PROGRESS IN CATALYTIC IGNITION FABRICATION, MODELING AND INFRASTRUCTURE:

(Part 2) Development of a Multi-Zone Engine Model Simulated using MATLAB Software

Final Report

Jeremy Cuddihy, Dr. Steve Beyerlein

February 2014
DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the Department of Transportation, University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof.
<table>
<thead>
<tr>
<th>1. Title and Subtitle</th>
<th>2. Report Date</th>
<th>3. Performer's Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progress in Catalytic Ignition Fabrication, Modeling and Infrastructure: (Part 2) Development of a Multi-Zone Engine Model Simulated using MATLAB Software</td>
<td>February 2014</td>
<td></td>
</tr>
<tr>
<td>Cuddihy, J., Beyerlein, S.</td>
<td>KLK907</td>
<td>N14-09B</td>
</tr>
<tr>
<td>TranLIVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIATT/University of Idaho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>875 Perimeter Dr MS 0901</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moscow, ID 83844-0901</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Sponsoring Agency Code</td>
<td>11. Contract or Grant No.</td>
<td>12. Type of Report and Period Covered</td>
</tr>
<tr>
<td></td>
<td>DTRT12GUTC17</td>
<td>Final Report: January 2012 – February 2014</td>
</tr>
<tr>
<td>13. Sponsoring Agency Name and Address</td>
<td>14. Sponsoring Agency Code</td>
<td>15. Supplementary Notes:</td>
</tr>
<tr>
<td>US Department of Transportation Research and Special Programs Administration</td>
<td>USDOT/RSPA/DIR-1</td>
<td></td>
</tr>
<tr>
<td>400 7th Street SW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, DC 20509-0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A mathematical model was developed for the purpose of providing students with data acquisition and engine modeling experience at the University of Idaho. In developing the model, multiple heat transfer and emissions models were researched and compared before being implemented in the final model. It was decided that empirical methods would be used to predict engine performance facets due to their simplicity, and would be later modified, or adjusted, to fit the test results.</td>
<td>Unrestricted; Document is available to the public through the National Technical Information Service; Springfield, VT.</td>
<td>Unclassified</td>
</tr>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>30</td>
</tr>
</tbody>
</table>

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized
TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 1
DESCRIPTION OF PROBLEM ... 2
APPROACH AND METHODOLOGY .. 3
 Developing a Single-Zone Engine Model ... 3
 Using a Pressure Trace to Modify the Vibe Function .. 5
 Developing a Variable Specific Heats Ratio Model .. 6
 Modeling Engine Friction .. 7
 Formulation of a Two-Zone Model .. 8
 Burned and Unburned Cylinder Masses ... 8
 Burned and Unburned Volumes and Temperatures .. 8
 Burned and Unburned Areas ... 9
 Selecting and Developing a Computer Program .. 10
 The MATLAB Interface .. 10
FINDINGS; CONCLUSIONS; RECOMMENDATIONS ... 17
APPENDIX ... 19
 A: Derivation of the Polynomial Method ... 19
 B: Two-zone MATLAB Code Using Annand’s Method ... 21
REFERENCES .. 30

FIGURES

Figure 1: A diagram of engine geometry variables [2].. 4
Figure 2: Engine inputs in the MATLAB model ... 11
Figure 3: Engine calculations based on engine inputs ... 12
Figure 4: Fuel and combustion efficiency inputs .. 13
Figure 5: The Vibe function .. 14
Figure 6: Valve opening and closing statements ... 15
Figure 7: Burned and unburned zone temperatures on a V6 engine 17
Figure 8: Predicted pressure, power, and heat transfer on V6 engine 18
EXECUTIVE SUMMARY

A mathematical model was developed for the purpose of providing students with data acquisition and engine modeling experience at the University of Idaho. In developing the model, multiple heat transfer and emissions models were researched and compared before being implemented in the final model. It was decided that empirical methods would be used to predict engine performance facets due to their simplicity, and would be later modified, or adjusted, to fit the test results.

In an attempt to improve the accuracy of the MATLAB (Matrix Laboratory) model, specific heats were modeled as a function of temperature, friction effects were modeled as a function of engine speed (RPM), valve opening and closing was included, and emissions predictions were included based on a two-zone approach. Although the model is in the process of being validated, preliminary comparisons with engine manufacturer’s data has shown promising results.
DESCRIPTION OF PROBLEM

Each summer, the University of Idaho offers an internal combustion engines course in which students learn about spark-ignition and compression-ignition engines, road load modeling, and numerical engine modeling. During the summer of 2013, this model was incorporated into students’ final projects as a means of calculating engine performance under different operating conditions. Students were required to simulate brake specific fuel consumption (BSFC) maps and analyze pressure and temperature characteristics of a given engine.

In the summer of 2014, students will use this model in the internal combustion engines course to compare theoretical and analytical data on a GM 4.3L V6 engine. This will include a procedure by which students can manipulate the Vibe function using a known pressure trace. Students will then be able to compare a set of MATLAB outputs and the known engine outputs for accuracy.

Students will also be able to grow familiar with numerical simulations and data acquisition. This model will use many empirical methods to calculate friction losses and emissions. Students will be able to see overall predictions, and through the observation of the relative contributions of each sub-category (such as heat transfer, exhaust gas recirculation (EGR), etc.), they will be able to see where errors may accrue in a numerical model.

This model will also be helpful for the future development of engine and emissions models centered on competition-based vehicles at the University of Idaho, such as the formula hybrid car. A simple engine performance and emissions model will assist students in evaluating the overall effect of changing performance parts. Instead of using a trial and error method of increasing performance, students will have analytical results to justify the purchasing of new parts. With increasingly stringent emissions rules in these competitions, an emissions prediction model becomes increasingly important.
APPROACH AND METHODOLOGY

Developing a Single-Zone Engine Model

The simplest approaches in engine modeling treat the cylinder contents as a single fluid or zone [1]. The single-zone model views the burned and unburned gases, residual gases, and unburned hydrocarbons within the cylinder as a single, ideal gas with uniform pressure; in single-zone models, the single ideal gas is considered to be air. This section will outline the methodology used to implement a modified, single-zone model to predict engine performance.

Single-zone models typically use the Vibe function to represent the chemical, or gross, energy release as a function of crank angle [2]. The Vibe function has a characteristic “S-shape” and is defined as follows:

\[x_{b(t)} = 1 - \exp \left[-a \left(\frac{\theta(t) - \theta_s}{\theta_b} \right)^{k+1} \right] \]
(Equation 1)

where \(a \) and \(k \) are adjustable constants (5 and 2 are commonly used values), \(\theta(t) \) is the instantaneous crank angle, \(\theta_s \) is the spark angle at the start of combustion, and \(\theta_b \) is the burn duration. The burn profile is engine specific, and the constants \(a \) and \(k \) can be adjusted to tune the profile to a specific engine or application.

