Data use
- TMDL process
- Safety
- Beneficial uses
- Pollution sources
- Developing monitoring plans
- Conducting a watershed inventory
- Determining coordinates at your stream site
- Data entry
- QA/QC Review of the QAPP

• Overview of monitoring assessments

Upon completion of the first module, volunteers visit a stream site with IDAH₂O staff to use the equipment they will be provided to conduct the various water assessments. An overview of safety and site selection is also provided. Volunteers perform a complete habitat, chemical, physical and biological assessment during this training. They are also instructed on how to capture grab samples for Snapshot Events. After completion of the 8-hour workshop, attendees are certified Master Water Stewards. They are entered into the IDAH₂O volunteer database with a volunteer monitor ID, and they are given an 'active' status once they register a monitoring site and have submitted assessment data. All volunteers are encouraged to monitor in teams with other certified volunteers. This insures that monitoring is conducted in the manner which they were trained.

Advanced training

Additional training opportunities are offered to IDAH₂O volunteers once certified. These trainings include topics such as aquatic invasive plants and advanced benthic macroinvertebrate identification. Training opportunities are developed based on requests from the volunteers and the availability of instructors and vary each year. Refresher courses are also provided to any volunteer/s that may want additional supervision to ensure proper monitoring methodology is followed. Any advanced training and refresher courses will also be recorded in the IDAH₂O volunteer database.

Instructor Education and Experience

Ashley McFarland, the lead instructor and program coordinator, is the Area Water Quality Extension Educator for University of Idaho Extension in northern Idaho. She holds an M.S. degree in Environmental Science and Water Resources from Iowa State University. Her thesis work comprised of conducting watershed scale assessments to identify pollution sources and to propose best management practices to address water quality impairments. Through her work she supervised over thirty adult volunteers in the IOWATER Volunteer Monitoring Program. McFarland also holds a B.A. in Political Science and Environmental Studies and has over ten years working with and conducting education and outreach on water quality issues.

A9. Documentation and Records

IDAH₂O volunteers complete field assessment forms on-site at the time of monitoring (Appendix A). Each form requests basic information, such as monitor name and identification number, site description and identification number, time and date. Those present at the assessment not certified in the IDAH₂O program should also be listed and indicated whether or not they are adults or youth. When the assessment is completed, IDAH₂O volunteers are instructed to access the online submission forms available on the IDAH₂O website. Links to these forms are also sent to volunteers once certified. Volunteers must utilize their identification number, along with the site identification number to enter data.

The online data forms utilize the Google Docs[™] open source software. The online forms mirror the field forms volunteers used in their monitoring. Once data is submitted online, volunteers are asked to keep

their field forms in their personal file for up to one year, in case there is any question about data submitted online. All data submitted in the Google $Docs^{TM}$ forms are automatically transferred into an Excel spreadsheet that is managed by the $IDAH_2O$ program staff and can no longer be edited by the volunteers. A brief check of the data, to insure appropriate values and completed fields, is conducted before the data is migrated into a hydrologic information server (HIS), which hosts the data indefinitely and can be uploaded and manipulated by various platforms.

Data collected through Snapshot Sampling events will be reported by the University of Idaho Coeur d'Alene Center Water Lab by program staff within one week of sampling. Data will be reported to both the participating volunteers and to the website. Data will also be loaded into the HIS.

By 2013, the IDAH₂O program will host a web mapping service that will spatially display the data collected by IDAH₂O volunteers, both in the field and through snapshot sampling events. This application, hosted on the IDAH₂O website will pull data from the HIS that will be updated with monitoring data weekly. The public will be able to access this information and have the ability to download data and create maps of selected water quality parameters.

Quality Assurance Review Process

The primary mechanism though which project data quality objectives will be met is prevention. Planning and design of the project, documented instructions and procedures, and use of qualified and experienced personnel as outlined in this QAPP are expected to prevent most problems associated with data quality or quantity. An assessment by program staff of this monitoring program will be used to identify any problems with the project data and trigger response actions to help refine the procedures outlined in this QAPP, if necessary, for future use.

Quality Assurance Response Actions

After completion of the annual duplicate sampling, a Memo will be sent to the distribution list (Analysis of Duplicate Sampling) from program staff outlining any monitoring sites or parameters not meeting data quality objectives. In the case of these violations, data will be removed from the data management system. Duplicate sampling efforts will also be reported in the year-end data report sent to the distribution list, advisory board and volunteers.

