Introduction

Unit Arrangement

Units are arranged by objective. Each objective or grouping of objectives contains:

- Information
- References
- Student activities and/or student labs
- Internet resources
- Transparencies
- Tests

This design is intended to facilitate the teacher in planning lessons and to provide students with guided notes. References include texts, guides on professional techniques, activity guides, and previous series within the Agricultural Science and Technology curricula. Internet resources include titles and site addresses.
The Agricultural Science and Technology Curriculum Guides are the product of extensive planning and development. In 1987 an Agricultural Education Technical Committee was assembled to determine the competencies necessary to prepare students for careers in agriculture. In 1989 a committee of secondary agriculture instructors, state supervisory staff and University of Idaho Agricultural and Extension Education faculty arranged the competencies into an outline of courses appropriate for secondary agriculture programs in Idaho. These curriculum guides provide the secondary agriculture instructor with up-to-date instructional materials in developing lessons for the student interested in pursuing a career in agriculture.

The arrangement of the 1996-1997 guides follows the modular method for organizing curriculum as outlined in *Improving Vocational Curriculum* (Duenk, 1993). This format was adapted to improve the ease of interpreting and implementing the curriculum, as well as updating the organization of the guides to fit current instructional needs. This includes augmenting the guides by providing sites for additional information via the internet, and formatting the curricula for computer access.

A list of references, activities, internet sites, transparencies and/or hand-outs are provided with each module.

Teacher information is provided as needed, with any additional explanation.

Format

- Curriculum Introduction
- Additional Resources
- Unit Introduction
- Unit Objectives
- Information
 - Information by Objectives
 - List of References
 - Activities / Labs
 - Internet Resources
 - Transparencies / Hand-outs
- Unit Test
A. Potting Soil and Media
B. Soil Fertility
C. Organic Matter and Fertilizers
D. Basic Plant Processes
E. Plant Growth and Development
F. Plant Growth Regulators
G. Introduction to Sexual Plant Propagation
H. Care and Transplanting of Seedlings
I. Environmental Factors of Plant Production
J. Introduction to Asexual Plant Propagation
K. Propagation by Cuttings
L. Propagation by Layering and Division
M. Propagation by Bulbs, Corms, and Tubers
N. Propagation by Tissue Culture
O. Propagation by Budding
P. Propagation by Grafting
Q. Plant Identification
R. Plant Pests and Their Control
S. Weeds and Their Control
T. Beneficial and Non-Beneficial Insects
U. Plant Disease Identification and Control
V. Scientific Method Term Project
Unit Objectives

1. List the reasons for variation in types of soils.
2. Discuss how the root zone affects the availability of plant nutrients.
3. Select plants tolerant to various pH ranges.
4. Test soils for pH levels.
5. Develop a chart of planting media with the characteristics of each media.
6. List several soil mixes identifying media data for each soil mix.
7. Identify the correct fertilizers to add for various soil mixes.
8. Describe the importance of sterilizing a potting soil mix.
9. Sterilize a potting soil mix.
10. Properly mix potting soil.
1. List the Reasons for Variation in Types of Soils

Soil
Material covering the face of the earth.
Supports growth of plants.
Includes artificially modified or moved soils.

Food Chain
Progression of food energy from one species to the next.
Soil begins the food chain of land animals.

Four Components of Soil
- Minerals chemical / physical (rock)
- Water
- Air
- Organic humus = carbon (non-living) & living

Air and water
Fill in gaps left in soil.
Gaps are left by the grouping of mineral particles.

Soil Origins
- Organic
 Decayed and accumulated vegetation grown and died for thousands of years.
 Black, productive, scarce; e.g. peat.
- Inorganic
 Decomposition by weathering: wind, rain, sleet, snow, wetting and drying,
 freezing and thawing, wearing away, cracking.
 Glacial deposition. Types:
 - Till - boulders, rocks, sand, silt, clay
 - Moraine - receding front of glacier
 Alluvial water deposition.
 Flood plain out-of-bank deposited soil.
 Deltas water-borne slow deposition at mouths of streams and rivers.
 Lacustrine deposition lake backfill from entering streams until lake is filled and disappears.
 Marine sediments ocean-entering deposition creating shorelines and landmasses.
 Aeolian soils rock-worn wind-deposited soils.
 Loess soils wind-borne glacial silt and clay deposits.
 Volcanic soils lava flows and wind-borne ash.
Parent material mass of rock material or peat from which soil profile originates.
Soil horizons characteristics of soil formed in layers over time from mineral and organic depositions on bedrock.
Soil profile vertical section of soil at a given location showing layered pattern of materials from surface to bedrock.

Soil Ecosystem plant, animal and microbial life that live in a soil area.
Carbon cycle
Living plant ooze of plant protein and other nutrient materials through root systems.
Microorganisms feed on ooze.
Decomposition of dead plants which return nutrients to the soil.

Soils combination of silt, sand and clay.
Texture size of individual soil particles; aka soil “separates.”
Sand
Highly permeable
Separates between 2 mm and .05 mm
Silt
Less permeable
Separates between .05 mm and .002 mm
Clay
Practically impermeable
Separates smallest-sized less than .002 mm.

Cations positively charged nutrients.
Cation exchange
Soil solution water surrounds soil particles, suspending nutrients.
Osmosis cations from soil pulled into solution; plants take in nutrients through root systems.
Cation exchange capacity soil capacity to exchange amounts of cations.
Clay conductivity
Role in soil fertility
Particles with net negative charge
Attracts nutrients / adhere to surface area
Highest cation exchange capacity
Silt conductivity
Higher cation exchange capacity
Slow water movement for
Sand conductivity
Lowest cation exchange capacity
Leaching loss of soil nutrients by water movement through larger soil particles.
References

Student Activities

- List the Reasons for Variation in Types of Soil
- “Splash” - *The Growing Classroom: Garden-Based Science*. Addison-Wesley

Student Lab

- Exploring Soil

Internet Resources

Key search words: <soil - education>
Sites:
- VIRCON (Virtual Conservation Connection) http://webcom.com/vircon/

Transparencies

- Soil Particle Size Determines Texture
- Determining Soil Texture by Feel

From Agricultural Science and Technology 510A:
- Soil-Plant-Animal-Cycle
- Composition of Average Soil
- Soil Origins
- Physical Breakdown of Rocks
- Soil Profile
1. Student Activity: List the Reasons for Variation in Types of Soils

List the elemental components of soil formation.

1. ________________________________ 3. ________________________________

2. ________________________________ 4. ________________________________

Give four examples of natural occurrences which lead to further development of soil.

1. ________________________________

2. ________________________________

3. ________________________________

4. ________________________________

Describe five environmental interactions which can change the course of soil development.

1. ________________________________

2. ________________________________

3. ________________________________

4. ________________________________

5. ________________________________

Think and Answer:

How do these objects contribute to the development of soil?

Ant Dead Tree FIRE
1. Student Lab: Exploring Soil

Purpose: to determine the physical characteristics and origins of a soil sample.

Materials:
- Spade or trowel
- Plastic bags with zip lock feature
- Small notebook
- White tray or pan to examine contents of samplings
- Forceps
- Magnifying lens
- Microscope
- Soil thermometer

Procedure:
Soil samples must be representative of an area. Therefore, choose a site with several examples in mind; i.e. an area with a stream running through it would have a floodplain, slope and upland. Take samples from each. A meadow would have an edge effect. Pick open sunny areas and shady areas to test, as well as areas that exhibit a change in vegetation. An upland would have tree fall that might be in a state of decay. Sample soils at the area of decomposition and two yards away from the area.

1. Sketch or get a map of the area where you will collect samples.
2. Divide the area into test sites.
3. Make notations in the notebook regarding each site. Record:
 - Location of area sampled and its significance as a sample site
 - Location of each sample site within the area
 - Macro-climate at time of sampling
4. Take soil temperature at each site where sample was taken (measuring micro-climate).
5. Label each sample according to the location where the sample was taken.
6. Bring your samples, examining equipment and notebook to class the next day.
7. Examine the contents of each plastic bag by emptying them into the white tray or pan and record the findings in your notebook. Use forceps to separate and examine items. Use magnifying lens to assist in identification of items. If available, use a microscope to identify microbial elements.
8. Identify soil types in the sample by using the textural triangle and feel method.
9. What was the parent material for this soil? What contributed to the humus?
10. Write a short paper detailing your project, what you expected to find at each site, and what was found. Turn in with your notebook.

Q&A: Why is measuring soil temperature important to understanding soil formation?
Teacher Answer Sheet
1. “List the Reasons for Variation in Types of Soils”

Elemental components of soil formation:
Minerals, water, air, organic (humus)

Natural occurrence:
Multiple answers possible. See “Soil Origins” on information sheet.

Environmental interactions:
Multiple answers possible; e.g. composting, development, building dams, fire, mining, et al.

Under “Think and Answer”:
Ant - channeling allows air and water movement through soil
Dead tree - adds organic matter - carbon cycle
Fire - aids the process of decomposition, particularly in dry areas. Drawback: fire destroys bacteria which aid in decomposition. Ash is the main contributor to soil, lacking moisture and nutrients.