The ideal gas law and the first law of thermodynamics form the basis for the single-zone engine model. The ideal gas law is defined as:

\[PV = mRT \]
(Equation 2)

where \(P \) is the pressure of an ideal gas, \(V \) is the volume of the gas, \(m \) is the mass of the gas, \(R \) is the universal gas constant, and \(T \) is the mean gas temperature. The cylinder gas volume, \(V_c \), in a combustion engine can be related to the engine geometry as a function of crank angle [2]:

\[V(\theta) = V_c + \frac{\pi d^2}{4} (l + a - s) \]
(Equation 3)
where B is the cylinder bore, l is the connecting rod length, a is the crank radius, s is the distance between the crank axis and the piston pin axis, and V_c is the clearance volume, which is defined as:

$$V_c = \left(\frac{V_d}{C_r - 1} \right) \quad \text{(Equation 4)}$$

where V_d is the displaced cylinder volume, and C_r is the compression ratio. A diagram of these variables is included in Figure 1.

![Figure 1: A diagram of engine geometry variables [2].](image)

In differentiating equation 2 with respect to $d\theta$, the following expression is obtained:

$$\frac{dp}{d\theta} = \left(-\frac{p}{\bar{V}} \right) \left(\frac{dv}{d\theta} \right) + \left(\frac{p}{\bar{T}} \right) \left(\frac{dT}{d\theta} \right) \quad \text{(Equation 5)}$$

where P, V, and T are instantaneous values that are modeled relative to the engine’s crank angle. The same process can be applied to the first law of thermodynamics, which is expressed as:
\[\Delta U = Q - W \]
\text{(Equation 6)}

where \(Q \) is the total energy transferred into the system, \(W \) is the work transferred out of the system, and \(\Delta U \) is the change in internal energy within the system. In differentiating equation 6 with respect to \(d\theta \), equation 7 can be obtained:

\[\frac{dU}{d\theta} = \frac{dQ}{d\theta} - \frac{dW}{d\theta} = mC_v \left(\frac{dT}{d\theta} \right) \]
\text{(Equation 7)}

where \(C_v \) is the specific heat of the combustion chamber gas. Upon dividing the specific heat by the universal gas constant, and using \(\eta_c \) (the combustion efficiency) and \(LHV \) (the lower heating value of the supplied fuel) we come up with equation 8, which gives us the change in temperature as a function of crank angle:

\[\frac{dT}{d\theta} = T(y - 1) \left[\left(\frac{1}{\gamma} \right) \left(\frac{dQ}{d\theta} \right) - \left(\frac{1}{Y} \right) \left(\frac{dV}{d\theta} \right) \right] \]
\text{(Equation 8)}

The heat input from the fuel can be used to find the change in pressure as a function of crank angle. The heat input from the fuel is defined as [3]:

\[Q_{in} = \eta_c LHV \left(\frac{1}{AF_{ac}} \right) \left(\frac{P}{RT} \right) Vd \]
\text{(Equation 9)}

where \(AF_{ac} \) is the actual air fuel ratio. Lastly, the change in pressure is defined as:

\[\frac{dP}{d\theta} = \left(\frac{-\gamma P}{V} \right) \left(\frac{dV}{d\theta} \right) + \left(\frac{\gamma - 1}{\gamma} \right) Q_{in} \frac{dP}{d\theta} + (y - 1) \left(\frac{1}{V} \right) \left(\frac{dQ}{d\theta} \right). \]
\text{(Equation 10)}

Equation 10 is the basis for a numerical model that can be used to simulate engine performance.

Using a Pressure Trace to Modify the Vibe Function

The accuracy of an engine simulation is highly dependent on the in-cylinder burn profile. The previously defined Vibe function constants (equation 1) can produce moderately accurate results for a given platform under given circumstances, but a method for curve-fitting the Vibe function to an engine’s pressure trace should be included in this model.

A method of deriving the mass fraction burned as a function of experimental cylinder pressure describes the incremental change in pressure across known crank increments as:

\[\Delta P = \Delta P_v + \Delta P_c \]
\text{(Equation 11)}
where ΔP_v is the incremental change in pressure due to piston motion and ΔP_c is the incremental change in pressure due to combustion. In employing the polytropic relationships, the incremental change in pressure due to piston motion is defined as:

$$\Delta P_v = P(i) \left[\left(\frac{V(i)}{V(i+1)} \right)^n - 1 \right] \quad \text{(Equation 12)}$$

where n represents a polytropic index, and $P(i)$ and $V(i)$ are the pressure and volume at known crank positions. With these known values, the mass fraction burned is then defined as:

$$x_b(\theta) = \frac{\sum_{i=0}^{N_{tot}} \Delta P_c}{\sum_{i=0}^{N_{tot}} \Delta P_c} \quad \text{(Equation 13)}$$

where N_{tot} is the total number of increments. The mass burn fraction is a parameter that can be dynamically measured using an in-cylinder pressure transducer while the engine is being tested on a dynamometer. With the known mass fraction burned profile, the constants of the Vibe function can then be modified to produce matching profiles. As such, test data from the engine will be used to fine tune the parameters in the Vibe function.

Developing a Variable Specific Heats Ratio Model

Because of the large temperature gradients in an internal combustion engine cycle, a variable specific heats ratio was desired for the current engine model. It was found that numerous specific heats ratio models exist and the accuracy of these models depended highly on the complexity of the corresponding computer code. It was decided that a curve-fit polynomial method would be used to model the specific heats ratio as a function of in-cylinder temperature.

This polynomial method was developed in 1966 by Krieger and Borman for combustion processes such as those involving iso-octane and other fuels [4]. The Krieger and Borman method models changes in internal energy through the use of ideal gas constant “correction factors” corresponding to changes in temperature (based on a given reference temperature). Through a series of derivations, the specific heats ratio as a function of temperature can be obtained through the use of this method. The derivation of the polynomial method and corresponding polynomials can be found in Appendix A.
Modeling Engine Friction

Friction losses vary significantly from engine to engine and can be introduced through bearing components and pistons, along with the process of driving engine accessories [5]. Engine friction losses can be very difficult to model without known engine data and can vary based on engine coolant and oil temperatures, ambient conditions, and engine speed and throttle settings [5]. Although friction losses are difficult to predict, they can be estimated based on general engine trends such as the number of rolling element bearings and the engine displacement. For this model, plain engine bearings were assumed, and a process suggested by Blair was used to estimate friction mean effective pressure (fmep) losses [6]. It should be noted that an engine’s actual friction data can be obtained and updated in this model by modifying a few lines of MATLAB code. However, the current method being described was implemented so that this model could be used on a variety of theoretical or actual engines to predict performance without limiting the model to a specific application.

Various researchers such as Heywood and Blair [2][6] have used general linear equations to predict fmep losses as a function of RPM. Although this method only provides ballpark estimations of the friction losses, this provides a starting point at which a numerical simulation can begin. According to Blair [6], the linear fmep loss equation is defined as:

\[fmep = a + b(L)(RPM) \]
\[\text{(Equation 14)} \]

where \(a\) and \(b\) are constants that vary depending on the engine type, \(L\) is the stroke \([\text{m}]\) of the engine, and RPM is the engine speed \([\text{rev/min}]\). For a spark-ignition engine with plain internal bearings, Blair [6] has assumed different forms of the fmep loss equations based on the engine displacement ((\(V_d > 500\ \text{cm}^3\)) and \((V_d < 500\text{cm}^3)\) respectively):

\[fmep = 100000 + 350(L)(RPM) \]
\[\text{(Equation 15)} \]

\[fmep = 100000 + 100(500 - V_d) + 350(L)(RPM). \]
\[\text{(Equation 16)} \]

The provided, respective fmep losses are in units of [Pa].
Formulation of a Two-Zone Model

Two-zone engine models are closely related to the equations that were derived in the single-zone model. The bulk-system pressure, mass burned fraction, and bulk-system volume can be described using equations 1, 3, and 10. However, the two-zone model considers a burned and unburned ideal gas region in the combustion chamber thus allowing for more accurate heat transfer and emissions predictions.