Data Validation

Data will be reviewed by program staff to check for calculation and transformation errors, measurements within calibration range, and data entry errors. Various computer software programs, including Microsoft Excel may be used to assist in the data review process to help identify potentially erroneous data.

Quality Assurance Project Plan Implementation

This QAPP is to be distributed to all personnel and organizations listed on the distribution list by program staff. All personnel involved in the QAPP approval of the IDAH₂O Program are to sign and date the Approval section of this document and return to the IDAH₂O Project Coordinator. By signing the approval section, the signatory agrees that's he/she has read and understands his or her role in the

program, and will adhere to all sections of this QAPP. Additionally, all personnel involved in the project should retain or have access to the current version of this QAPP.

B1. Sampling Process Design

Sampling process and design will adhere to the IDAH₂O Handbook, pages 1-13

B2. Sampling Methods

Sampling methods will adhere to the IDAH₂O Handbook, pages 19-50

B3. Sample Handling and Custody

The only samples collected in the IDAH₂O program are through the Snapshot Sampling Events. Sterilized sample bottles are provided to volunteers. Volunteers are given an 8-hour time frame to collect their sample and to return it to the UI Coeur d'Alene Laboratory. All samples must be brought to the lab in a cooler with ice. Any sample received by the lab violating sample delivery requirements are discarded, including those that were not returned within 8 hours. Samples are stored in a refrigerator at the lab until processed. A chain of custody form is provided and must be submitted with the sample (Appendix C).

B4. Analytical Methods

Nitrate Nitrogen and total Phosphorus tests will be performed at the University of Idaho Coeur d'Alene Laboratory using Hach TNT Chemistries methodology. Total coliform and *E. coli* will be performed at the University of Idaho Coeur d'Alene Laboratory using IDEXX Colilert with Quanti Tray 2000 methodology.

B5. Quality Control

See QAPP A6, A7, A9

B6. Instrument/Equipment Testing, Inspection and Maintenance

Field equipment is maintained by volunteers. Expired dissolved oxygen ampoules and pH strips are exchanged for current testing equipment through an equipment resupply request. The IDAH₂O quality assurance manager will inspect volunteer field equipment during annual duplicate sampling.

The Laboratory Manager will conduct annual inspection and maintenance on the Snapshot Sampling Event equipment in the lab.

B7. Instrument/Equipment Calibration and Frequency

Field and laboratory instruments and equipment will be calibrated daily before use.

B8. Inspection/Acceptance of Supplies and Consumables

Field equipment is maintained by volunteers. Expired dissolved oxygen ampoules and pH strips are exchanged for current testing equipment through an equipment resupply request. The IDAH2O quality assurance manager will inspect volunteer field equipment during annual duplicate sampling.

B9. Non-direct Measurements

Not applicable

B10. Data Management

See IDAH₂O Handbook, pages 51-67

C1. Assessments and Response Actions

See QAPP A6, A7, A9

C2. Reports to Management

See QAPP A6, A7, A9

References

- Iowa Department of Natural Resources. *IOWATER Volunteer Water Quality Monitoring Quality Assurance Project Plan: QA/WM/01-02.* 2010.
- McFarland, A.A. *IDAH*₂*O Master Water Steward Program Curriculum*. University of Idaho. College of Agriculture and Life Sciences, Education Communications. 2012 (in review).
- Murdoch, T., M. Cheo, K. O'Laughlin. *Streamkeeper's Field Guide: Watershed Inventory and Stream Monitoring Methods.* Everett: Adopt a Stream Foundation. 1996.
- US EPA. EPA Requirements for Quality Assurance Project Plans: EPA QA/R-5. Office of Environmental Information. EPA/240/B-01/003. 2001.

Appendix A.

Volunteer Monitoring Sites

Appendix B.