Q&A:
Measuring temperature reveals which bacteria are at work in the decomposition process.
Psycrophiles operate at cool temperatures no lower than 28 degrees F and digest carbon as they generate heat. Mesophiles operate at 60 to 70 degrees F up to 100 degrees F and are responsible for most of the decomposition process. Above 100 degrees F thermophiles are active, doing their best work between 131 to 140 degrees F. This temperature kills pathogens and weed seeds and is good for composting, but temperatures too high can destroy soil bacteria (as in fires). The more optimum the humus temperature, the better the rate of decomposition and therefore, nutrient recycling.

Soil Particle Size Determines Texture

- Sand
- Silt
- Clay

- Water-holding capacity (e.g. clay)
- Permeability (e.g. sand)
- Plant growth (e.g. humus)
- Land classification (e.g. glacial till)
Determining Soil Texture by Feel

In the palm of your hand, work soil into a ball.

then,

Work the soil into a ribbon.

Results:

If the soil crumbles, it has a COARSE TEXTURE.
If the soil makes a ribbon but feels slightly gritty, it has a MEDIUM TEXTURE.
If the soil makes a smooth ribbon, it has a FINE TEXTURE.
2. Discuss How the Root Zone Affects the Availability of Plant Nutrients

Roots
- **Anchor** the plant
- **Absorb** water and minerals from the soil and conduct to plant stem
- **Store** large quantities of a plant’s food
- **Propagate** or reproduce (in some plants)

*essential functions

Root Structure
- **Internally much like stems**
 - **Phloem** food conduction
 - **Cambium** new cells
 - **Xylem** water and mineral conduction
- **Externally not like stems**
 - **Root cap** as root pushes through soil produces new cells which lubricate and protect root cap
 - **Root hairs** single-celled / absorb moisture & minerals / conduct to larger roots & stem
 - **Side roots** form as roots grow older

Root Systems
- **Fibrous**
 - Monocots (primarily)
 - Hold soil in place / prevent erosion
 - Easier to transplant
 - Shorter, smaller, more compact
- **Tap root**
 - Dicots (primarily)
 - Longer and fewer roots
- **Specialized**
 - **Adventitious roots** sprout from stems or leaves (e.g. vines)
 - **Aerial roots** suspended in air (e.g. orchids)
 - **Aquatic roots** take nutrients from water & soil beneath water (e.g. water lilies)
Nutrient Absorption

Root hairs
Semipermeable membrane tiny pores on root hairs that allow the passage of water molecules by osmosis
Osmosis vacuum that causes water to move into the vascular cylinder of the root
Vascular cylinder contains the phloem which transports sugar & dissolved nutrients to the plant
Diffusion movement of nutrients throughout the plant which results in higher to lower nutrient solute concentration available to plant
Root nodules swellings on roots containing rhizobium bacteria which take nitrogen from the atmosphere, combine with oxygen, and produce NO₃ or NH₃, forms of nitrogen which can be used by the plant

Root Zone
Active feeder roots for a tree, normally in the top 12 to 18 inches of soil, starting one third of the distance from the trunk to the drip line and extending as far as three or four times the spread of the branches.
Rhizoplane plant root surface
Rhizosphere area of soil immediately surrounding plant roots altered by growth, respiration, and exchange of nutrients
Edaphic environment soil and the area where roots are located
Healthy Root Zone fosters the availability of air, water and nutrients to the plant
Root Pruning forces the growth of additional feeder roots / controls the growth of the plant / assists the plant in more efficiently accessing its nutrient supply
Girdling from roots / restricts the flow of water and nutrients to the plant (woody) / must be severed from the healthy root system.
Cutting roots loss of root hairs necessary for absorption / occurs when inappropriately pruning for transplanting.

References

Student Activity
- Discuss How the Root Zone Affects the Availability of Plant Nutrients: “Root It Out”
Student Labs

From Agricultural Science and Technology 512E:
- Examining Roots and Stems
- Root Growth

Internet Resource

Transparencies

From Agricultural Science and Technology 510A:
- Hard Pans Effect on Soil Depth

From Agricultural Science and Technology 512E:
- Types of Root Systems
- Below Ground Stem Modifications
2. Student Activity: Discuss How the Root Zone Affects the Availability of Plant Nutrients

“Root It Out”

Purpose: to illustrate root types, growth and function.

Information: root zones affect the availability of plant nutrients to the plant by their permeability, nutrient content and moisture-holding capacity. The nutrient solution that plants take in through their root hairs comes from a thin coating of water around each grain of soil. Root hairs absorb this soil-generated nutrient solution into the plant. As the root hairs grow they find new sources of water and soil nutrients, continuously transferring the solution through the semipermeable membrane on the root hairs by osmosis, into the vascular cylinder, and throughout the plant.

- One root view box per student
- Seeds with fibrous and tap root systems (recommendations: carrots, lettuce, radishes & marigolds)
- Potting soils, compost-produced soil, topsoils from various sites illustrating various textures and therefore nutrient-providing capacities.
- Labels & grease pencils
- Notebook

Procedure:
1. Construct one root view type box of your choice.
2. Discuss and decide which plant you will grow in which soil type in order that all plant and soil types as above will be represented throughout the class.
 - Plants - demonstrating various root types
 - Soil - demonstrating various root zone
 - nutrient-providing capacities
3. Fill the root view boxes with the assigned soil.
4. Plant the seed in the soil according to package directions for the size of planting area available.
5. Label the boxes according to ownership, plant type and soil.
6. Tip the root view boxes forward and secure them in order to view the plant roots as they mature against the viewing area (aided by geotropism, the directional movement of plants in response to the pull of gravity).
7. Water the plants as needed.
8. Observe the plant growth daily. Record the plant watering record in the notebook.
9. Answer the following questions in the notebook:
 - What type of medium are the plants grown in?
 - Name the visible parts of the root and discuss the appearance of each in your potting or soil medium.
 - Choose three other potting or soil mediums and make an hypothesis on how the roots would appear and fare if grown in them.
 - What do nonsoil growing substances lack?
 - How would roots look if grown without gravity?

Discussion:
1. What type of root zone would encompass an adventitious root? . . . an aerial root? . . . an aquatic root?
2. What type of nutrients would a plant receive from air or water?

Notes

References

3. Select Plants Tolerant to Various pH Ranges

Soil pH

Scale from 0 to 14 measuring acidity to alkalinity. Units increase 10 times between each. Based on hydrogen ion concentration in soil.

7.0 is neutral.
Below 7.0 is acidic.
Above 7.0 is alkaline, or basic.

Greater the distance from 7.0 (neutral), the greater the acid \(< 7.0 \rangle\) or the alkalinity.

Acid or low pH occurs when the concentration of H\(^+\) ions increases.

Alkalinity or high pH occurs when the concentration of OH\(^-\) ions increases.

Soil samples are tested to determine pH in order to determine the nutrients available to plants.

Govern nutrient availability.

Balance between plant nutrient elements (K, Mg, and Ca) and non-nutrient elements (H and Al).

Acid Soils

Parent material was acidic.

Amount of rainfall exceeds evaporation of moisture from the soil; i.e. leaching, causing depletion of bases: Ca, Mg, K, Na.

Absorption of bases by plant growth.
Low amounts of cation exchange capacity (CEC).

Alkali Soils

Water evaporation is equal to or greater than the amount of rainfall.
Calcium and sodium salts build up.

Lowering pH in Alkali soils

Sulfur, iron sulfate or aluminum sulfate.
Flush soils with low-salt irrigation water.

Liming soils

Soils too acidic.

Treatment for low pH (5.5-6.5).
Releases phosphorus.
Binds aluminum and iron.
Activates soil organisms.
Encourages release of nutrients to plants.
Improves soil structure.

Modifying pH

Colors of flowers are related to soil pH:
- Blue - alkaline soils
- Pink - acidic soils.

Nitrogen fertilizer can either raise or lower soil pH:
- Ammonium fertilizer - acidifying
- Nitrate / nitrogen fertilizer - alkaline forming.

References

Student Activity

- Select Plants Tolerant to Various pH Ranges

Internet Resource

Transparencies

- Plant Nutrients Available per Soil pH

From Agricultural Science and Technology 510A:

- pH Scale
- pH Scale (relative strength)
- pH Scale (familiar products)
- pH Scale (for soil reaction)
- Low pH Limits Root Growth
- Ion Exchange of Soil Particles
Plant Nutrients Available per Soil pH

- Plants grow best in soil with a range of 5.5 to 8.0.
- Soils should be modified to plant needs based on the results of a soil test.
3. Student Activity: Select Plants Tolerant to Various pH Ranges

On the basis of the information in this section, research and list the pH ranges of six flowers, vegetables and small fruits. Reference your sources.