Burned and Unburned Cylinder Masses

The development of a two-zone engine model can begin with the modification of the Vibe function to include unburned and burned regions. In order to determine the unburned mass at bottom-dead-center, the following three relationships can be used [6]:

\[m_a = \rho_a V_d \quad \text{(Equation 17)} \]
\[m_f = \frac{m_a}{A_{fc}} \quad \text{(Equation 18)} \]
\[m_c = m_a + m_f \quad \text{(Equation 19)} \]

where \(m_a \) is the mass of air contained within the cylinder, \(\rho_a \) is the density of air, \(m_f \) is the mass of fuel contained within the cylinder, and \(m_c \) is the total mass contained within the cylinder.

Burned and Unburned Volumes and Temperatures

With known unburned and burned masses, the corresponding volumes can be obtained. Blair [6] suggests using the polytropic relations and the known pressure-trace to define the unburned and burned volumes. The unburned volume is defined in a discretized form as:

\[V_{u}(i) = \left(\frac{m_u(i) V_u(i-1)}{m_u(i-1)} \right) \left(\frac{P(i)}{P(i-1)} \right)^{-\gamma_u(i)} \quad \text{(Equation 20)} \]

where \(\gamma_u(i) \) is the specific heats ratio as a function of crank angle in the unburned-gas region. The polynomials method, which is explained in detail in Appendix A, can be used to define the specific heats ratio as a function of crank angle. The assumption that only unburned gases are contained within the cylinder before the spark advance (\(\theta_0 \)) should also be taken into consideration.
It was previously mentioned that two-zone models split the single-zone model into two zones or regions. In order for the two-zone model to work, the ideal gas assumption has to continue to each constituent zone where the burned and unburned temperatures are defined in a discretized form as:

\[
T_b(i) = \frac{P(i) V_b(i)}{m_b(i) R(i)} \quad \text{(Equation 21)}
\]

\[
T_u(i) = \frac{P(i) V_u(i)}{m_u(i) R(i)} \quad \text{(Equation 22)}
\]

where the bulk-system pressure can be used (since pressure is constant throughout the combustion chamber) and \(R(i) \) is the fluid specific gas constant (air in this case). The fluid specific gas constant can be found using the polytropic method described in Appendix A.

Burned and Unburned Areas

This model neglects heat transfer between the burned and unburned zones and doesn’t delve into geometric positioning of the flame front, so assumptions need to be made in reference to the burned and unburned areas. According to Rakopoulos and Michos [7], the burned and burned areas are defined as:

\[
A_u(i) = A(i) \left(\frac{1}{T_b(i)} \right) \quad \text{(Equation 23)}
\]

\[
A_b(i) = A(i) \left(\frac{X_b(i)}{T_b(i)^2} \right) \quad \text{(Equation 24)}
\]

where \(X_b(i) \) is the mass fraction burned as a function of crank angle. \(A(i) \) is the instantaneous cylinder area in contact with combustion chamber gases and is defined as:

\[
A(i) = A_{ch} + \frac{\pi B^2}{2} + \pi (l + a - s(i)) \quad \text{(Equation 25)}
\]

where \(A_{ch} \) is the surface area of the cylinder heat [m²], \(B \) is the cylinder bore [m], \(l \) is the connecting rod length [m], \(a \) is the crank radius [m], and \(s(i) \) is the instantaneous distance between the crank axis and the piston pin axis [m]. For the purpose of this model, the surface area of the cylinder head was assumed to be the same as the cross-sectional area of the piston even though the area was known to be slightly larger due to the head curvature. The crank radius can be assumed to be half of the length of the stroke, while \(s(i) \) is defined as:
While this method doesn’t account for heat transfer between zones and assumes a surface area of the cylinder head, it can be shown to be physically consistent because the fractional heat transfer between the burned gas and the cylinder wall is always highest in the burned region [7].

Selecting and Developing a Computer Program

In selecting a computer program to develop the multi-zone model in, EES (engineering equation solver) and MATLAB were carefully considered. EES was initially considered and experimented with because of its ability to effectively calculate fluid properties from a built-in database. It was theorized that the accuracy of a zone-based engine model could be drastically improved with EES because of the on-hand fluid properties.

With the complexity of the given model, EES struggled mightily in the iteration process. It was found that EES could work its way through the most basic single-zone model, but it took careful selection of initial guesses and proved to be very clunky. Although EES didn’t work very well on its own, it was found that there are ways of communicating between EES and MATLAB. One could use a call function in the MATLAB program to call fluid properties (or likewise).

Although the built-in fluid properties in EES would have been handy, MATLAB proved to be more than sufficient. Building functions and loops within MATLAB proved to be much easier than in EES and even the most complex code ran very quickly.

The MATLAB Interface

The MATLAB program was set up through the use of a script. Because the program required so many equations, functions were only used in a couple scenarios; this was because it was determined that functions would only add to the complexity of the code. The MATLAB code was broken into the following sub-sections:

1. Engine and atmospheric inputs.
2. Pre-allocation of array and matrix components inside and outside of the main loop.
3. Fuel inputs and combustions efficiencies.
4. Instantaneous engine characteristics (i.e. volume as a function of crank angle).
5. Combustion chamber fluid properties and valve opening and closing.
6. Two-zone calculations and the variable specific heats ratio model.
7. The simulation of EGR.

The purpose of these sub-sections and how the MATLAB code works will be explained in the following sections.

ENGINE AND ATMOSPHERIC INPUTS

The MATLAB code began with known engine inputs. The bore, stroke, connecting rod length, number of cylinders, compression ratio, and operating characteristics were defined in lines 12-25 of the MATLAB script. Figure 2 shows an image of the corresponding block of MATLAB code that contained the known engine inputs.

```matlab
% Engine Inputs
Load = 1; % Engine Load (Affects Inlet Pressure)
RPM = 4500; % Revolutions Per Minute [1/min]
L = .00859; % Stroke of Engine [m]
B = .1016; % Bore of Engine [m]
l = .0085; % Length of Engine Connecting Rod [m]
N_cyl = 6; % Number of Cylinders [unitless]
C_R = 9.1; % Compression Ratio [unitless]
N_r = 2; % Number of Revolutions Per Power Stroke
ftheta_b = 60; % Combustion Burn Duration [degrees]
theta_O = 106; % Crank Angle At Start of Combustion [degrees]
theta_f = theta_o + theta_b; % Final Comb. Angle [degrees]
IVC = 0; % Time [degrees] when Intake Valve Closes
EVC = 330; % Time [degrees] when Exhaust Valve Opens
```

Figure 2: Engine inputs in the MATLAB model.

An add-on for this model optimized the spark advance based on a given burn duration (~60° for initial iterations) and known outputs.