Field Data Forms

Habitat Assessment

* Recommended frequency – yearly *

* Photographic documentation is recommended and strongly encouraged *

Date			Time
IDAH₂O Monitor #			# of Adults (including you)
Site Number			# of under 18
Other Volunteers Invol	ved		
Site Description			
Was the stream dry wh	en it was monitored? Yes_		No
Stream Habitat Type (a	t transect – check one): Rif	fle Run	n Pool Glide
Streambed Substrate (at transect – estimate perce	entages – 100% tot	al)
	% Bedrock – lar		
	% Boulder – sto	-	
			er between 2.5 and 10 inches
	% Gravel – 0.1 to		
	% Sand – smalle		
			l on bottom of the stream
	% Other – orgar	nic material like le	af litter, tree limbs, etc.
Embeddedness (% subs	trate embeddedness):	%	
Pebble Count Survey (N	Volman 1954) (at transect)		
Size class	Dimension	In wetted	Out wetted
Silt/Clay	0 – 1 mm		
Sand	1.1 – 2.5 mm		
Very fine pebble	2.51 – 6 mm		
Pebble	6.1 – 15 mm		
Coarse pebble	15.1 – 31 mm		
Very coarse pebble	31 . 1 – 64 mm		
Small cobble	64.1 – 128 mm		
Large cobble	128 . 1 – 256 mm		

Small	boulder	256.1 – 512 mm			
Mediu	m boulder	512 . 1 – 1024 mm	<u> </u>		
Large	boulder	1024 mm and larger		TOTAL	
Strear	n Banks (at trans	sect – check all that apply)			
Left B	ank (facing upstr	ream)	Right	t Bank (facing upstream)	
	Cut Bank – Ero	oding		Cut Bank – Eroding	
	Cut Bank – Ve	getated		Cut Bank – Vegetated	
	Sloping Bank			Sloping Bank	
	Sand/Gravel B	ar		Sand/Gravel Bar	
	Rip/Rap			Rip/Rap	
	Constructed E	Bank (i.e., drainage ditch)		Constructed Bank (i.e., drainage ditch)	
	Other:			Other:	
Chann	el Shape (at trar	nsect): Trapezoidal	Rectangula	ar Inverse trapezoidal	
Bank (C ondition (at tra	nsect): Cover stable Ui	ncovered stable	Cover unstable Uncovered unstable	
Canop	y Cover (over tro	ansect – check one): 0-25% _	25-50%_	50-75% 75-100%	
Densio	ometer (# of gric	l intersections obstructed	by vegetation):		
Ripari	an Zone Width (at transect – check one for	each bank)		
Left B	ank (facing upstr	ream)	Right	t Bank (facing upstream)	
	0 – 5 meters			0 – 5 meters	
	5 – 25 meters			5 – 25 meters	
	Over 25 meter	rs		Over 25 meters	
Ripari	an Zone Plant Co	over (at transect – estimate	e percentage of e	each)	
Left B	ank (facing upst	ream)	Right	t Bank (facing upstream)	
	% Trees			% Trees	
	% Shrubs / Lov	v Trees		% Shrubs / Low Trees	
	% Grass / Low	Plants		% Grass / Low Plants	
	% Exposed Soi	1		% Exposed Soil	
	% Other (rip ra	ip, concrete, etc.)		% Other (rip rap, concrete, etc.)	
100%	TOTAL		100%	TOTAL	
(Note-	—begin assessing	g stream reach beyond stre	am transect)		
Strear	n Sinuosity (alor	ng stream reach): Low	Moderate	High Braided	
Adjace	ent Land Use (ald	ong stream reach – check al	l that apply)		
	Row Crop		Industrial	Prairie	
	Pasture		Timber	Park	
	Urban		Wetland	Playground	

Campground	Steep Slopes	Animal Feeding
Boating Accesses	Stairs/Walkway	Operations/Lots
Nature Trails	Rural Residential	Other
Fence	Conservation Lands	
Microhabitats (check all present in stre	eam reach)	
Algae Mats	Leaf Packs	
Large organic debris	Rocks	
Root Wads	Weed Beds	
Fallen Trees	Undercut Ba	inks
Silt/Muck	Rip Rap	
Sand	Overhanging	gVegetation
Junk (tires, garbage, etc.)	Other (descr	ibe)
Human Use Activities (along stream re	each – check all that apply)	
Please check activities you've participa	ted in or witnessed at this site.	
Swimming	Canoeing/Kayaking	Hunting/Trapping
Tubing	Boating	Fishing
Water Skiing	Wading	Kids Playing
Wind Surfing	Rafting	Other
Evidence of Human Use (along stream	reach – check all that apply)	
Please check evidence of human use yo	u've witnessed at this site.	
Streamside Roads	ATV/ORV Tracks	Fishing Tackle
Footprints or Paths	Rope Swings	Evidence of Play
Dock/Platform	Camping Sites	Other
Livestock Watering	Fire Pit/Ring	

Record all other land use practices that potentially could affect the stream.

Are there any noxious weeds present?

