Adapting Cover Crops in Southeastern Idaho

Xi Liang
Aberdeen Research & Extension Center, Aberdeen, ID 83210
“A cover crop is a crop planted primarily to manage soil erosion, soil fertility, soil quality, water, weeds, pests, diseases, biodiversity and wildlife in an agroecosystem.”

Cover Crops

Hairy vetch

Turnip

Yellow mustard

Cover crop mix at Gooding, ID October, 2015

http://fromfieldtofield.com/2011/12/05/turnip-cover-crops/
• 40 year old dryland, Bannock County
• No-till into spring wheat stubble 9/30/2014
• Terminate after fall green up and plant spring wheat in 2016.

• Cover crop mix:
 • Triticale
 • Hairy Vetch
 • Forage Pea
 • Winter Lentil
 • Kale
 • Rapeseed

Photos from Marlon Winger, State Agronomist, NRCS, Boise, Idaho
Soil Compaction and Water Movement

- What is soil made of?
- When we compact the soil, what are we losing?

http://aces.nmsu.edu/pubs_circulars/CR672/welcome.html
http://soilquality.org/indicators/soil_structure.html
https://louisianariceinsects.wordpress.com/2010/03/19/horizon-ag-strip-trial-planted-in-crowley/
Cover Crops Break up Soil Compaction

http://rlsnyder.us/blog/category/gardening-methods/page/2/
Cover Crops Break up Soil Compaction

http://www.tillageradish.com/benefits/reduced-compaction.php
Cover Crops Improve Infiltration

Infiltration through tunnels created by roots

Subsoil moisture increases after radish winterkills, perhaps because water flows down root channels

Solid line: radish
Dot line: fallow

Cover Crops Improve Infiltration

Infiltration through tunnels created by roots
Cover Crops Prevent Soil Moisture Evaporation

http://notillveggies.org/cover-crops-and-soil-moisture/
Cover Crops Reduce Runoff

- Water penetrated to deep depths under cover crops
- The more infiltrated, the less runoff (the water balance)
- Lower runoff under cover crops

https://laulima.hawaii.edu/access/content/group/2c084cc1-8f08-442b-80e8-ed89faa22c33/book/chapter_7/balance.htm
All organic matter in soil is not equal. Scientists describe 3 pools of soil organic matter:

- Passive SOM
 - Very stable organic material
 - Extremely slow decomposition
 - 60 – 80% of SOM
 - 500 – 5000 yrs
 - C/N ratio 7 – 10

- Time

Tillage begins

25 years after tillage began

Permanent sod begins

% of native organic matter level

100%

50%
Why Are Soil Organic Matters Important?

- Plant available water increases with soil organic matters.

http://www.hgtv.com/design/outdoor-design/landscaping-and-hardscaping/choosing-the-right-potting-mix-pictures
http://irrigatedag.wsu.edu/soil-organic-matter-boosts-water-holding-capacity/
USDA Software for Soil Properties
<table>
<thead>
<tr>
<th>Species</th>
<th>Potential fixed N (lb/A)</th>
<th>Seeding rate (lb/A)</th>
<th>% N in biomass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legumes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crimson clover</td>
<td>50-60, 35-120</td>
<td>12-20, 20-25</td>
<td>2.4-3</td>
</tr>
<tr>
<td>Austrian peas</td>
<td>30-100</td>
<td>75-150</td>
<td>3-4</td>
</tr>
<tr>
<td>Hairy vetch</td>
<td>60-180, 35-150</td>
<td>20-35, 20-30</td>
<td>4</td>
</tr>
<tr>
<td>Brassicas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forage turnip</td>
<td>-----</td>
<td>3-5</td>
<td>3.3 leaf, 1.6 root</td>
</tr>
<tr>
<td>Oilseed radish</td>
<td>-----</td>
<td>25</td>
<td>3.8 leaf, 2.5 root</td>
</tr>
<tr>
<td>White mustard</td>
<td>-----</td>
<td>15</td>
<td>2.8-3.5</td>
</tr>
<tr>
<td>Canola</td>
<td>-----</td>
<td>15</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Cover Crop Chart

Growth Cycle
- **A** = Annual
- **B** = Biennial
- **P** = Perennial

Plant Architecture
- **=** Upright
- **=** Upright-Spreading
- **=** Prostrate

Relative Water Use
- **=** Low
- **=** Medium
- **=** High

Chart

<table>
<thead>
<tr>
<th>Cool</th>
<th>Warm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grass</td>
<td>Broadleaf</td>
</tr>
</tbody>
</table>

Grass
- Barley (A)
- Oat (A)
- Wheat (A)
- Cereal Rye (A)
- Triticale (A)
- Annual Fescue (B)
- Saline Tolerant (A/B)

Broadleaf
- Canola (A/B)
- Camelina (A/B)
- Mustard (A/P)
- Flax (A)
- Radish (A)
- Turnip (B)
- Beet (A)
- Carrot (A/B)

Legume
- Field Pea (A)
- Berseem Clover (A/B)
- Crimson Clover (A)
- Lentil (A)
- Lupin (B/P)
- Red Clover (A/B)
- Sweet Clover (A)
- Medic (A/P)
- Roundhead Lespedeza (A/P)
- Kura Clover (A/P)
- Alfalfa (P)
- Pigeonpea (A/P)