The model then calculated engine parameters based on the previously defined inputs and geometric constraints. This block of code calculated the cross-sectional area of the piston, the
surface area of the cylinder head within the combustion chamber, the displaced cylinder volume, the crank radius length, and the clearance and bottom-dead-center volumes. The block of code then used an if-then statement to predict engine friction losses based on the displaced volume, RPM, and engine stroke. Figure 3 shows lines 29-52 of the MATLAB script, which calculated these engine parameters.

![MATLAB code snippet](image)

Figure 3: Engine calculations based on engine inputs.

The model specified the atmospheric inputs in lines 82–88 and used several of these inputs throughout the main loop to simulate EGR, the opening and closing of valves, and other physical phenomena. Atmospheric pressure was reduced to simulate operating conditions in Moscow, Idaho, and a temperature of 350[K] was chosen to represent the cylinder wall temperature, per the suggestion of Stone [5]. An initial inlet temperature of 300[K] was then specified in line 106; with the initial inlet temperature being placed in the main loop because of EGR, and an if-then statement that corrected the inlet temperature as a function of iterations.

PRE-ALLOCATION OF ARRAY AND MATRIX COMPONENTS

Through experimentation and displayed MATLAB errors, it was found that pre-allocating arrays and matrices drastically improved the program efficiency. Pre-allocated arrays and
matrices were used outside of the main loop to specify initial conditions (such as the cylinder volume at the beginning of the cycle) and to specify the overall size of the matrix or array. This prevented MATLAB from re-sizing the array or matrix with each iteration, thus decreasing the overall calculation time. Arrays and matrices were also used inside of the main loop to assist in the simulation of EGR; in order for the EGR simulation to work correctly, the program had to run two times with only the starting gas temperature and fluid characteristics of the gases being changed. The pre-allocation of arrays and matrices was used to set all other arrays and matrices to their initial values. The pre-allocation of arrays and matrix components was specified in lines 54-66 and 117-169.

FUEL INPUTS AND COMBUSTION EFFICIENCY

The fuel, stoichiometric air-fuel ratio, and combustion efficiency inputs were placed in lines 70-80 of the MATLAB script. A lower heating value (LHV) of 44.6[MJ/kg] was used per the suggestion of Stone [5], and a maximum combustion efficiency of .95 was selected based on intuition and the curve-fitting of given engine information. The actual combustion efficiency was then calculated using an empirical method developed by Blair [6]. The fuel and combustion efficiency inputs can be observed in Figure 4.

```matlab
% Fuel inputs/efficiencies

AF_ratio_stoich = 15.09;  % Theoretical Air Fuel Ratio
lambda = 1;               % Excess Air Coefficient
AF_ratio_ac = lambda*AF_ratio_stoich; % Actual Air Fuel Ratio
LHV = 44.6e6;             % Lower Heating Value of Fuel Mixture [J/kg]
eta_combmax = .95;        % Assumed MAX Comb. Efficiency

% Predicts Combustion Efficiency (Reference To Blair)
eta_comb=eta_combmax*(-1.6052+4.6509*lambda-2.0764*lambda^2);
```

Figure 4: Fuel and combustion efficiency inputs.

INSTANTANEOUS ENGINE CHARACTERISTICS

The instantaneous engine characteristics were calculated within the main loop of the MATLAB script, which fell between lines 103-366. The main loop was broken into two sub-
loops that served different functions. The loop with a specified index \((k = 1:2)\) served as the EGR simulation, while the loop with a specified index \((i = 2:360)\) calculated all instantaneous engine features. Fluid properties, array pre-allocations, and temperature corrections factors were placed between the first and second sub-loops, that way, all fluid and gas properties were updated as a function of EGR.

Combustion Chamber Fluid Properties and the Opening and Closing of Valves

In the second sub-loop, the combustion chamber volume, instantaneous heat transfer area and overall heat transfer, Vibe function, and all other instantaneous engine characteristics were calculated. Lines 176-191 calculated geometric properties such as the instantaneous cylinder volume; these lines also calculated the viscosity, thermal conductivity, and other instantaneous combustion chamber gas properties. The Vibe function and fuel-mass contained within the cylinder were calculated in lines 202-209 and can be observed in Figure 5 where an if-then statement was used to specify the mass-fraction burned as being zero until the cycle reached the spark advance.

```matlab
if theta(i)<theta_0
    X(i)=0;
else
    X(i) = 1-exp(-5*(((theta(i)-theta_0)/theta_b)^3));
if theta(i) < theta_f
    M_F(i) = V(theta_0-1)*rho(theta_0-1)/(lambda*AP_ratio_co);
end
end
```

Figure 5: The Vibe function.

Lines 218-235 were reserved for heat transfer properties and lines 239-254 simulated the opening and closing of intake and exhaust valves, respectively. The empirical models for predicting heat transfer were incorporated, and the simulated opening and closing of intake and exhaust valves was assumed to be instantaneous, in that the gas dynamics and valve-lift profile were not considered. The opening and closing of the valves can be observed in Figure 6.
It can be seen that this script includes a statement referencing 200 crank angle degrees. Upon the opening of the exhaust valve, the cycle pressure is set equal to atmospheric pressure, but in part load scenarios, the cycle pressure can become negative relative to atmospheric pressure before the exhaust valve opens. To prevent negative cycle pressure, an if-then statement was created for all crank degrees past 200, where 200 degrees was arbitrarily chosen.

TWO-ZONE CALCULATIONS AND THE VARIABLE SPECIFIC HEATS RATIO MODEL

Lines 257-282 were reserved for two-zone calculations such as the burned and unburned masses, volumes, temperatures, and areas, while much of the rest of the second sub-loop was occupied by variable specific heats ratio and other combustion gas calculations. The two-zone calculations used variables from the single-zone calculations such as the bulk gas pressure and the mass fraction burned to calculate two-zone characteristics. Lines 310-355 used coefficients that were defined in lines 93-99 to calculate the specific heats ratio as a function of combustion chamber gas temperature; where the coefficients were defined outside of the main loop because they were unchanging, therefore, less information within the main loop resulted in a more efficient MATLAB simulation. Appendix A provides a detailed derivation of the variable specific heats ratio model.
THE SIMULATION OF EGR

Line 290 calculates the residual fraction of exhaust gases within the combustion chamber based on polytropic relationships and line 365 calculates a corrected temperature based on the volumetric ratios of residual and inlet gases. The calculations are placed on different lines because of the constantly updating temperatures as a function of crank angle. The first sub-loop iterates twice with the first iteration assuming inlet gas properties equal to atmospheric properties, while the second iteration used the corrected temperature to update the inlet gas properties. This results in reduced peak pressures and temperatures, and in turn, NO\textsubscript{x} emissions.
FINDINGS; CONCLUSIONS; RECOMMENDATIONS

Ongoing and future research using a motorcycle engine equipped with high speed in-cylinder pressure data acquisition will be used to validate the current MATLAB model, and many of the empirical predictions used in the current model will be modified to create a model that predicts the motorcycle’s performance to the highest degree of accuracy. At this point in time the model has been simulating a GM 4.3L V6 engine. Although the results are preliminary, the simulated output, shown below in figures 7 and 8, agrees nicely with values typical for that engine. Figure 7 shows the temperatures in the unburned and burned zones as part of the two-zone model. We see that the temperatures in the burned zone do not exist until after ignition (~160° crank angle), and the peak temperature of the burned zone is slightly below 3000 K, which is typical flame temperature for a gasoline engine. The burned zone temperature decreases to around 1500 K prior to the exhaust valve opening, which is also a typical value for this type of engine.