Chemical/Physical Assessment

* Recommended frequency – sample monthly <u>at transect</u> *

Date		Time	
IDAH₂O Monitor #		# of Adults (including you)	
Site Number		# of under 18	
Other Volunteers Involved			
Was the stream dry when it was monit	ored? Yes	No	
Weather (check all that apply)			
Sunny Partly Sunny	Cloudy Rain/Snow	Windy C	alm
Water Color (check all that apply)			
Clear Brown Green	Oily Reddish	Blackish Milky	Gray
Water Odor (check all that apply)			
None Sewage/Manure	Rotten EggsPe	etroleum Musky	
Air Temperature °Fahrenheit	Precipitation incl	nes over the last 24 hours	
Transparency (record whole numbers of	nly – no tenths) cei	ntimeters	
pH Expiration date on bottom of bottle	check one – 4	_5678	9
Dissolved Oxygen (mg/L) Expiration da	te on back of color comparat	or	
check one – 1 2 3 4 5	_681012		
Chloride Expiration date on bottom of	bottle		
mg/L – Convert Quantab Ur	nits to mg/L using the chart pr	ovided on the bottle	
Water Temperature °Fahrenhe	it Stream Width	meters	
Maximum Stream Depth (along your tr	ansect) Stream Flow (ald	ong your transect)	
• meters	high	normal low	not sure
Stream Depth (in meters)			
1st Spot	6th Spot	11th Spot	
2nd Spot	7th Spot	12th Spot	
3rd Spot	8h Spot	13th Spot	
4th Spot	9th Spot	14th Spot	
5th Spot	10th Spot	15th Spot	
Stream Velocity (in seconds)			
1st Spot	6th Spot	11th Spot	
2nd Spot	7th Spot	12th Spot	
3rd Spot	8th Spot	13th Spot	
4th Spot	9th Spot	14th Spot	
5th Spot	10th Spot	15th Spot	

Other Stream Assessment Observations and Notes

Biological Assessment

* Recommended frequency – no more than three times/year (Spring, Summer and Fall) *

Date	Time
IDAH ₂ O Monitor #	# of Adults (including you)
Site Number	# of under 18
Other Volunteers Involved	
Was the stream dry when it was monitored? Yes	No

Were Benthic Macroinvertebrates Found? (If yes, please check those benthics found. If no, please provide any relevant comments in the "Other Assessment Observations and Notes" section at the end of this form – why do you think critters are not present here?)

Benthic Macroinvertebrates (check all found)

High Quality Group	Crawling Water Beetle	Low Quality Group
(pollution intolerant)	Damselfly	(pollution tolerant)
Caddisfly	Dragonfly	Aquatic Worm
Dobsonfly	Giant Water Bug	Black Fly
Mayfly	Limpet	Bloodworm
Riffle Beetle	Mussels/Clams	Flatworm
Snail (not pouch)	Orbsnail	Leech
Stonefly	Predaceous Diving Beetle	Midge Fly
Water Penny Beetle	Scud	Mosquito
Middle Quality Group	Sowbug	Pouch Snail
(somewhat pollution tolerant)	Water Boatman	Rat-tailed Maggot
Alderfly	Water Mite	Water Scavenger Beetle
Backswimmer	Water Scorpion	Other
Crane Fly	Water Strider	(no tolerance group assigned)
Crawdad	Whirligig Beetle	
Benthic Macroinvertebrate Collection	Time (check one)	
0 – 15 min 15 – 30 min	30 – 45 min	More than 45 min
Collection Nets (How many nets are you	using to collect critters?)	
12345	6+	
Stream Reach Length (How far along th	e stream did you search?)	

_____ 0 – 25 meters _____ 25 – 50 meters _____ 50 – 75 meters _____ 75 – 100 meters _____ 100+ meters

•					
Algae Mats	Present	Sampled	Leaf Packs	Present	Sampled
Logjams	Present	Sampled	Rocks	Present	Sampled
Root Wads	Present	Sampled	Weed Beds	Present	Sampled
Fallen Trees	Present	Sampled	Undercut Banks	Present	Sampled
Silt/Muck	Present	Sampled	Rip Rap	Present	Sampled
Sand	Present	Sampled	Overhanging Ve	getation	
Junk (tires, garb	age, etc.)			Present	Sampled
	Present	Sampled			
Other (describe)) Present	Sampled			

Microhabitats (check all present in stream reach, check if sampled)