<table>
<thead>
<tr>
<th>Flowers</th>
<th>pH Range</th>
<th>Vegetables</th>
<th>pH Range</th>
<th>Small Fruits</th>
<th>pH Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sources: Sources: Sources:

Best Plant Growth in this Range

The lower the pH, the more acidic the soil.
The higher the pH, the more alkaline the soil.
4. Test Soils for pH Levels

Soil Samples

- About 6 inches of soil core is taken for testing pH.
- **Core sampling:** soil probe
- **Site sampling:** small shovel
- Seven to 9 samples throughout a site.
 - Samples should be representative of the area.
- **Clean container** for each sample.
- **Plastic bag** into a soil sampling box for shipping to a lab.
- **Label** the sample.
- **Indicate plants** to be grown in soil.
- **Request fertilizer report** with soil test results.

Soil Tests

- **Determine nutrients** present in soil.
- Analysis done by lab or grower.
- Commercially available soil testing kit for grower use.

Test for:

- pH
- Phosphorus
- Potassium
- Calcium
- Magnesium
- Sulfur

Why test for soil pH?

- **Determines the availability** of nutrients to plants.
- **Better plant growth** in soil that meets needs of plants.

References

Student Activity

From *Bottle Biology*, Kendall / Hunt (p. 26):
- Acids and Bases: Make Your Own pH Indicator

Student Lab

From *Exploring with Wisconsin Fast Plants*, Kendall / Hunt (p. 217):
- Fermentation: Making Kimchee in Soda Bottles

Internet Resources

- Natural Resources Conservation Service Ecological Sciences Division
- National Soil Survey Center
 http://www.statlab.iastate.edu:80/soils/nssc/

Transparencies

From Agricultural Science and Technology 510B:
- Soil Sampling A, B
- Soil Sampling C, D
- Soil Sampling E, F
- Soil Sampling G, H
- Soil Sampling (TM 12)
- Soil Sample Bag
- Soil Test Request and Report Form
5. Develop a Chart of Planting Media with the Characteristics of Each Media

Plant Media soilless rooting material in which plants grow.

Rooting Function provide a plant with nutrients and a place to anchor itself.

Nutrients substances roots absorb from the soil in water uptake.

Anchor keeps plants from falling over by allowing roots to anchor the plant.

Media Types

- **Soil**
- **Soilless or artificial**
- **Liquid**

Soilless Media Content

- Contain no topsoil.
- **Vermiculite** heat-treated mica mixed with other materials to hold moisture.
- **Perlite** volcanic origins / large particles. Used to provide drainage and aeration.
- **Sphagnum moss** dehydrated remains of acid bog plants / shredded / sterile / lightweight / controls disease / holds moisture well / used to cover seeds.
- **Peat moss** partially decomposed vegetation collected from marshes, bogs or swamps / holds moisture well / contains about 1% nitrogen / low in phosphorus & potassium.
- **Limestone** calcium carbonate (CaCO$_3$).
- **Tree bark** pine or oak bark broken into small pieces used in container growing or mulching.
- **Slow-release fertilizer** plant food made available to plants over a gradual length of time.

Soilless Mixes

- Contain two or more soilless media.
- **Excellent drainage** use high percentage of coarse materials.
- **Organic material** use for moisture retention.
- **Perlite or bark** use for drainage and aeration.
- **Commercial mix** (e.g.) 50% shredded sphagnum moss, 50% vermiculite, & slow-release plant food.

Soil / Soilless Mixes

- **Soil conditioning** add to soil for moisture-holding capacity and improved drainage.
- **Soil** sterilized or pasteurized.
- **Planting mix** 1/3 soil, 1/3 peat, bark shavings or leaf mold, 1/3 sand.
Hydroponics or Liquid
Nutrients needed by plants supplied by solution. Nutrient solution contains water with dissolved nutrient salts. Plants require support.

Advantages
- **Nutrition** controlled through solution.
- **Yield** per compact unit area is greater.
- **Space** roots do not spread due to direct contact with nutrients.
- **Pest containment** reduced weed, disease, and insect control.

Substrates - growing plants in . . .
- **Sand** sterilized rooting material / individual drip irrigation.
- **Gravel** irrigation flow-through.
- **Plastic bags** filled with rockwool, peatlite and sawdust / fed by drip irrigation.

Bare root systems
- **Aeroponic** plants suspended in air / mist with oxygen-rich nutrient solution at regular intervals.
- **Continuous flow** plants float on surface of shallow pools in individual panels.
- **Nutrient film technique** plants in channels / roots covered with plastic sheets / plants fed by recirculating shallow stream of nutrient solution.

Advantages of Soilless Media
- **Uniform mix**
- **Sterile** no diseases, insects or weed seeds
- **Lightweight**
- **Moisture retention and drainage**

Disadvantages of Soilless Media
- **Container instability** due to lightweight material.
- **Low mineral content** nutrient supplementation may be needed.
- **Rooting problems** with transplanting.
 - Soilless media on roots fail to blend with soil.
 - Moisture / nutrients unable to pass from soil to roots.
 - Clay in soil may cause root bind; roots won’t pass from ball to soil.
 - Prevents moisture / nutrient uptake.

Solution
- Soil / soilless mix
- Transplant with root-to-soil exposure.
- Mix sphagnum moss into transplanted soil site.

References

Student Activities

- Charting Your Course

From *Bottle Biology*, Kendall / Hunt (p. 42):
- Cooking with Soils: Experiment with Plant Nutrition

Transparency

- Ideal Growing Medium
5. Student Activity: Charting Your Course

Purpose
Demonstrate an understanding of the various types of soilless planting media and their “best-use” applications.
Demonstrate ability to create an informative reference chart.

Procedure
⇒ Based on the Information section, “Develop a Chart of Planting Media with the Characteristics of Each Media,” design a chart cross-referencing the following elements of soilless planting media:

- Soilless planting media content
- Characteristics
- Best use application
- Advantages
- Disadvantages

⇒ Use a table-generating computer program. (Recommendations: Microsoft Word or WordPerfect; a spreadsheet program such as Excel or Quattro Pro, or a presentations program such as Powerpoint, WordPerfect Presentations or Harvard Graphics).

Or
⇒ Hand-design a table using a ruler and graph paper. (This method makes a good starting point before generating your table on the computer.)

Example

<table>
<thead>
<tr>
<th>Media</th>
<th>Characteristics</th>
<th>Best Use</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Q&A

- Can you name two other inorganic soil additives in use by commercial growers? If so, what are their characteristics? Add them to your chart.
5. Teacher Answer Sheet

Q&A

1. Cinders and Scoria
 More available in coal burning regions.
 Quality variable.
 Sulphates must be leached out prior to use.
 Additive to peat moss.
 Good porous structure.

2. Rockwool
 Cottony / woolly characteristics
 Manufactured by subjecting rocks to very high temperatures.
 Sterile
 Uniform
 Cottony ball-like particles
 Hydrophilic natural state / water attracting.
 Hydophobic conditioned / water repelling.
 Increases or decreases water holding capacity of soils.
 Can replace perlite.

Reference

Ideal Growing Medium
Amended Soil or Soilless

25% Water
25% Air
50% Solid

Compare to Container Conditions

10% Air
40% Water
50% Solids
6. List Several Soil Mixes Identifying Media Data for Each Soil Mix

Peat-Sand General Production or Growing Mix

Applicable under a wide range of plant growth conditions.
Materials available in almost every locality.
Moderately well-drained.
Avoid heavy irrigation.
Acid base.

The mix:
2 four cubic-foot bales sphagnum peat
12 cubic feet of washed sand
19 ounces of triple superphosphate
5 ounces of potassium nitrate (dissolve in 5 gallons of water and distribute evenly).
Moisten mix slightly to avoid need for immediate watering.

Notes
Peat in compressed bales expands to almost double the volume / yields one cubic yard of mix.
Ratio of 55% peat / 45% sand by volume.
Single superphosphate can be substituted for triple superphosphate, with amount doubled.
Peat should be ground according to container size (the smaller the container, the finer the grind).
Plants lose phosphorus over long growing periods; hence, superphosphate applications.

Soil mix pH may be elevated by adding 5 lbs of calcium carbonate.
Test with pH meter for adjustments for optimal 5.2 to 6.2 reading.
Plan to fertilize soon after potting.

Peat-Perlite Mix

Lighter than peat-sand.
Used for rooted cuttings / germinating coarse seeds / plants preferring fast draining, light soil.
Not good for anchoring plants.

The mix:
8 cubic feet of compressed sphagnum peat
8 cubic feet of perlite (coarser grind / more than 6 mesh)
5 ounces potassium nitrate (KNO₃)
4 pounds ground limestone (CaCO₃)
15 ounces triple superphosphate or 30 ounces single superphosphate

Peat-Vermiculite Mix

Not as well-drained as peat-perlite mix.
Used to germinate fine seed and in plug plant production.

The mix:
- 8 cubic feet of compressed sphagnum peat / finely ground
- 6 cubic feet of fine vermiculite
- 5 ounces of potassium nitrate (KNO₃)
- 4 pounds of ground limestone (CaCO₃)
- 15 ounces of triple superphosphate or 30 ounces of single superphosphate

Retail Potting Soil Mix

Used as a potting mix for house plants.
Can be used to germinate seeds and grow transplants.

