

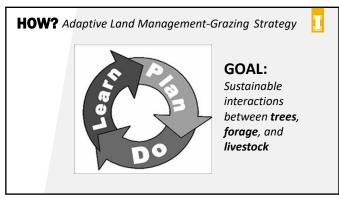
SILVOPASTURE AND FORESTLAND

GRAZING STRATEGIES

Timber

Livestock

2


why manage for Both?

Livestock Production

Aesthetics

St Health

Lower Fire Risk

1. Forest Age 2. Forest Composition 3. Management • Forest Canopy • Deciduous vs. Evergreen

GOAL:
Sustainable
interactions
between trees ,
forage, and
livestock

DESCRIBE THE LAND: FORAGE

ון

- 1. Identify key forage species (palatable)
- 2. Abundance

We want livestock to select herbaceous forage instead of trees.

8


DESCRIBE THE LAND: FORAGE

- 1. Identify key forage species (palatable)
- 2. Abundance

Livestock Species

FOREST MANAGEMENT

Brush Management

https://www.nrs.fs.fed.us/fmg/nfmg/fm101/silv/p2_treatment.html

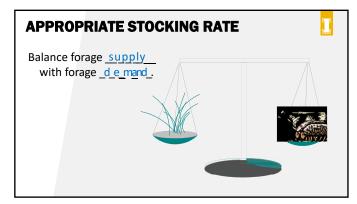
13

GOAL: Sustainable

interactions between trees, forage, and livestock

14

LIVESTOCK CONSIDERATIONS



Animal numbers and distribution is critical for success!

- Livestock may damage roots, shoots, bark.
- Trampling seedlings and broken branches
 Soil compaction = reduced infiltration
 Weed introduction

Benefits:

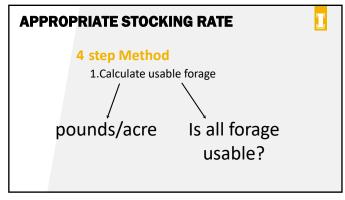
- Reduced Competition
 - Reduced Fire Risk
 - Economic Benefits

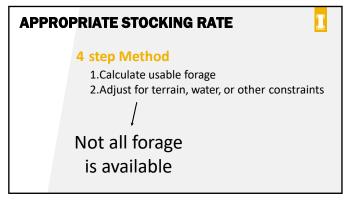
APPROPRIATE STOCKING RATE

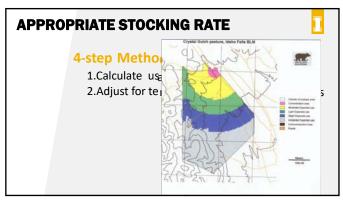
ון

The **number of animals** a land manager places on a **piece of land** for a specified **period of time**.

Consider the most important grazing decisions.


17


APPROPRIATE STOCKING RATE



4 step Method

- 1.Calculate usable forage
- 2.Adjust for terrain, water, or other constraints
- 3. Calculate forage demand of animals
- 4.Calculate stocking rate

٨	D	D	D	1	D	D	14	TE	61	ΓΛ	\mathbf{c}	ZI	NG	D	AT	re
н	۱Г	г	п	v	•	п		AI E	3	ıv	•	ΛH	ич	п	м	

Ţ

4 step Method

- 1.Calculate usable forage
- 2. Adjust for terrain, water, or other constraints

Depends on:

- •Animal species, breed, and experience
- Topography and soils
- Season

22

APPROPRIATE STOCKING RATE

4 step Method

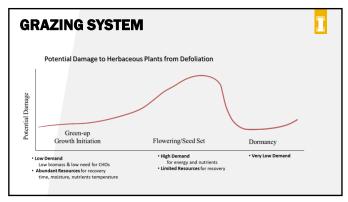
- 1.Calculate usable forage
- 2. Adjust for terrain, water, or other constraints
- 3. Calculate forage demand of animals
- Estimated on the weight of animals.