![Unburned and Burned Zone Temperatures](image)

Figure 7: Burned and unburned zone temperatures on a V6 engine.
Figure 8 shows several calculated engine parameters as a function of crank angle. The blue line shows in-cylinder pressure. We expect this to have a maximum pressure at around 190-200° crank angle, and to have a value between 3500-5000 kPa. The simulated results fall within these ranges of typical values. The green line represents cumulative power output. This is the net power output as a function of crank angle. At the end of the cycle the model is predicting around 200 kW of power output, which is about what we would expect from a GM 4.3L V6 engine at full load.

Figure 8: Predicted pressure, power, and heat transfer on V6 engine.
APPENDIX

A: Derivation of the Polynomial Method

Table of Coefficients

<table>
<thead>
<tr>
<th>a₁</th>
<th>a₂</th>
<th>a₃</th>
<th>a₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>.692</td>
<td>39.17e-06</td>
<td>52.9e-09</td>
<td>-228.62e-13</td>
</tr>
<tr>
<td>b₀</td>
<td>b₁</td>
<td>b₂</td>
<td></td>
</tr>
<tr>
<td>227.58e-17</td>
<td>3049.33</td>
<td>-5.7e-03</td>
<td>-9.5e-05</td>
</tr>
<tr>
<td>b₃</td>
<td>b₄</td>
<td>Cₜ</td>
<td>Cᵣ</td>
</tr>
<tr>
<td>21.53e-09</td>
<td>-200.26e-14</td>
<td>2.32584</td>
<td>4.186e-03</td>
</tr>
<tr>
<td>d₀</td>
<td>d₁</td>
<td>d₃</td>
<td>e₀</td>
</tr>
<tr>
<td>10.41066</td>
<td>7.85125</td>
<td>-3.71257</td>
<td>-15.001e03</td>
</tr>
<tr>
<td>e₁</td>
<td>e₂</td>
<td>f₀</td>
<td>f₁</td>
</tr>
<tr>
<td>-15.838e03</td>
<td>9.613e03</td>
<td>-.10329</td>
<td>-.38656</td>
</tr>
<tr>
<td>f₃</td>
<td>f₄</td>
<td>f₅</td>
<td>f₆</td>
</tr>
<tr>
<td>.154226</td>
<td>-14.763</td>
<td>118.27</td>
<td>14.503</td>
</tr>
<tr>
<td>r₀</td>
<td>r₁</td>
<td>r₂</td>
<td>r₃</td>
</tr>
<tr>
<td>-.2977</td>
<td>11.98</td>
<td>-25442</td>
<td>-.4354</td>
</tr>
</tbody>
</table>

Constants as a Function of Temperature:

\[A(T) = a₁T + a₂T² + \ldots + a₅T⁵ \]
\[B(T) = b₀ + b₁T + \ldots + b₄T⁴ \]

Constants as a Function of Lambda (Excess Air Coefficient):

\[D(\lambda) = d₀ + d₁\lambda - 1 + d₃\lambda - 3 \]
\[E(T, \lambda) = e₀ + e₁\lambda - 1 + e₃\lambda - 3 \]

Constant as a Function of Temperature, Pressure, and Lambda:

\[F(T, p, \lambda) = (f₀ + f₁\lambda - 1 + f₃\lambda - 3 + f₄ + f₅\lambda - 1 T)ln(f₆p) \]

Correction Factors for Internal Energy and the Gas Constant were Found to be:

\[u_{corr}(T, p, \lambda) = Cₜ \exp(D(\lambda) + E(T, \lambda) + F(T, p, \lambda)) \]
\[R_{\text{corr}}(T, p, \lambda) = C_r \exp \left(r_0 \ln(\lambda) + \frac{r_1 + \frac{r_2}{T} + r_3 \ln(f_0 P)}{\lambda} \right) \]

The Internal Energy as a Function of Temperature, Pressure, and Lambda was Found to be:

\[u(T, p, \lambda) = A(T) - B(T) \lambda + u_{\text{corr}}(T, p, \lambda) \]

The Ratio of Specific Heats was then Found to be:

\[\gamma = \frac{cp}{cv} = 1 + \frac{R}{C_v} \]
B: Two-zone MATLAB Code Using Annand's Method

%University Of Idaho Engine Simulation
%Uses "Two Zone" Combustion Analysis With Variable Specific Heats Ratios
%Only Models The Compression And Expansion Strokes
%
clear all;
close all;
cic;

%__

%Engine Inputs
Load = 1;
RPM = 4500;
L = .08839;
B = .1016;
l = .0935;
N_cyl = 6;
C_r = 9.1;
N_r = 2;
theta_b = 60;
theta_0 = 156;
theta_f = theta_0+theta_b;
IVC = 0;
EVO = 330;

%__

%Engine Calculations Based On Previous Inputs
%Assumes Average Surface Area In Which Heat Transfer Occurs
A_p = (pi/4)*B^2;
A_ch = A_p;
V_d = N_cyl*A_p*L;
N = RPM/60;
S_bar_p = 2*L*N;
a = L/2;
V_TDC = (V_d/(C_r-1))/N_cyl;
V_BDC = (V_d/N_cyl)+V_TDC;

%__

%Calculating Losses Due To Friction
%fmepr (obtained from Blair) Based On Displacement, RPM
if V_d>500*10^(-6)
 fmpere=(1000000+350*L*RPM)*10^(-3);
end
if V_d<500*10^(-6)
 fmpere=(100000+100*(500-V_d*10^(-6)))+350*L*RPM)*10^(-3);
end

%University Of Idaho Engine Simulation
%Uses "Two Zone" Combustion Analysis With Variable Specific Heats Ratios
%Only Models The Compression And Expansion Strokes
%__
%Initial Preallocation Of Matrices (Second Preallocation In Loops Needs To Be Included (Do Not Delete)
V(1:360)=zeros;DV(1:360)=zeros;rho(1:360)=zeros;mu(1:360)=zeros;
C_k(1:360)=zeros;C_R(1:360)=zeros;X(1:360)=zeros;M_F(1:360)=zeros;
DX(1:360)=zeros;Re(1:360)=zeros;Nus(1:360)=zeros;h_g(1:360)=zeros;
DQ_w(1:360)=zeros;DQ(1:360)=zeros;Q(1:360)=zeros;DT(1:360)=zeros;
DP(1:360)=zeros;P(1:360)=zeros;T(1:360)=zeros;W_dot(1:360)=zeros;
W(1:360)=zeros;T_indicated(1:2)=zeros;Q_dot(1:360)=zeros;u(1:360)=zeros;
V_u(1:360)=zeros;V_b(1:360)=zeros;rho_u(1:360)=zeros;rho_b(1:360)=zeros;
T_u(1:360)=zeros;T_b(1:360)=zeros;A_u(1:360)=zeros;A_b(1:360)=zeros;
DT_u(1:360)=zeros;gamma_u(1:360)=zeros;