The mix:
- 2 four cubic-foot bales of sphagnum peat (15 feet loose peat)
- 5 cubic feet washed sand
- 4 cubic feet perlite
- 5 pounds calcium carbonate lime
- 15 ounces triple superphosphate (or single at double the rate)
Water added to moisten.
Sterilize or keep in dark to prevent algal growth.

Loams

Field soil mix predominant in silt; lower in sand and clay.
Mixed in ratio of 1:1:1 loam, peat moss and coarse sand or aggregate.
If 50% soil, cut fertilizer additives by 25% from recommendations in peat-sand mix due to presence of natural fertility.
Does not require micronutrient application.
Must be pasteurized.

References

Student Activity

- List Several Soil Mixes Identifying Media Data for Each Soil Mix

Internet Resource

E.C. Geiger, Inc. - 1997 Online Catalog
Site: http://www.hortnet.com/ecgeiger/Catalog/soil_mixes/soil_mixes.html

Transparency

- Growing Medium Factors to Consider
6. Student Activity: List Several Soil Mixes
 Identifying Media Data
 for Each Soil Mix

Purpose
Research and identify various soil-based mixes for growing.
Identify various media within soil mixes and identify their purpose.

Procedure
Produce a table of various soil mixes and their media per the information provided and from additional research and define their uses.
Research and identify at least two other mixes from other sources: the internet, professional growers, and/or soil mix producers.
Identify sources of information.
List according to the example provided. Tables may be computer-generated or hand-drawn on graph paper.

Example provided:

<table>
<thead>
<tr>
<th>Peat-Sand Mix</th>
<th>Proportional Ingredients</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Q&A

1. Describe the type of soil texture commonly used in soil-based growing media.
2. Why is unamended soil rarely used in growing?
 (Provide answers in space below . . .)
6. Teacher Answer Sheet

1. Describe the type of soil textures commonly used in soil-based growing media.

 Loam mixtures of intermediate-sized particles higher in silt and lower in sand and clay mixed with the appropriate amounts of organic matter and inorganic aggregates to satisfy plant requirements.

2. Why is unamended soil rarely used in growing?

 Lacks proper balance between air and water when used in a container.

Reference

Growing Medium
Factors to Consider

Chemical, Physical, & Economic Factors

Chemical:
- Nutrient storage capacity

Physical Factors:
- Water-holding capacity
- Aeration
- Bulk density (anchorage & support for plant)
- Particle size distribution
- Uniformity
- Shrinkage

Economic (costs of):
- Components
- Availability
- Reproducibility
7. Identify the Correct Fertilizers to Add for Various Soil Mixes

Two Fertilizer Categories

Inorganic (chemical)
More quickly available.
Derived from simple compounds.
Element present in small quantities but available immediately to the plant.

Organic
Derived from plant and animal tissue.
Require more modification before plant absorption.
Element present in abundance but available in small amounts at any one time.

Amendment availability of nutrients to plants depends upon:
pH
Soil organisms contained, if any.
Amendment compound stability and complexity.
Concentrations of elements in compound
Soil composition

Soil composition affects mineral availability to plants
Soil pH
Element concentration
Soil organisms
Water holding capacity

Factors may be interrelated:
Soil pH affects microorganisms;
Microorganisms determine nitrogen availability to plant.
High pH decreases solubility of iron compounds, causing chlorosis.
Low pH creates insolubility of iron compounds, creating toxic conditions.
Large supplies of one element may limit the physical opportunity of another to be near the root zone.

Complete Fertilizer
Contains all three primary fertilizer nutrients: nitrogen, phosphate, potash.
May have select nutrients.

Incomplete Fertilizer
Lacking in one or more primary nutrients.

Active Ingredient
Total % of nutrients applied.

Inert Ingredient
Filler that allows deposition of the fertilizer.

Reading the Analysis
E.g. 16-4-8 means 16 % nitrogen, 4% phosphate, 8% potash.

Pre-plant amendments to soil mixes

- **Dolomitic limestone**
 Provides calcium and magnesium for plant growth.
 Neutralizes acidity of compounds such as pine bark and peat moss.
 Application 5 to 8 pounds per cubic yard of potting media.
 Lower rates for acid-loving plants.
 Adjustments based on:
 - Water quality
 - Plant growth
 - pH of growing media
 - Ideal pH of plant
 - Availability of micronutrients in media.

- **Micronutrients**
 Prevents chlorosis and stunting of plant growth.
 Found in commercial preparations.
 Good for one year.

- **Superphosphate**
 Highly soluble and readily leaches.
 Requires additional and frequent supplementation.

- **Controlled release fertilizer**
 Used as pre-plant amendment if growing medium will be used for a short period of time.
 One or more of the nutrients have limited solubility.
 Available to plants over extended periods.
 One or more applications results in a full season of nutrition.
 Based on a growing temperature between 70 and 80°F.

Longevity of a supplement depends upon:
- Time of application
- Irrigation rates
- Temperature of the growing medium.
E.g. complete fertilizer applied at the rate of 3 to 4 pounds of nitrogen per cubic yard of growing medium supplies sufficient nutrients for nine to 12 months.
Quick-release fertilizer
 Low cost.
 Readily soluble.
 Applications made at regular intervals.
 Applied when foliage is dry but removed before irrigation.
 Not recommended for pre-amendment.

Liquid feed
 Used by injection to irrigation systems.
 Supplement controlled releases fertilization programs.

All amendments:
 Follow label directions for **content analysis, use and application**.

References

Student Activities

- **Identify the Correct Fertilizers to Add for Various Soil Mixes**

From *Exploring with Wisconsin Fast Plants*, Kendall / Hunt (p. 179):
- **Salt Effects on Plants**

Internet Resource

http://www.ag.uiuc.edu/~robsond/solutions/hort.html

Transparencies

- **Fertilizer Types**

From Agricultural Science and Technology 510:
- **Information Commonly Found on a Fertilizer Bag**
- **Fertilizer Analysis**
- **Plant Nutrient Blends**
7. Student Activity: Identify the Correct Fertilizers to Add for Various Soil Mixes

Purpose
To identify fertilizers appropriate for soil amendment in order to provide plants with the appropriate nutrient levels under various conditions.

Procedure
Describe the appropriate fertilizers to use in the following soil mixes.

Peat-Sand General Production or Growing Mix
Peat-Perlite Mix
Peat-Vermiculite Mix
Retail Potting Soil Mix

From the *Horticulture Edition of the Western Fertilizer Handbook* (Interstate):
Landscape Container Mix
Greenhouse or Foliage Plant Mix

Q&A
Given the total analysis of a fertilizer type:
1. What is the dominant nutrient supplement provided in raw bone meal?
2. What primary nutrient would urea supply to a plant?
3. What primary nutrient is lacking in wood ash supplementation?

Provide all answers on the lines below:

<table>
<thead>
<tr>
<th>Peat-Sand General Production or Growing Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peat-Perlite Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peat-Vermiculite Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Retail Potting Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Landscape Container Mix</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Greenhouse or Foliage Plant Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q&A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
</tr>
<tr>
<td>3.</td>
</tr>
</tbody>
</table>
7. Teacher Answer Sheet

Peat-Sand:
19 ounces triple superphosphate
5 ounces potassium nitrate dissolved in 5 gallons of water and distributed evenly.

Peat-Perlite:
5 ounces potassium nitrate
4 pounds limestone
15 ounces triple superphosphate or 30 ounces single superphosphate

Peat-Vermiculite:
5 ounces potassium nitrate
4 pounds ground limestone
15 ounces triple superphosphate or 30 ounces single superphosphate

Retail Potting Mix:
5 pounds calcium carbonate lime
15 ounces triple superphosphate

Landscape Container Mix:
Per each cubic yard:
4 ounces potassium sulfate
6 ounces potassium nitrate

Greenhouse or Foliage Plant Mix:
Per each cubic yard:
2 pounds single superphosphate
4 ounces potassium sulfate
4 ounces potassium nitrate
5 pounds hoof and horn meal or blood meal

Q&A

1. Phosphorus
2. Nitrogen
3. Nitrogen

References

Fertilizer Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Nitrogen Analysis</th>
<th>Phosphorus Analysis</th>
<th>Potassium Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milorganite</td>
<td>5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Tankage</td>
<td>8-10</td>
<td>5-12</td>
<td>0</td>
</tr>
<tr>
<td>Raw Bone Meal</td>
<td>2-4</td>
<td>22-25</td>
<td>0</td>
</tr>
<tr>
<td>Steamed Bone Meal</td>
<td>1-2</td>
<td>22-30</td>
<td>0</td>
</tr>
<tr>
<td>Sheep Manure</td>
<td>2-3</td>
<td>1</td>
<td>1-2</td>
</tr>
<tr>
<td>Cotton Seed Meal</td>
<td>8</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Tobacco Stems</td>
<td>2</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Hard Wood Ashes</td>
<td>0</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Soft Wood Ashes</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Linseed Meal</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Castor Bean Meal</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Soybean Meal</td>
<td>6</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Peat Soil</td>
<td>2-4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ammonium Chloride</td>
<td>26</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ammonium Suophate</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ammonium Nitrate</td>
<td>35</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nitrate of Soda</td>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Muriate of Potassium</td>
<td>0</td>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td>Potassium Phosphate</td>
<td>0</td>
<td>15</td>
<td>40</td>
</tr>
<tr>
<td>Potassium Nitrate</td>
<td>12</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>Rock Phosphate</td>
<td>0</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Sulphate of Potash</td>
<td>0</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>Super Phosphate</td>
<td>0</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Triple Superphosphate</td>
<td>0</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>Calcium Nitrate</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diammonium Phosphate</td>
<td>20</td>
<td>53</td>
<td>0</td>
</tr>
<tr>
<td>Mono Ammonium Phosphate</td>
<td>12</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>Sodium Nitrate</td>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Urea</td>
<td>45</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Urea-Formaldehyde</td>
<td>38</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Source: Horticulture Solutions Series / Illinois Cooperative Extension Service / Board of Trustees of the University of Illinois (1995).
8. Describe the Importance of Sterilizing a Potting Mix

9. Sterilize a Potting Soil Mix

Soil Pasteurization

Soil or sand
- Used in a planting media.
- Used in container growing.