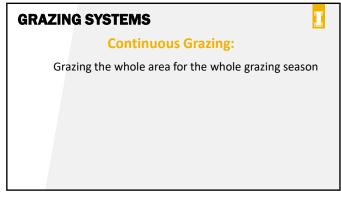
Ruminants = 2.5% of body weight/day Hind-gut Fermenters = 3.0 % of body weight/day

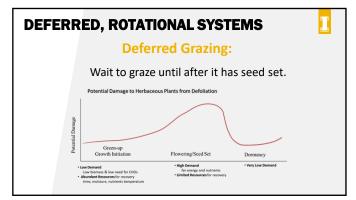
• Weight of animal X daily dry matter intake X number of days pasture will be grazed = forage demand/animal/year.

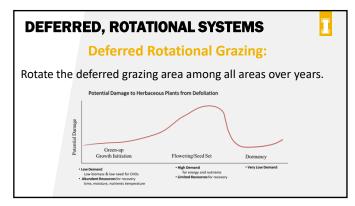
23

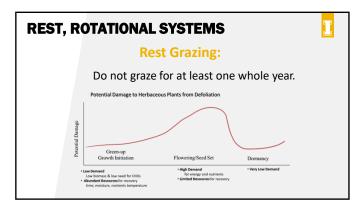
APPROPRIATE STOCKING RATE


4 step Method

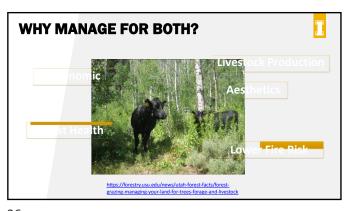

- 1.Calculate usable forage
- 2. Adjust for terrain, water, or other constraints
- 3. Calculate forage demand of animals
- 4. Calculate stocking rate


Stocking rate = total usable forage/forage demand

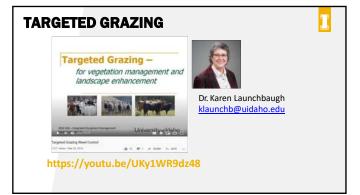

DISTRIBUTION AND GRAZING SYSTEMS Herding, Fencing, Supplements
 Soils are wet = livestock should be removed Fencing = is a management tool > grazing systems Strategically place water, salt, supplements


The number of animals a land manager places on a piece of land for a specified period of time. Grazing System

• There is no "silver bullet" system that will work everywhere. • There are thousands of variations on a theme... • All systems need to be flexible to manage unexpected disturbance such as fire or weed


invasions.

32



OUTLINE

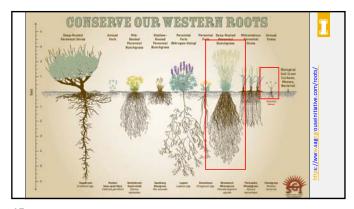
П

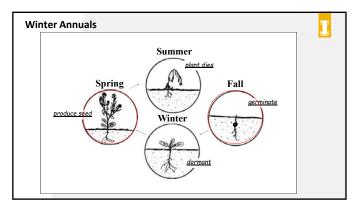
- •Targeted Grazing: Theory and Techniques (Dr. Karen Launchbaugh)
- •Highlight annual grasses studies in Southern Idaho
- Discussion/Questions

40

41

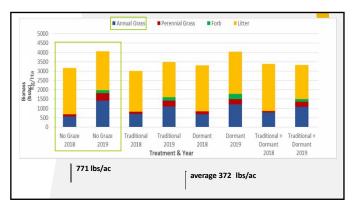
Management Objectives:

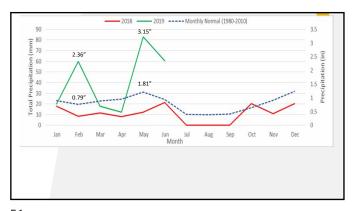

I


- 1. Where are we at currently?
- 2. Where do we want to be?
- 3. How do we get there?
- 4.How will we know what and when adjustments will be needed?
- 5. How will we know we've gotten there or are making progress towards getting there?

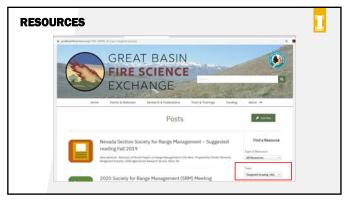
43

44









Targeted Grazing **Trepeted Garding on the controlling controlling grazing of flowership is accomplish specially and the controlling controlling grazing of flowership is accomplish specially and the controlling grazing of flowership is accomplish specially and the controlling grazing of flowership is accomplished by the controlling grazing grazi