Stream Habitat Type (check all types sampled in stream reach)RiffleRunGlidePoolAquatic Plant Cover of Streambed (at transect – check one)0 - 25%25 - 50%50 - 75%75 - 100%Algae Cover of Stream Streambed (at transect – check one)0 - 25%25 - 50%50 - 75%75 - 100%

Other Assessment Observations and Notes

Are there any fish or sign of fish present? _____

Standing Water Assessment

* Recommended frequency – monthly from ice-out to freeze-over *

Date			Time			
IDAH ₂ O Monitor #	# of Adu	l lts (including	g you)			
Site Number	ite Number # of under 18					
Other Volunteers Involved						
PHYSICAL ASSESSMENT						
Weather (check all that apply)						
SunnyPartly Sunny	_Cloudy	Rain,	Snow	Windy	(Calm
Air Temperature °Fahrenheit	Precipitat	tion	inches over t	he last 24 ho	ours	
Wind Direction (check one)	Northw	vest		Bree	ezy (sus	tained 5-15
Not applicable	Southe	ast		mph, sma	all branc	hes move)
North	Southw	vest		Gus	ty (gust	over 15 mph,
South	Wind Speed	(check or	ie)	small tree	es sway	occasionally)
East	Calm (0-5 mp	oh, felt or	ı face,	Stro	ong (sus	tained over 15
West	leaves rustle)			mph, sma	mph, small trees sway	
Northeast				continuo	usly, wa	ves form)
Site Location Open Water	_Shore or Doc	:k				
Secchi Disc Depth meters						
OR Transparency Tube cm (re	ecord whole nu	imbers on	ly – no tenths)			
Water Temperature °Fahrenheit						
Water Level (check one) Above Norm	al Norma	al Be	low Normal			
If lake is not at normal level, and you ha	ve means to m	easure, pl	ease specify:			
inches above or below	normal					
Water Odor (check all that apply)						
None Sewage/Manure Rott	en Eggs F	Petroleum	n Fishy			
CHEMICAL ASSESSMENT						
IMPORTANT: Use point sampling tech	nique!					
pH Expiration date on bottom of bottl	e cheo	ck one – 4	5	67	8	9
Dissolved Oxygen (mg/L) Expiration da	ate on back of	color con	nparator			
check one – 1 2 3 4 5	_68	10 12				
Chloride Expiration date on bottom of	bottle	_				
mg/L – Convert Quantab U	nits to mg/L us	ing the ch	art provided or	the bottle		

BIOLOGICAL ASSESSMENT

Water Color – Is there an obvious algal bloom? (algal mats present, water appears green or scummy)
_____No _____Yes (*if yes, please submit a photo record*)

BENTHIC MACROINVERTEBRATE ASSESSMENT – Use the Biological Assessment Form to record benthic data.

HABITAT ASSESSMENT

* Conduct only once per year, preferably in July, or if a major land use change occurs *

Describe Lake Banks_____

Describe Adjacent Land Use _____

Other Observations and Notes

Appendix C.

Chain of Custody Form

IDAH₂**O** Snapshot

Chain of Custody

Report to: IDAH₂O: Master Water Stewards 1031 N. Academic Way Coeur d'Alene, ID 83814 Invoice: Make checks payable to UI Bursar \$10/sample

State of Sample Origination: Idaho

	IDAH ₂ O	Sampling	Date of	Time of	Comments
	Site ID #	Location	Sampling	Sampling	
1					
2					
3					
4					
5					

Sample(s) Taken by: _____

Sampler(s) Signature:

Relinquished by:	Date	Time	Received By:	Date	Time

Payment: Cash: _____ / Check# _____ Received by: _____

Appendix D.

Commitment to Comply with IDAH₂O Training Methodologies and Quality Assurance Practices

Commitment to Comply with IDAH₂O Training Methodologies and Quality Assurance Practices (signature required before start of training)

volunteer name

workshop location/date

When conducting water quality monitoring as a certified Master Water Steward for the IDAH₂O program, I agree to:

- Maintain an interest and stay current on water quality issues,
- Conduct all monitoring as outlined by the methodologies in the IDAH₂O handbook,
- Adhere to the IDAH₂O code of ethics,
- Maintain positive working relationships with landowners and program partners, and
- Follow quality assurance guidelines as outlined in the IDAH₂O Quality Assurance Project Plan.

Signature of this form signifies the volunteer has reviewed and agrees to comply with the IDAH₂O handbook and Quality Assurance Project Plan.

signature

date