Usual treatment: heated to 180°F for 30 minutes before mixing with media.

Temperature range: from 140°F-180°F maintained at least 10 minutes but no more than 30 minutes.

Importance of sterilization
- Practical means of controlling diseases in the root zone.
- No media should be considered disease free unless analyzed and tested.
- Especially important if using field soil in planting medium.

Sterilization Types

Steam generation

Chemical fumigants
- Chloropicrin (tear gas)
- Formaldehyde
- Methyl bromide
- Vapam (sodium methyl dithiocarbamate)

Soil must be allowed to air out after treatment.

Methyl bromide: shortest aeration period but still extremely hazardous to humans.
- Destroys common fungi.
- Effective against most weed seeds and nematodes.
- Fumigated media must be enclosed in a gasproof chamber.

Formaldehyde: fumigant for inorganic soils, propagation benches, & storage facilities.
- Water-soluble
- Penetrates soil mass to depth of wetting.
- 10 to 14 days allow gas to dissipate.

Vapam: controls most fungi, insects, nematodes, & weeds.
- Water-soluble
Applied to medium surface or by injection.
Seal with additional water application.
Best with temperature range of 60-70°F.
Aerated by turning soil 5-7 days after treatment.
Use as planting material in two weeks.

Chloropicrin treatment in airtight chamber. Highly corrosive.
Effective fumigant and herbicide.
Media should be damp, well aerated, at 65-70°F.
At least 24 hours; preferably 48 hours for complete dissipation.
Plant after seven days.

Aeration periods of soil fumigants
Vary with soil temperature, characteristics of soil, and moisture content.
(Always follow recommendations of manufacturer.)
Media should be warm, damp and well aerated.

Optimum temperature for fumigation is close to 70°F.

Soil Pasteurization:
- Steam Treatment
- Heat Treatment

Economical with large batches of soil.
Kills microorganisms and weed seeds.

Allows beneficial nitrifying bacteria to survive.
Aids in nitrification of ammonia.
Lower temperature minimizes problem of excess ammonia release.
Aerated steam best used for lower temperature range.

Post-treatment
Sterilized or pasteurized media placed in clean, sterilized containers.
Stored in sterilized area.

References

Student Activity

- Describe the Importance of Sterilizing a Potting Mix
Student Lab

- Sterilize a Potting Mix

Internet Resource

Illinois Cooperative Extension Service / Horticulture Solutions Series / Soil Sterilizing
http://www.ag.uiuc.edu/~robsd/solutions/horticulture/docs/soilster.html

Transparency

- Heat Treatment of Soils
8. Student Activity: Describe the Importance of Sterilizing a Potting Mix

Purpose
Review the reasons for sterilizing potting soil.

Procedure
Answer the following questions before participating in the student lab for this section.
(Answer the questions in the space below . . .)

1. What are the main elements sterilization treatments hope to eliminate from potting soil?
2. What beneficial organisms will be destroyed at temperatures over 140°F? . . . over 160°F?
3. What are the alternative sterilization techniques to steam generation / heat treatments?
4. What is the usual treatment temperature for heat-generated soil sterilization?
5. Describe the post-treatment process.
8. Teacher Answer Sheet

1. Bacteria, fungi, insects, weed seeds, nematodes, pathogenic organisms.
2. Earthworms . . . nitrifying bacteria.
3. Chemical fumigants:
 - Chloropicrin (tear gas)
 - Formaldehyde
 - Methyl bromide
 - Vapam
4. 180°F for 30 minutes before mixing with media.
5. Sterilized or pasteurized media placed in clean, sterilized containers. Stored in a sterilized area.

References

9. Student Lab: Sterilize a Potting Soil Mix

Purpose

- Demonstrate the correct procedure for sterilizing a potting soil mix with an electric soil sterilizer or by heat treatment with a conventional oven.
- Observe professional soil sterilization procedures.

Procedure

Electric soil sterilizer
- Fill the sterilizer to the top of the box, following the manufacturer’s directions for your unit.
- Plug the sterilizer cord into an electric outlet.
- Set the thermostat according to the correct sterilizing temperature desired for the level of soil sterilization desired.
- The indicator light will glow until the batch is done.
- When the indicator light turns off, leave the soil in the sterilizer for another 15 minutes.
- Pick the sterilizer up and the soil will drop through the open bottom.

Heat treatment with a conventional oven

Sterilization at low temperature:
- Place moist soil in a kitchen cooking bag (or in a baking pan covered with aluminum foil).
- Set the oven temperature at 200°F.
- Place the cooking bag or baking pan on a flat sheet in the oven with a meat thermometer inserted through the bag or foil to the center of the soil.
- Check the oven every 10 minutes until the thermometer registers 140°F. Remove the soil from the oven at 140°F. Higher temperatures will destroy nitrifying bacteria.

Sterilization at higher temperature:
Same methodology except . . .
- Heat in oven at 350°F for 45 minutes. Forego the thermometer and the check for soil temperature.
- Soil has a strong smell when cooked. Ventilation is advised.

Always place the soil in clean, sterilized containers or clean bags. Store in a clean area.

Follow-up Activity

Visit a professional greenhouse operation. Request permission to observe their sterilization techniques and the equipment used. Write a brief report detailing:
- Type of equipment used.
- Observation notes on use of equipment (how-to).
- General temperatures used for sterilization.
- Techniques for handling and storage of sterilized potting media.
10. Student Activity: Properly Mix Potting Soil

Purpose
Properly prepare a soilless media mix.

Procedure
Please wear water-repellent, protective gloves during this activity.

Materials for the Cornell “Peat-Lite” Mix C
(Used for seed germination)
• 1 bushel (8 gallons) shredded German or Canadian sphagnum peat moss
• 1 bushel (8 gallons) Vermiculite no. 4 (fine)
• 1 ½ ounces (4 level tablespoons) ammonium nitrate
• 1 ½ ounces (2 level tablespoons) powdered Superphosphate (20%)
• 7 ½ ounces (10 level tablespoons) ground dolomitic limestone
• Non-ionic wetting agent

1. Blend together the ammonium nitrate, Superphosphate and dolomitic limestone until they are thoroughly mixed.
2. Prepare the non-ionic wetting agent according to the label instructions.
3. Spread the peat moss out on a clean plastic sheet and sprinkle with the water prepared with the non-ionic wetting agent.
4. Break up the peat moss into particles ½ inch or smaller.
5. Alternate mixing the Vermiculite with the peat moss until well-mixed.
6. Sprinkle the blended fertilizers over the top.
7. Blend all ingredients by tossing until thoroughly mixed.

Follow-up Activity

Testing the Mix
Plant Wisconsin “Fast Plant” seeds in your potting soil, some in sand, and some in untreated topsoil from your yard. Keep a daily record of the plant growth in all three mediums. After two weeks, which plants are tallest? Do an observation of the untreated topsoil by sifting through the soil and looking at it under the microscope and record your observations. Predict which soil will grow the plants best in one week, two weeks, three weeks, and after four weeks. Record the results. Did your hypothesis match the actual results? Why or why not?

References
Most Life

Ammonifying bacteria Not Killed

- 260°F (127°C)
- 212°F (100°C)
- 200°F (93.3°C)
- 180°F (82.2°C)
- 160°F (71.1°C)
- 140°F (60.0°C)
- 120°F (54.4°C)

Most fungi, insects, viruses, weed seeds

Nitrifying bacteria

- 160°F (71.1°C)
- 140°F (60.0°C)
- 120°F (54.4°C)

Pathogenic organisms

Earthworms

- 120°F (48.9°C)

15 minutes will destroy most organisms at temperatures listed.
Fill in the Blanks

1. The four components of soil are:

 (1)
 (2)
 (3)
 (4)

2. Rock material or peat from which soil profiles originate is called:

3. Acid or low pH levels occur when the concentration of ____________ ions increases.

4. Soilless rooting material in which plants grow is called:

Multiple Choice

5. Which of the following is NOT a type of root system?

 A. Specialized
 B. Fibrous
 C. Diffused
 D. Tap
6. Which of the following is a function of the roots in plants?
 A. Propagate or reproduce (in some plants).
 B. Conduct photosynthesis to produce food for the plant.
 C. Protect the plant against frost damage.
 D. Store water for respiration.