%___
%Fuel Inputs/Efficiencies
AF_ratio_stoich = 15.09; %Theoretical Air Fuel Ratio
lambda = 1; %Excess Air Coefficient
AF_ratio_ac = lambda*AF_ratio_stoich; %Actual Air Fuel Ratio
LHV = 44.6e6; %Lower Heating Value Of Fuel Mixture [J/kg]
eta_combmax = .95; %Assumed MAX Comb. Efficiency

eta_comb = eta_combmax*(-1.6082+4.6509*lambda-2.0764*lambda^2);
%Predicts Combustion Efficiency (Reference To Blair)

%Atmospheric Inputs
P_atm = 92500;
P_BDC = Load*P_atm; %Inlet Pressure[Pa] Moscow,ID
R_air = 287; %Gas Constant For Air [J/kg-K]
gamma(1:360) = 1.4; %Preallocate Gamma Array (sets initial value)
T_w = 350; %Assumed Wall Temperature (Reference Stone)
%___
R = R_air/1000;
for k = 1:2
%Corrects Temperature Based On Exhaust Gas Residuals

%Polynomials Used To Calculate Gamma As A Function Of RPM
a_1 = .692; a_2 = 39.17e-06; a_3 = 52.9e-09; a_4 = -228.62e-13;
a_5 = 277.58e-17;b_0 = 3049.33; b_1 = -5.7e-02; b_2 = -9.5e-05;
b_3 = 21.53e-09;b_4 = -200.26e-14;c_u = 2.32584; c_r = 4.186e-03;
d_0 = 10.41066; d_1 = 7.85125; d_3 = -3.71257; e_0 = -15.001e03;
e_1 = -15.838e03; e_3 = 9.613e03; f_0 = -1.0329; f_1 = -3.8656;
f_3 = .154226; f_4 = -14.763; f_5 = 118.27; f_6 = 14.503;
r_0 = -.2977; r_1 = 11.98; r_2 = -25442; r_3 = -.4354;
%
if k==1
 T_BDC = 300; %Assumed Inlet Temperature [K]
else
 T_BDC = T_corr;
end

%Calculate Mass of Air In Cylinder/ Mass Of Fuel Based On AFR
rho_a = P_atm/(R_air*T_BDC); %Air Density kg/m^3
m_a = rho_a*V_d; %Mass of Air In Cylinder [kg]

if k==1
 T_BDC = 300; %Assumed Inlet Temperature [K]
else
 T_BDC = T_corr;
end

%Calculate Mass of Air In Cylinder/ Mass Of Fuel Based On AFR
rho_a = P_atm/(R_air*T_BDC); %Air Density kg/m^3
m_a = rho_a*V_d; %Mass of Air In Cylinder [kg]
m_f = m_a/AF_ratio_ac; %Mass Of Fuel In Cylinder [kg]
m_c = m_a+m_f; %Mass In Cylinder

%Specifying Initial Conditions For Loops %DV,DX,etc. Are Relative To Change In Theta (i.e. DV/Dtheta)
theta(1:360)=zeros; %Starting Crank Angle [deg]
V(1:360)=zeros; %Preallocate Volume Array
V(1)=V_BDC; %Starting Combustion Chamber Volume [m^3]
DV(1:360) = zeros; %Preallocate Change In Volume Array
DV(1) = 0; %Specifying Initial Change In Volume [m^3]
P(1:360)=P_BDC; %Preallocate Pressure Array
DP(1:360) = zeros; %Specifying Initial Change In Pressure
T(1:360)=zeros; %Preallocate Temperature Array
T(1) = T_BDC; %Inlet Temperature [K]
T_u(1)=T_BDC; %Initial Unburned Temperature [K]
DT(1:360) = zeros; %Specifying Initial Change In Temperature
DT_u(1:360)=zeros; %Preallocate Change In Unburned Temperature
gamma(1)=1.4; %Initial Gamma Input
gamma_u(1)=1.4; %Initial Gamma Input
X(1:360) = 0; %Preallocate Mass Burn Array
DX(1:360) = zeros; %Preallocate Change In Mass Burn Fraction [unitless]
DQ(1:360) = zeros; %Preallocate Heat Release Array
DQ2(1:360)=zeros; %Preallocate Two Zone Heat Release Array
Q(1:360)=zeros; %Preallocate Heat Array
Q2(1:360)=zeros; %Preallocate 2 zone Heat Array
M_F(1:360) = 0; %Preallocate Mass In Combustion Chamber Array
rho(1:360) = zeros; %Preallocate Ideal Gas Law array
rho(1) = P(1)/(R_air*T(1)); %Initial Value Ideal Gas Array
mu(1:360)=zeros; %Preallocate Viscosity Array
mu(1)=7.457*10^(-6)+4.1547*10^(-8)*T_BDC-7.4793*10^(-12)*T_BDC^2;
C_k(1:360)=zeros; %Preallocate Thermal Conductivity Array
C_k(1) = 6.1944*10^(-3)+7.3814*10^(-5)*T_BDC-1.2491*10^(-8)*T_BDC^2;
C_R(1:360) = zeros; %Preallocate Radiation Coefficient Array
C_R(1) = 4.25*10^(-09)*((T(1)^4-T_w^4)/(T(1)-T_w)); %Initial Rad. Coeff
Re(1:360) = zeros; %Preallocate Reynolds Value Array
Re(1)=rho(1)*S_bar_p*B/mu(1); %Initial Reynolds Value
Nus(1:360)=zeros; %Preallocating Nusselt Number Array
Nus(1)=.49*Re(1)^(.7); %Initial Nusselt Number
h_g(1:360)=zeros; %Preallocate Heat Transfer Coefficient Array
h_g(1)=C_k(1)*Nus(1)/B; %Initial Heat Transfer Coefficient
s(1:360)=zeros; %Preallocates Distance Crank/Piston Axes Array
s(1) = -a*cosd(theta(1))+sqrt(l^2-a^2*sind(theta(1))^2); %Initial Val.
W(1:360) = zeros; %Preallocate Work Array
W_dot(1:360) = zeros; %Preallocate Power Array
T_indicated(1:360) = zeros; %Preallocate Torque Array
%Preallocate Heat Transfer Array
Q_dot(1:360) = zeros;

%Preallocate Internal Energy Array
u(1:360) = zeros;

%Preallocate Change In Internal Energy Array
du(1:360) = zeros;

%Preallocate Heat Capacity Array
cv(1:360) = zeros;

%Preallocate Convective Heat Loss Array
DQ_w(1:360) = zeros;

%Preallocate Convective Heat Loss Array 2 zone
DQ_w2(1:360) = zeros;

%Preallocate mass burned array
m_b(1:360) = zeros;

%Preallocate unburned mass array
m_u(1:360) = m_c;

%Preallocate unburned Volume Array
V_u(1:360) = zeros;

%Initial Unburned Volume
V_u(1) = V(1);

%___
theta = 1:360;

for i = 2:360

%Specifies Distance Between Crank/Piston Axes As A Function Of theta
s = -a*cos(theta(i)) + sqrt(l^2 - a^2*sin(theta(i))^2);

