Diagnosis & Control of Problems on Idaho Urban & Woodland Trees

Yvonne C. Barkley
Associate Extension Forester
University of Idaho
• **Control:**
 – The best way to control tree problems is to prevent them
 – The aim in controlling a pest problem is to bring the damage below the economic threshold
 – Control of insect & disease problems is achieved by breaking the life cycle
• **Common control methods include:**
 – cultural controls
 – chemical controls
 – biological control
• **Cultural controls:**
 – plant selection
 – proper planting
 – nutrition
 – sanitation
 – pruning
 • prune during dry weather
 • clean tools between every plant or between every cut
 • sterilize pruning tools with a 10% bleach solution (1 part bleach to 9 parts water) or winter strength windshield wiper fluid
 • bleach will make tools rust
• **Chemical controls:**
 – Always recommend cultural controls along with chemical controls
 – Only recommend chemical controls listed in the PNW Management Handbooks
 – Also available on-line at:
 • Insects - http://insects.ippc.orst.edu/pnw/insects
 • Diseases - http://plant-disease.ippc.orst.edu/index.cfm
Biological Control:

- Is the reduction of pest populations by natural enemies and typically involves an active human role.
- Natural enemies of insect pests, also known as biological control agents, include predators, parasitoids, and pathogens.
Causes

- **Primary cause** is the reason a plant is susceptible to damage. This includes anything that would stress a plant such as adverse weather, drought stress, nutrition deficiencies, etc. Primary causes are usually physiological or chemically related. Primary causes may result in a decline in vigor, but are usually not the cause of death.

- **Secondary causes** are usually insects or diseases. These vectors are successful in gaining entry into a plant because it is stressed or has a wound. Secondary causes are what usually caused mortality.
• **Plant problems fall into two main groups** – those that are caused by:

 – **Living organisms:**
 • Insects
 • Diseases

 – **Non-living agents:**
 • Physiological causes
 • Chemically related events
• **Diseases are caused by one of three vectors:**
 – Fungi
 – Bacteria
 – Viruses
• **Fungi:**

 – are microscopic, non-photosynthetic plants

 – sometimes beneficial to man; used industrially to produce antibiotics, cheeses, and wines

 – are an important component of natural nutrient cycles

 – as a group, cause more disease problems than other vectors
• **Fungi:**
 – live in the air, on fallen debris, or in cankers and wounds on plants
 – spread by the movement of wind and water
 – gain entry through natural openings such as stomata and wounds; are also able to penetrate healthy tissue in the right conditions
 – conditions include free moisture or high relative humidity; poor air circulation; warm temperatures
• **Bacteria:**
 – are among the smallest living organisms
 – are non-photosynthetic
 – some species are beneficial:
 • aid in decomposition and soil building
 • enable legume to convert gaseous N to a form available for plant use
 • have industrial uses
• **Bacteria:**

 – live in soil or on plant refuse

 – are spread by rain, man, animals, insects, equipments, and plants

 – cannot actively penetrate tissue; enter through natural openings such as stomata and through wounds

 – begin to reproduce once it enters plant, killing cells as it goes

 – some produce toxins that result in abnormal growth

 – others poison plant tissues or plug vascular tissues and cause wilt
• **Viruses:**
 – are infectious agents too small to be seen with an ordinary microscope
 – are parasitic on plants and animals, including humans
 – # of known virus diseases in woody plants small; includes tobacco mosaic virus and tobacco ring spot virus

• **Viruses** are spread from plant to plant by:
 – mechanical transmission (pruning or grafting)
 – nematodes
 – fungi
 – insects
• **Insects fall into five main groups:**
 - Foliage feeders (needle miners, case bearers)
 - Borers (bark, twigs, shoots, & roots)
 - Piercing & sucking insects (aphids, thrips, mites, adelgids, mealybugs)
 - Gall makers
 - Nematodes
Physiological problems are caused by non-living agents, such as:

- adverse weather conditions
- nutrient deficiencies
- poor soil drainage
- plant suitability
- mechanical injury
- pesticide misapplication
• In general, physiological problems:
 – are uniform throughout the plant
 – will affect most or all plants in a landscape
 – will lack evidence of a living organism
• Pesticide misapplication (direct or indirect) is a common problem.
• **Making a diagnosis:**
 - Helpful to have a general understanding of a variety of disciplines, such as botany, entomology, horticulture, plant pathology and physiology, forestry, soils, hydrology and pesticide use
 - Key point of a good diagnostician are:
 • Good judgment and common sense
 • An inquisitive mind
 • A willingness to seek help
• Identify the plant
• Gather information.
 – The client
 – Weather conditions (past and present)
 – Surrounding areas
 – Symptoms
• What did you miss? (Don’t bluff!)
• Diagnosis and control recommendations
• **Symptoms** can occur on:
 – leaves
 – leaves and branches
 – plants with no leaves
 – roots
• **Symptoms on leaves:**
 – Start by looking for abnormalities in size, color, glossiness, texture and shape
• Leaf spots
• Blotches
• Needles casts & blights
Causal agents can create similar symptoms.

- For example, this tree had red spots with yellow hallows. This symptom can be caused by an insect, a disease, or physiological cause (acid rain).
• **Pattern of symptoms**
 - Top down vs. bottom up

Rhizosphaera needle cast

Phosphorus deficiency
• Scorch & wilts
 – can be caused by hot dry winds in the spring when leaves are tender
 – or by disease such as Dutch elm disease
 – pesticide misapplication
• **Frost damage**
• Bud damage due to low spring temperatures vs. insect damage
• Yellowing of leaves and/or veins is often associated with mineral deficiencies or toxicities.

• Can also be associated with:
 – soil sterilants
 – viral diseases
 – spider mites
 – pesticides
 – air pollutants

Iron chlorosis
Major changes in leaf structure can be caused by:

- nutrient unavailability
- poor soil aeration
- root injuries
- disease
- mites
- pesticide misapplication
• **Symptoms on leaves & branches**

 Look for:
 – small holes
 – scars
 – ridges
 – bumps
 – pitch oozing
 – swelling

 Nectria canker
Red turpentine beetle & bear damage

White pine blister rust
• Extensive browning &/or broken branches:
 – cankers
 – storm or mechanical damage
 – insect girdling
• **Cankers:**
 – sunken or raised areas on branches & trunks, indicating injury to tissue underneath
 – infections can be secondary
• **Cankers can be caused by:**
 – bacterial or fungal infections
 – high/low temperatures
 – mechanical damage
Fungal/bacterial damage = gradual changes

Temperature/mechanical/insect damage = well defined changes
• Rapid browning & leaf drop usually due to trunk or root-related problem
• Causes include:
 – canker
 – mechanical damage
 – borers
 – girdling
 – wilt diseases
Examination of the inner bark will tell you if the plant is *dead or alive*:

- brown & dry = dead
- green to white & moist = alive
- streaking suggests presence of wilt fungus like DED
• *Roots* should be firm & creamy in color:
 – brown = dead tissue
 – spongy = decay
• *Tops dying* out are often an indicator of bark beetle attack
A stress cone crop produced on a tree with thinning foliage and shortened terminal growth is an indication of root disease.
• Fruiting bodies and basal cankers
Factors most commonly involved in the *rapid death* of a tree include:
- infection by wilt fungi
- mechanical injury
- rodent damage
- gas line leaks
- lightening
- toxic chemicals
• Causes for *progressive decline* include:
 – girdling roots
 – decay
 – poor soil type
 – poor drainage
 – lack of nutrients
 – soil grade changes
 – improper planting