7. A neutral soil pH is:
 A. 7.0
 B. 6.0
 C. 8.0
 D. 7.5

8. Soils with a pH below 7.0 are called:
 A. Neutral
 B. Alkaline
 C. Basic
 D. Acidic

9. A soil with low pH can be improved by using:
 A. Potassium fertilizer
 B. Pesticides
 C. Lime
 D. Anhydrous ammonia

10. Partially decomposed vegetation collected from marshes, bogs, or swamps is called:
 A. Peat moss
 B. Limestone
 C. Vermiculite
 D. Sphagnum moss

11. Limestone is made up of:
 A. Sodium chloride (NaCl)
 B. Calcium carbonate (CaCO₃)
 C. Magnesium sulphate (MgSO₄)
 D. Potassium chloride (KCl)
Please continue . . .

12. Which of the following is NOT an advantage of using soilless media.

 A. Provides a uniform mixture for plant growth.
 B. Is sterilized to eliminate diseases, insects, or weed seeds.
 C. Is lightweight and easy to use.
 D. Has high mineral content.

Matching

_____ 13. Aerial roots A. Primarily in monocots
_____ 14. Organic B. Volcanic origins
_____ 15. Vermiculite C. Heat-treated mica
_____ 16. Perlite D. Fertilizer category
_____ 17. Fibrous roots E. Suspended in air

Thank you! Please return the test sheets to your instructor.
Fill in the Blanks

1. The four components of soil are:

 (1) Minerals
 (2) Water
 (3) Air
 (4) Organic matter

2. Rock material or peat from which soil profiles originate is called:

 Parent material

3. Acid or low pH levels occur when the concentration of _____H+_____ ions increases.

4. Soilless rooting material in which plants grow is called:

 Plant media

Multiple Choice

5. Which of the following is NOT a type of root system?

 A. Specialized
 B. Fibrous
 C. Diffused
 D. Tap
Please continue . . .

6. Which of the following is a function of the roots in plants?
 A. Propagate or reproduce (in some plants.)
 B. Conduct photosynthesis to produce food for the plant.
 C. Protect the plant against frost damage.
 D. Store water for respiration.

7. A neutral soil pH is:
 A. 7.0
 B. 6.0
 C. 8.0
 D. 7.5

8. Soils with a pH below 7.0 are called:
 A. Neutral
 B. Alkaline
 C. Basic
 D. Acidic

9. A soil with low pH can be improved by using:
 A. Potassium fertilizer
 B. Pesticides
 C. Lime
 D. Anhydrous ammonia

10. Partially decomposed vegetation collected from marshes, bogs, or swamps is called:
 A. Peat moss
 B. Limestone
 C. Vermiculite
 D. Sphagnum moss

11. Limestone is made up of:
 A. Sodium chloride (NaCl)
 B. Calcium carbonate (CaCO$_3$)
 C. Magnesium sulphate (MgSO$_4$)
 D. Potassium chloride (KCl)
12. Which of the following is NOT an advantage of using soilless media.

 A. Provides a uniform mixture for plant growth.
 B. Is sterilized to eliminate diseases, insects, or weed seeds.
 C. Is lightweight and easy to use.
 D. **Has high mineral content.**

Matching

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. Primarily in monocots
B. Volcanic origins
C. Heat-treated mica
D. Fertilizer category
E. Suspended in air

Thank you! Please return the test sheets to your instructor.
Agricultural Science and Technology

Ag 514

Botany / Horticulture Plant Science

Ag 514 B - Soil Fertility

Unit Objectives

1. List four sources of plant nutrients.

2. List the primary and secondary plant nutrients and describe the function of each for plant growth.

3. Match nutrients to their correct plant deficiency symptoms.

4. Select from a list of factors that influence the use of fertilizers.

5. Match dry, liquid, and gaseous fertilizers with their correct description and use.

6. Identify and discuss methods of fertilizer application.

7. Discuss methods and procedures involved in collecting a representative soil sample.

8. Complete a soils test report form, and make fertilizer recommendations using the test analysis data.

10. Calculate problems comparing fertilizer cost by comparing cost per pound of nutrients.
1. List Four Sources of Plant Nutrients

2. List the Primary, Secondary and Micronutrients of Plants and Describe the Function of Each for Plant Growth

3. Match Nutrients to their Correct Plant Deficiency or Toxicity Symptoms

Four Sources of Plant Nutrients
- Water
- Light
- Air
- Soil

Water
- 90% of a plant’s weight.
- Plant food is dissolved in water and moved throughout the plant in water (translocation).
- Photosynthesis uses water.
- Plant uptake is via water from the soil.
- Transpiration creates 90-95% of a plant’s water loss as water vapor exiting through leaf stomata.
- Lost largely due to excess water in soil.
- Transpiration cools and moistens the air around the plant.

Light
- Must be present for green plants to manufacture food.
- Light requirements vary between plant types.
- Photoperiodism
 - Plant growth responses to different times of night and day or relative lengths of night and day.
 - Long / short day or indifferent plant flowering according to day length.
- Plant growth toward the light due to production of growth hormones on shady side (therefore, stem is longer on shady side).

Air
- Temperature effects plant growth.
 - Plant types have different temperature preferences.
 - Below freezing temperatures halt plant growth or kill plants.
Humidity
Plants grow best in 40-80% humidity.
Amount of moisture in the air.
Hot, dry conditions create wilting or death.
High humidity creates fungal conditions.

Gases and air particles
Carbon dioxide vital to plants for food production.
Increases crop yields.
Sulfur dioxide damages crops by reducing growth or killing plants.

Soil
Plants receive nutrients from water in the soil.
Nutrients come from decayed plant and animal matter, and mineral content of soil.
Chemical interactions from oxygen in soil fix nitrogen and make this important nutrient available to plants through water in soil (see Nitrification, infra).

Macronutrients include primary and secondary nutrients.

Primary Plant Food Nutrients
Nitrogen
Phosphorus
Potassium

Secondary Plant Nutrients
Calcium
Magnesium
Sulfur

Micronutrients
Boron
Chlorine
Copper
Iron
Manganese
Molybdenum
Zinc

(Needed in even lower amounts)
Aluminum
Fluorine
Nickel
Sodium

Primary nutrients most important nutrients for plant growth.
(N-P-K listed as quantities available to plant by percentages on fertilizer bags. Other % is filler material used to disseminate nutrients.)

Primary nutrients must be present in large amounts.
Secondary nutrients must be present in moderate amounts.
Micronutrients are essential but needed in small amounts.

Nitrogen

(Commercially available in four forms)

- **Nitrate of soda NaNO₃**
 - Highly soluble
 - Lowers soil acidity
 - 16% nitrogen

- **Ammonium nitrate NH₄NO₃**
 - Not as soluble
 - Gradually available
 - 33% nitrogen

- **Ammonium sulfate (NH₄)₂SO₄**
 - More acidic
 - Gradually available
 - 21% nitrogen

- **Urea formaldehyde**
 - Organic nitrogen
 - More gradually available than inorganic nitrogen
 - 38% nitrogen

Nitrogen formation

- **Aminization** protein and allied compounds broken down into amino acids / soils organisms acquire energy from this digestive process & use in cell structure.
- **Ammonification** conversion of ammonia compounds into ammonia and ammonium compounds.
- **Mineralization** aminization & ammonification reactions.

Nitrification

Ammonical forms of nitrogen changed to nitrate by bacteria. *Nitrosomonas* and *Nitrosococcus* bacteria convert ammonia to nitrite. Need warm temperatures, oxygen, moisture and optimum pH level (between 5.5 & 7.8).

Denitrification

Nitrogen lost from the soil to the atmosphere.

Anaerobic conditions (caused by excessive moisture or soil compaction, or both) create a situation where bacteria in the soil remove oxygen from nitrate to meet their needs, creating nitrous oxide (N₂O), nitric oxide (NO) and nitrogen (N₂). Creates loss of nitrogen available to plants from soil.

Nitrogen fixation
Nitrogen combined with hydrogen or oxygen for plant utilization. Fixed by soil organisms living on legume root nodules or free-living; also by lightning.

Nitrogen cycle
- Returns nitrogen to soil by plant and animal waste.

Leaching
- Primary loss of soluble nitrogen.
- Negative charge repels soil particles.

Nitrogen deficiency:
- Slow growing plants.
- Stunted plants.
- Chlorosis in older leaves.
- Copper coloring or “firing” of older leaves.

Phosphorus (commercial forms - % of phosphate):
- Superphosphate (20%)
- Treble superphosphate (46%)
- Rock phosphate (25-35%)
- Ammonium phosphate (48%)

Held by soil particles.
- Component of DNA & RNA.
- Encourages cell division.
- Flower and seed formation.
- Hastens maturity.
- Encourages root growth / development of root systems.
- Necessary for release of energy for plant processes.
- Makes potassium easily available.
- Increases resistance to disease.
- Improves quality of grain (seed), root and fruit crops.
- Modifies fast, soft growth from nitrogen and early maturity from potassium.