%Specifies Volume As A Function Of Crank Angle
V(i) = V_TDC + ((pi/4)*B^2)*(1 + a - s);

%Specifies Change In Volume As A Function Of Crank Angle
DV(i) = V(i) - V(i-1);

%Calculates Density As A Function Of Crank Angle
rho(i) = P(i-1)/(R_air*T(i-1));

%Calculates Viscosity As A Function Of Temperature
mu(i) = 7.457*10^(-6) + 4.1547*10^(-8)*T(i-1) - 7.4793*10^(-12)*T(i-1)^2;

%Calculating Instantaneous Thermal Conductivity of Cylinder Gas
C_k(i) = 6.1944*10^(-3) + 7.3814*10^(-5)*T(i-1) - 1.2491*10^(-8)*T(i-1)^2;

%Calculating The Radiation Heat Transfer Coefficient
C_R(i) = 4.25*10^(-9)*((T(i-1)^4 - T_w^4)/(T(i-1) - T_w));

%Instantaneous Surface Area (For Heat Transfer)
A = A_ch + A_p + pi*B*(l+a-s);
if i<=2
 A_u = A;
else
 A_u = A;
end

%___
%Specifies Mass Fraction Burn As A Function Of Crank Angle (Weibe Fcn.)
%Also Specifies Mass Of Fuel In Combustion Chamber As A Function Of %Theta

if theta(i) < theta_0
 X(i) = 0;
else
 X(i) = 1 - exp(-5*((theta(i)-theta_0)/theta_b)^3);
if theta(i) < theta_f
 M_F(i) = V(theta_0-1)*rho(theta_0-1)/(lambda*AF_ratio_ac);
end
end

%___

Progress in Catalytic Ignition Fabrication, Modeling and Infrastructure (A Multi-zone R6...) 24
% Specifies Change In Mass Fraction Burn As A Function Of Crank Angle
DX(i) = X(i) - X(i-1);

% Incorporating The Annand Method To Predict Heat Transfer
% Calculating Reynolds Number
Re(i) = rho(i)*S_bar_p*B/mu(i);
% Calculating Nusselt Number (constant=0.26 two stroke, 0.49 4 stroke)
Nus(i) = 0.49*Re(i)^0.7;
% Calculating Heat Transfer Coefficient Using Annand Method
h_g(i) = C_k(i)*Nus(i)/B;
% Calculates Convective Losses Into Wall As A Function Of Crank Angle
DQ_w(i) = (h_g(i)+C_R(i))*A*(T(i-1)-T_w)*(60/(360*RPM));
DQ_w2(i) = ((h_g(i)+C_R(i))*A_u(i-1)/N_cyl*(T_u(i-1)-T_w))*(60/(360*RPM));
% Calculates Change In Heat Transfer (total) As A Function Of Crank Angle
DQ(i) = eta_comb*LHV*M_F(i)*DX(i) - DQ_w(i);
DQ2(i) = eta_comb*LHV*M_F(i)*DX(i) - DQ_w2(i);
% Calculates Total Heat Transfer (Per Cycle)
Q(i) = Q(i-1) + DQ(i);
Q2(i) = Q2(i-1) + DQ2(i);

% Specifies Pressure and Temperature Increases Between Intake Valve Closing and Exhaust Valve Opening
if IVC < theta(i)
 DT(i) = T(i-1)*(gamma(i-1)-1)*((1/(P(i-1)*V(i-1))))*DQ(i) - (1/V(i-1))*DV(i);
 DP(i) = (-P(i-1)/V(i-1))*DV(i) + (P(i-1)/T(i-1))*DT(i);
 P(i) = P(i-1) + DP(i);
end
if EVO < theta(i)
 P(i) = P_atm;
end
if 200 < theta(i)
 if P(i) <= P_atm
 P(i) = P_atm;
 end
end

% Calculate Burned, Unburned Mass Fractions
m_b(i) = m_b(i-1) + DX(i)*m_c; % Burned Mass
m_u(i) = m_u(i-1) - DX(i)*m_c; % Unburned Mass
% Calculating Burned, Unburned Volumes
if theta(i) <= theta_0
 V_u(i) = N_cyl*V(i);
end
if theta(i) > theta_0
 V_u(i) = ((m_u(i)*V_u(i-1))/m_u(i-1))*(P(i)/P(i-1))^(-1/gamma_u(i-1));
\[V_b(i) = N_cyl * V(i) - V_u(i); \]
\[\text{if } V_b(i) < 0 \]
\[V_b(i) = 0; \]
\[\text{end} \]

\[\% \text{Calculating Burned, Unburned Temperatures} \]
\[T_u(i) = P(i) * V_u(i) / (m_u(i) * R * 1000); \]
\[\text{if } \theta(i) \leq \theta_0 + 4 \]
\[T_b(i) = 0; \]
\[\text{end} \]
\[\text{if } \theta(i) > \theta_0 + 4 \]
\[T_b(i) = P(i) * V_b(i) / (m_b(i) * R * 1000); \]
\[\text{end} \]

\[\% \text{Calculate Unburned, Burned Areas Based On Volume Ratio} \]
\[A_u(i) = A * (1 - \sqrt{X(i)}); \]
\[A_b(i) = A * (X(i) / \sqrt{X(i)}); \]
\[DT_u(i) = T_u(i) - T_u(i-1); \]

\[\% \text{Calculates Cylinder Work [J] As A Function Of Crank Angle} \]
\[W(i) = W(i-1) + (P(i) - P_{atm}) * DV(i); \]

\[\% \text{Indicated Mean Effective Pressure} \]
\[\text{imep} = W_\text{dot}(360) * N_{r} * 1000 / (V_d * 1000 * N); \]

\[\% \text{Calculates Torque [N*m] As A Function Of Crank Angle} \]
\[T_{\text{indicated}}(i) = (W_\text{dot}(i) * 1000) / (2 * \pi * N); \]

\[\% \text{Calculates Heat Loss [kW] As A Function Of Crank Angle} \]
\[Q_{\text{dot}}(i) = (N_{cyl} * Q(i) * N / N_{r}) / 1000; \]

\[\% \text{The Following Section Of Code Calculates An Updated Value Of Gamma} \]
\[\% \text{Using The "Polynomial Method" Developed By Krieger-Borman} \]
\[\% \text{User Of This Code Must Be Careful Because Accuracy Of This Method} \]
\[\% \text{Drops As The Fuel Mixture Becomes Increasingly Rich} \]

\[\% \text{Calculates A,B Factors For Following Block Of Code} \]
\[A_t = a_1 * T(i) + a_2 * T(i)^2 + a_3 * T(i)^3 + a_4 * T(i)^4 + a_5 * T(i)^5; \]
\[A_{tu} = a_1 * T_u(i) + a_2 * T_u(i)^2 + a_3 * T_u(i)^3 + a_4 * T_u(i)^4 + a_5 * T_u(i)^5; \]
\[B_t = b_0 + b_1 * T(i) + b_2 * T(i)^2 + b_3 * T(i)^3 + b_4 * T(i)^4; \]
\[B_{tu} = b_0 + b_1 * T_u(i) + b_2 * T_u(i)^2 + b_3 * T_u(i)^3 + b_4 * T_u(i)^4; \]

\[\% \text{Calculates Factor "D" As A Function Of Lambda} \]
\[D_{\lambda} = d_0 + d_1 * \lambda^{-1} + d_3 * \lambda^{-3}; \]
\[\% \text{Calculates Factor "F" As A Function Of Temperature, lambda} \]
E_{TLambda} = (e_0 + e_1*lambda^(-1) + e_3*lambda^(-3))/T(i);
E_{TLambdau} = (e_0 + e_1*lambda^(-1) + e_3*lambda^(-3))/T_u(i);
F_{TPLambda} = (f_0 + f_1*lambda^(-1) + f_3*lambda^(-3) + ... ((f_4 + f_5*lambda^(-1))/T(i))*log(f_6*P(i));
F_{TPLambdau} = (f_0 + f_1*lambda^(-1) + f_3*lambda^(-3) + ... ((f_4 + f_5*lambda^(-1))/T_u(i))*log(f_6*P(i));