Cool Grass
- Amaranth (A)
- Buckwheat (A)
- Pearl Millet (A)
- Foxtail Millet (A)

Warm Grass
- Cluster Bean (A)
- Quinoa (A)
- Proso Millet (A)
- Grain Sorghum (A)
- Sudan Grass (A)
- Teff (A)

Cool Broadleaf
- Sunnhemp (A)
- Cluster Bean (A)

Warm Broadleaf
- Chickpea (A)
- Fava Bean (A)
- Chicory (A)
- Mung Bean (A)
- Cucurbita (A)
- Soybean (A)
- Sunflower (A)
- Corn (A)
Cover crop selection based on your needs

Planting small areas for the first trial
Cover Crops in Dryland Areas-CIG Project

To evaluate the effects of incorporating a cover crop mix into a cereal-based dryland cropping system by:

- Determining the establishment and growth of cover crops;
- Measuring soil water dynamics (i.e., infiltration rates and water use) as affected by cover crop integration in comparison to standard grower practices;
- Monitoring soil health (i.e., soil physical, chemical, and biological properties and organism diversity) as affected by cover crop integration over time.
Cover Crops in Dryland Areas-CIG Project

• Locations:
 • Arbon Valley (Hans Hayden)
 • Rockland (Cory Kress)

• Cover crop mix: turnip, radish, vetch, spring pea, and field pea with a ratio of 1:1:5:10:10

• Cover crop seeding rate: 30 lb/acre

<table>
<thead>
<tr>
<th>Trt</th>
<th>F2015-S2016</th>
<th>F2016</th>
<th>S-S2017</th>
<th>Fall 2017</th>
<th>S–S2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WW</td>
<td>Fallow</td>
<td>Fallow</td>
<td>WW</td>
<td>WW</td>
</tr>
<tr>
<td>2</td>
<td>WW</td>
<td>CC</td>
<td>CC</td>
<td>WW</td>
<td>WW</td>
</tr>
<tr>
<td>3</td>
<td>WW</td>
<td>Fallow</td>
<td>CC</td>
<td>WW</td>
<td>WW</td>
</tr>
</tbody>
</table>
• Cover crop growth at Rockland and Arbon Valley. Photos were taken in June 2016.
• Cover crop species survived the winter were different at the two locations.
Cover crop emergence approximately three weeks after planting at Rockland (up) and Arbon Valley (down).
Measurements

- Soil moisture sensors and data loggers were installed in the Rockland field.
- Data will be used to quantify the soil moisture changes due to cover crops.
Measurements

- Measurements of soil physical, chemical and biological properties.
- A wireworm trap in the winter wheat field.
Cost

- Seeds: $30/acre (including mixing of seed/inoculants and bagging) at a seeding rate of 30 lb/acre
- Planting
- Harvesting

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Description</th>
<th>Price Each</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5 acre Research Plot</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>CSBR020 - Purple Top Turnip: VNS Lot#: 1745-01-15-09 test: Feb 22, 2016 Origin: ID Pure: 99.95 Germ: 99 Weed: 0 Other: 0 Inert: 0.05</td>
<td>1.65</td>
<td>8.25</td>
</tr>
<tr>
<td>5</td>
<td>CSBR010 - Diakon Radish: Nitro Radish Lot#: NVV3844.t test: Jul 1, 2016 Origin: NZ Pure: 99.28 Germ: 85 Weed: 0.05 Other: 0.05 Hard: 0 Inert: 0.62</td>
<td>1.95</td>
<td>9.75</td>
</tr>
<tr>
<td>50</td>
<td>CSLG020 - Spring Pea: 4010 Lot#: AG-NE-16.1 test: Aug 11, 2016 Origin: NE Pure: 99.5 Germ: 98 Weed: 0.05 Other: 0.05 Inert: 0.4</td>
<td>0.40</td>
<td>20.00</td>
</tr>
<tr>
<td>50</td>
<td>CSLG010 - Winter Peas:Austrian Winter Lot#: TD-MT-16.1 test: Aug 11, 2016 Origin: MT Pure: 99.63 Germ: 80 Weed: 0 Other: 0 Inert: 0.37</td>
<td>0.55</td>
<td>27.50</td>
</tr>
<tr>
<td>16</td>
<td>NOC011 - Micro Noc Pea/Vetch/Lentil</td>
<td>0.80</td>
<td>12.80</td>
</tr>
<tr>
<td>135</td>
<td>Mixing - Mixing of seed/app. of inoculants (if any)</td>
<td>0.15</td>
<td>20.25</td>
</tr>
<tr>
<td>135</td>
<td>Bagging - Bagging into 50# bags</td>
<td>0.05</td>
<td>6.75</td>
</tr>
<tr>
<td>135</td>
<td>Shipping - Shipping Cost</td>
<td>0.65741</td>
<td>88.75</td>
</tr>
</tbody>
</table>
Summary

- Cover crops
 - Suitable species
 - Biomass production
 - Soil health
 - Wireworm control
 - Soil water relations
 - Grain yield of winter wheat following cover crops