Held tightly by soil particles.

Insufficient phosphorus:
- Purple coloring on undersurface of leaves
- Reduced flower, fruit and seed production
- Susceptibility to cold.
- Susceptibility to disease.
- Poor quality fruits and seeds.

Potassium (in % available as):
- Muriate of potash (60%)
- Sulfate of potash (49%)
Nitrate of potash (44% potassium & 13% nitrogen)

Increases resistance to disease.
Encourages stronger, healthier root system.
Essential for starch formation and translocation of sugars.
Necessary for development of chlorophyll through photosynthesis.
Essential for tuber development.
Encourages efficient use of carbon dioxide.
Activates plant enzymes.
Regulates opening & closing of leaf stomata.
Regulates water uptake by plant root cells.

Indication of potassium deficiency:
- Burn or scorching around leaf margins (more with older leaves).

Secondary Nutrients

Calcium
- Found in plant growth regions; essential in formation of new cells.
- Counteracts toxic effects of oxalic acid.
- Absorbed by plants as the calcium ion (Ca⁺⁺).
- Influences absorption of potassium & magnesium and other nutrients.
- Increases pH.

Indication of calcium deficiency:
- Burned tips of young leaves.
- Death of terminal buds and root tips.
- Extremely dark green foliage.
- Premature blossom & bud shedding.
- Weak stems.
- Blossom-end rot on tomatoes, peppers & melons; bitter pit or cork spot on apples & pears. Sweating, discolored spots on fruits.

Magnesium
- Ion form of uptake (Mg⁺⁺).
- Essential for photosynthesis.
- Activates plant enzymes.

Deficiencies:
- Chlorophyll contains magnesium; is translocated in plant to younger leaves if calcium deficient.
- Sandy soils are magnesium deficient.
- Symptoms include chlorosis in older leaves and marginal yellowing in leaf mid-ribs.
- Upward curling leaves along margins.

Sulfur
- Uptake as ion (SO₄²⁻).
Also absorbed from air.
Contained in three amino acids (cystine, methionine, cysteine).
Essential for:
 Protein synthesis.
 Legume root nodule formation.
Odor-causing.

Deficiencies widespread.
- Symptoms include yellowing of young leaves.
- Smallness / spindly plants.
- Retarded growth rate of plants.

Micronutrients

Zinc
- Essential enzyme component in plants.
- Controls synthesis of indoleacetic acid (plant growth regulator).
- Absorbed as zinc ion (Zn⁺⁺).

Deficiency indications:
- Terminal growth areas affected.
- Decrease in stem length and rosettes of plants.
- Fruit bud formations are reduced.
- Leaf mottling (or interveinal chlorosis).
- Twigs die back after first year of growth.

Iron
- Required for the formation of chlorophyll in plant cells.
- Activator for respiration, photosynthesis, & nitrogen fixation.
- Plants uptake iron as ferrous ions (Fe⁺⁺).

Deficiency indications:
- Deficiency can be induced by high levels of manganese or lime in soils.
- Mottling of young leaves. Sharp distinctions between veins and interveinal areas.
- Twigs die back.
- Severe deficiency results in death of entire limbs or the entire plant.

Manganese
- Enzyme activator in plant growth.
- Symbiotic assist with iron in chlorophyll formation.
- High amounts of manganese in soil may reduce iron availability.
- Manganese uptakes in plants as an ion (Mn⁺⁺).

Manganese deficiency:
- Mottling of young leaves.
Mottling is gradual between veins and interveinal areas.

Copper
- Enzyme activator.
- Assists plant in vitamin A production.
- Plant takes up copper in the form of two ions (Cu$^+$ & Cu$^{++}$).
- Can be toxic; need must be established.

Deficiency:
- Stunted growth.
- Terminal tree shoots exhibit dieback.
- Pigmentation is poor.
- Leaf tips wilt (eventually die).
- Oranges show formation of gum pockets around their central piths.

Boron
- Works in plants as a differentiator of meristem cells.
- Regulates metabolism of carbohydrates.

Deficiency:
- Continuous supply is needed by plant.
- Creates “witches-broom” effect with cause of terminal bud death and lateral bud development.
- Leaves on plants thickened, curled, wilted and chlorotic.
- Soft spots on fruit and in tubers.
- Blossom reduction / improper pollination.

Molybdenum
- Taken up by plants as molybdate ion MoO$_4^{--}$.
- Required for transformation of nitrate nitrogen into amino acids.
- Helps legumes fix atmospheric nitrogen.

Deficiency:
- Stunting growth and wilting.
- Scorching around margins; leaf cupping or rolling.
- In cauliflower, creates “whiptail.”
- In citrus, causes yellow spotting.

Chlorine
- Absorbed by plants as chloride ion (Cl$^-$).
- Required for photosynthesis.

Deficiencies are rare, but include:
- Wilting and chlorosis.
- Lateral root branching to excess.
Leaf bronzing.
Tomatoes and barley exhibit chlorosis and necrotic symptoms.

A balance of nutrients is essential in plant nutrition.
Excess of one nutrient can create reduced uptake of another nutrient.

References

Student Activity

- Plant Nutrient Model

Internet Resources

- *Daisy Soil Plant System Simulation Model*
 http://www.agsci.kvl.dk/planteer/daisy/poster.htm
- University of Hawaii, Soil and Environmental Chemistry *Acid Soils in Hawaii: Problems and Management* http://agrss.sherman.hawaii.edu/staff/hue/acid.html

Transparencies

From *Agricultural Science and Technology, Botany / Plant and Soil Science, 510 B - Soil Fertility*:

- Chemical Elements Essential to Plant Growth
- Ten Essential Elements
1-2-3. Student Activity: Plant Nutrient Model

Purpose
- List Four Sources of Plant Nutrients
- List the Primary, Secondary and Micronutrients of Plants and Describe the Function of each for Plant Growth
- Match Nutrients to their Correct Plant Deficiency or Toxicity Symptoms
- Demonstrate an understanding of how a plant interacts with its environment in receiving nutrients.
- Demonstrate an understanding of how a plant thrives with or deteriorates without essential plant nutrients.

Materials needed
Refer to “Daisy” site
(http://www.agsci.kvl.dk/planteer/daisy/poster.htm)
Poster sheet
 - Markers
 - Construction Paper
 - Stencils

or
Computer presentation or drawing program

Procedure
Create a model using poster board or on a computer which demonstrates how a plant receives nutrients from its environment, what those nutrients are, and the effects of deficiency on the plant.

The model should show:
1. The four sources of plant nutrients
2. How the plant uptakes or receives the nutrients
3. What the function of those nutrients are for the plant
4. What happens to the plant when it is deprived of those nutrients

The model can have a “before” and “after.”

References
Purpose

- List Four Sources of Plant Nutrients
- List the Primary, Secondary and Micronutrients of Plants and Describe the Function of each for Plant Growth
- Match Nutrients to their Correct Plant Deficiency or Toxicity Symptoms
- Demonstrate an understanding of how a plant interacts with its environment in receiving nutrients.
- Demonstrate an understanding of how a plant thrives with or deteriorates without essential plant nutrients.

Materials needed
Refer to “Daisy” site
(http://www.agsci.kvl.dk/planteer/daisy/poster.htm)
Poster sheet
 - Markers
 - Construction Paper
 - Stencils
or
Computer presentation or drawing program

Procedure
Create a model using poster board or on a computer which demonstrates how a plant receives nutrients from its environment, what those nutrients are, and the effects of deficiency on the plant.

The model should show:
1. The four sources of plant nutrients
2. How the plant uptakes or receives the nutrients
3. What the function of those nutrients are for the plant
4. What happens to the plant when it is deprived of those nutrients

The model can have a “before” and “after.”

Students should be encouraged to develop the model as creatively as possible (for instance, if they wish to make the model interactive).

Depending upon the number of students in the class, this activity may be appropriate as a group project, as long as the members of the group have distinct roles in the development of the model.

Project can be divided among students (or student groups) according to the demonstration of:
- Nutrient sources
- Primary nutrients
- Secondary nutrients
- Micronutrients
A word about Daisy:
Daisy is a mathematical simulation model. It is used here to demonstrate how a model can look, rather than an attempt to replicate it. Students should be encouraged to develop their models at their own level, demonstrating only what is required for this activity.

References

Factors that Influence Use of Fertilizers

- **Rooting** characteristics of plant species.
- **Nutrient demands** of plants during different stages of the plant’s growth.
- **Physical and chemical characteristics** of the soil and the fertilizer applied.
- **Soil moisture** availability to plants.
- **Irrigation system** type, particularly if irrigation is the major source of water to the plants.

Multiple applications by several different methods.
Plants utilization of nutrients.
Changes nutrients undergo within the soil may affect their availability.

Fertilizer

Material used to provide plants with the nutrients they need.
Adding to growing medium.
Absorbed by roots of plants.

Application

- Growing medium.
- Leaf spray.