%Calculates Correction Factor For Internal Energy
u_corr = c_u*exp(D_lambda + E_{TLambda} + F_{TPLambda});
u_corr_u = c_u*exp(D_lambda + E_{TLambdau} + F_{TPLambdau});

%Calculates Internal Energy As A Function Of Crank Angle
u(i) = A_t - B_t/lambda + u_corr;
u_u(i) = A_tu - B_tu/lambda + u_corr_u;

%Calculates Change In Internal Energy
du(i) = u(i) - u(i-1);
du_u(i) = u_u(i) - u_u(i-1);

%Calculates Heat Capacity "C_v" As A Function Of Crank Angle
cv(i) = du(i)/DT(i);
cv_u(i) = du_u(i)/DT_u(i);

%Calculates Correction Factor For "R" Value As A Function Of Crank Angle
R_corr = c_r*exp(r_0*log(lambda) + (r_1+r_2/T(i) + ... r_3*log(f_6*P(i)))/lambda);
R_corr_u = c_r*exp(r_0*log(lambda) + (r_1+r_2/T_u(i-1) + ... r_3*log(f_6*P(i)))/lambda);

%Calculates Actual "R" Value
R = .287 + .020/lambda + R_corr;
R_u = .287 + .020/lambda + R_corr_u;

%Calculates Actual Gamma Value And Returns To Beginning Of Code
gamma_u(i) = 1 + R_u/cv_u(i);
gamma(i) = 1 + R/cv(i);
if gamma(i)<1.2
 gamma(i)=1.4;
gamma_u(i)=1.4;
end
if theta(i)>=EVO
 gamma(i)=1.4;
gamma_u(i)=1.4;
end
%

%Calculate Temperature Of Exhaust Based On Polytropic Relations
if EVO < theta(i)
 T(i)=T(EVO)*(P_BDC/P(EVO))^((gamma(i)-1)/gamma(i));
 T_b(i)=T_b(EVO)*(P_BDC/P(EVO))^((gamma(i)-1)/gamma(i));
end

%Calculates A Corrected Inlet Temperature Based On EGR
T_corr = R_frac*T(360)+(1-R_frac)*T_BDC;

%Specified Outputs (On Matlab Screen)
W_dot_indicated=W_dot(360);
bmep = imep-fmep;
\[W_{\text{dot \, ac}} = \frac{\text{bme}p \cdot V_d \cdot 1000 \cdot N}{(N_r \cdot 1000)}; \]

% Calculated Mechanical Efficiency (Based On Previous Inputs)
\[\eta_m = \frac{\text{bme}p}{\text{ime}p}; \quad \% \text{Calculates Mechanical Efficiency} \]

% Calculates Brake Specific Fuel Consumption
\[m_{\text{ta}} = \frac{P_{\text{BDC}} \cdot V_d}{(R_{\text{air}} \cdot T_{\text{BDC}})}; \quad \% \text{Calculate Trapped Air In Cylinder} \]
\[\eta_v = \frac{m_{\text{ta}}}{1.2 \cdot V_d}; \quad \% \text{Volumetric Efficiency} \]
\[m_{\text{dot \, a}} = 1.2 \cdot V_d \cdot N \cdot \eta_v / N_r; \quad \% \text{Mass Flow Air} \]
\[m_{\text{dot \, f}} = \frac{m_{\text{dot \, a}}}{\text{AF \, ratio \, ac}}; \quad \% \text{Mass Flow Fuel} \]
\[\text{BSFC} = \frac{(m_{\text{dot \, f}} \cdot 1000 \cdot 3600)}{(W_{\text{dot \, ac}})}; \quad \% \text{BSFC \, [g/kW*h]} \]
\[\eta_f = \frac{3600}{(\text{BSFC} \cdot \text{LHV} \cdot 10^{(-6)})}; \quad \% \text{Arbitrary Efficiency} \]

% Specifies Conditions For Minimum and Maximum Plot Values
\[v_{\text{min}} = \text{min}(V); \quad v_{\text{max}} = \text{max}(V); \]
\[p_{\text{min}} = \text{min}(P); \quad p_{\text{max}} = \text{max}(P); \]
\[w_{\text{min}} = \text{min}(W_{\text{dot}}); \quad w_{\text{max}} = \text{max}(W_{\text{dot}}); \]
\[T_{\text{min}} = \text{min}(T); \quad T_{\text{max}} = \text{max}(T); \]
\[Q_{\text{min}} = \text{min}(Q_{\text{dot}}); \quad Q_{\text{max}} = \text{max}(Q_{\text{dot}}); \]
\[T_{\text{min}} = \text{min}(T_{\text{indicated}}); \quad T_{\text{max}} = \text{max}(T_{\text{indicated}}); \]

% Plot Statements

figure(1)
plog(theta,X)
ttitle('Mass Fraction Burned Vs. Theta')
xlabel('theta[\text{deg}]')
ylabel('Mass Fraction Burned (\%)')
axis([0 360 -.1 1.1])

figure(2)
plog(theta,V)
ttitle('Volume Vs. Crank Angle')
xlabel('theta[\text{deg}]')
ylabel('Volume [m^3]')
axis([0 360 v_min v_max])

figure(3)
plog(theta,P/1000)
ttitle('Cylinder Pressure Vs. Crank Angle')
xlabel('theta[\text{deg}]')
ylabel('Pressure [kPa]')
axis([0 360 p_min/1000 p_max/1000])

figure(4)
plog(theta,T)
ttitle('Cylinder Temperature Vs. Crank Angle')
xlabel('theta[deg]')
ylabel('Temperature [K]')
axis([0 360 T_min T_max])

figure(5)
plot(theta,P/1000,'b')
title('Pressure,Power,and Heat Transfer')
hold on;
plot(theta,W_dot,'g')
plot(theta,Q_dot,'r')
legend Pressure Power HX
xlabel('theta[deg]')
ylabel('Respective Units (kPa,kW)')
axis([1 360 w_min-100 p_max/1000])

figure(6)
plot(theta,T,'g')
xlabel('theta[deg]')
ylabel('Temperature [K]')
title('Bulk, Unburned, and Burned Temperatures [K]')
hold on;
plot(theta,T_u,'b')
plot(theta,T_b,'r')
legend Bulk Unburned Burned
axis([0 360 300 5000])
REFERENCES