Forms

- Solid
- Liquid
- Gaseous

Plants can be damaged by too much, too little, or the wrong fertilizer.
Elemental fertilizer
 Provides one plant nutrient.

Complete fertilizer
 Contains all three primary plant nutrients
 May have select micronutrients

Incomplete fertilizer
 Lacks one of the primary nutrients.

Active ingredient
 Total percentage of nutrients applied.

Inert ingredient
 Filler material as base allowing application of the fertilizer.

Fertilizer analysis
 Percentage by weight.
 Three number designation: grade.
 Composition of active ingredients in fertilizer formulation: 16-4-8 means 16% nitrogen, 4% phosphate, 8% potash.
 Total 16-4-8 = 28% active ingredients.
 28 minus 100% = 72% inert ingredients.

Fertilizer ratio
 Relative proportion of the primary nutrients.
 16-4-8 is a 3-1-2 ratio.
 Zero in a grade means an incomplete fertilizer.

Commercially Available Forms of Nitrogen
 Calcium nitrate
 15.5% nitrogen & 19% calcium
 White, highly soluble.
 Nitrate of soda NaNO₃
 Highly soluble.
 Lowers soil acidity.
 16% nitrogen
 Ammonium nitrate NH₄NO₃
 Not as soluble.
 Gradually available
 33% nitrogen
 Ammonium sulfate (NH₄)₂SO₄
 More acidic.
 Gradually available.
 21% nitrogen
24% sulfur
Crystals in bulk blends should be the same size as other components.

Ammonium nitrate-sulfate
Double salt of ammonium nitrate & ammonium sulfate
Blend of nitric & sulfuric acids with ammonia.
Usually blend is 30% nitrogen & 6.5% sulfur.

Urea
46% nitrogen dry
80% nitrogen wet
Soluble
Less corrosive to equipment
Used as a protein supplement in ruminant feed.
Incompatible with ammonium nitrate in unequal solutions.

Urea formaldehyde
Organic nitrogen.
More gradually available than inorganic nitrogen.
38% nitrogen

Anhydrous ammonia
82% nitrogen
Gaseous ammonia
Lighter than air.
Readily absorbed in water.
Requires pressure containers.
Natural gas is source of hydrogen.
Deep, direct soil application.

Aqua Ammonia
Anhydrous ammonia dissolved in water.
20% nitrogen
Requires low-pressure tanks.
Injected below soil or water surface.

Nitrogen Solutions
Ammonium nitrate and urea in equal solutions.
Stabilizes compounds, creating increased nitrogen availability.

Pressure Solutions
Have appreciable vapor pressure due to more free ammonia present than solution can contain.

Non-pressure Solutions
Non-ammonia nitrogen solutions.

Salts
Reaction of an acid with a base.
Salts break up into cations and anions when dissolved in water.
Nitrogen & Potash compounds have a high index of salts / can cause plants to wilt or die.

Salting Out Point
Precipitation of dissolved salts contained in solutions at specific temperature drops.

Over-fertilization with nitrogen:
- Lowers plant resistance to disease
- Lengthens and weakens stems
- Softens fruits, lowering quality
- Delays maturity & hardening off, increasing winter damage

Under-fertilization of nitrogen:
- Chlorosis (yellowing of leaves)
 - Chlorosis damages a plant’s ability to make use of the process of photosynthesis, preventing the formation of chlorophyll.
 - Older leaves yellow and die. Nitrogen is transferred to younger leaves because nitrogen is in short supply.
 - Creates stunted root growth and stunted top growth.

Phosphate Fertilizers
- **Phosphoric acid**
 - 52% phosphate
 - Produces by-product gypsum during production.
- **Superphosphoric acid**
 - 70% phosphate
 - Molecular structure contains more than one atom of phosphorus.
- **Normal superphosphate**
 - 20% phosphate & 12% sulfur
- **Concentrated supersphosphate**
 - 45% phosphate
 - Granular form

Nitrogen-Phosphates
- **Ammonium Phosphates**
 - Ammoniation of phosphoric acid.
 - Granulated -
 - Common forms used:
 - monoammonium phosphate 11-52-0
 - diammonium phosphate 16-48-0 or 18-46-0
 - ammonium phosphate-sulfate 16-20-0
 - Liquid -
 - Common forms used:
 - 8-24-0
 - 9-30-0
 - 10-34-0
 - 11-37-0

Nitric Phosphates
- Ammoniated, dried and granulated.
Most of the phosphate is in the form of dicalcium phosphate.
Form made in Western Europe contains equal amounts of nitrate and ammonium forms of phosphate.

Potash
Soluble and insoluble forms.
Occur primarily as chlorides and sulfates.
Potassium nitrate and potassium sulfate used when chlorides can injure plants, or when chloride is built up in soil.

Secondary Nutrients

Calcium
- Soil and foliar sprays
- Soil amendments (lime and gypsum)
- Manure
- Irrigation water

Magnesium
- Epsom salts (magnesium sulfate)
- Potassium-magnesium sulfate
- Magnesium nitrate (foliar applicant)
- Dolomitic lime (magnesium & calcium)

Lime (CaCO3)
- Acts as a plant food and diminishes soil acidity (raises pH).
- Furnishes calcium, enhancing formation of plant cell walls.
- Affects availability of other plant food elements.
- Releases phosphorus.
- Diminishes iron & aluminum.
- Activates soil organisms & releases plant food.
- Improves soil structure.

Sulfur
Lowers pH in overly-alkaline soils.
Brings pH level to near neutral or acidic.
Sources:
- Elemental sulfur
- Gypsum
- Sulfuric acid
- Ferrous sulfate
- Ferric sulfate
- Calcium polysulfide solution
- Ammonium polysulfide solution
- Ammonium bisulfite solution
- Ammonium thiosulfite solution
- Manure
- River and rain water
Pesticidal sulfur

Micronutrients

Inorganic salts
- Copper sulfates
- Iron
- Manganese
- Zinc
- Borates (sodium tetraborate used as source for boron)
 - Water-soluble.
 - Boric acid & sodium octaborate used as foliar sprays.
- Molybdates
 - Water-soluble ammonium
 - Sodium molybdate
 - Molybdic oxide

Synthetic Chelates
- Chelating compound combines with metal ion forming ring structure between a portion of the chelating agent & the metal.
- Delays precipitation of the metal ions in the soil (creates insoluble compound).

Natural Organic Complexes
- Metal compounds / by-products of the wood pulp industry.
- Readily broken down by soil microorganisms.
- Used as foliar sprays and mixed with fluid fertilizers.

Organic
- **Sludge** danger of toxic lead & cadmium build-up in soil.
- **Compost**

Special Purpose Fertilizers
- **Coated** (barrier to solubility).
 - Urea (nitrogen source)
 - Sulfur used as coating.
 - Resin coating
 - Thermoplastic coatings
 - Limited water solubility.
- **Uncoated organic**
 - **Slow-release**
 - Limited water solubility with chemical or microbial decomposition / release of nutrients.
 - Organic nitrogen / bacterial degradation
 - Ureaforms
 - Methylene ureas
 - Isobutylidene-diurea / chemical degradation.
Nutrient Conversion Factors
(Nutrients in fertilizers are reported in elemental form except phosphorus & potassium.)
P X 2.29 = P\textsubscript{2}O\textsubscript{5}
P\textsubscript{2}O\textsubscript{5} X 0.43 = P
K X 1.2 = K\textsubscript{2}O
K\textsubscript{2}O X 0.83 = K

Homogenous
Granule / pellets with same formulation.

Bulk blends
Mixes of two or more fertilizers.
Blending methods and spreading may result in uneven distribution due to differences in weight and particle size.

Liquids and Suspensions
Nitrogen solutions, phosphoric acid & liquid mixes.
Liquid mixes
Neutralizing phosphoric acid with ammonia.
Suspensions
Saturated solutions with crystals of plant nutrients (or other materials) suspended in solution.

Dry materials
Ammonium nitrate
Urea
Ammonium sulfate
Phosphates & potash

Liquid materials
Anhydrous ammonia
Aqua ammonia
Urea / ammonia nitrate solutions
Ammonium nitrate solution
Urea solution
Phosphoric & superphosphoric acids
Clear liquid & fluid suspensions
Sulfuric acid
Sulfur materials for liquid formulations

Applications

Surface
Broadcast method
Distributing liquid or dry materials over the soil surface.
Drop spreader / spinning spreader (dry)
Liquid spreader speed of spreading determined by rate of flow.
Tank, pressure gauge, regulator, pump, pipes, hoses, fittings, nozzles, boom mounted on truck, ATV, trailer, tractor, or float mount (over water).
Injection
 Fertilize below surface by injection tube.
 Channels deliver materials to plant root zones.
 Prevents wind-blown or rain removal.

Band Placement (field application)
 Place to the side or below seed or established plants.
 Used for dry or liquid application.

Irrigation
 Sprinkler
 Spitter
 Trickle
 Drip
 Dual-wall tubing systems

Dry fertilizer should be pre-dissolved before entering system.

Foliar
 For quick response to problems.
 Micronutrient application.
 Applied by spraying or overhead sprinkler systems.
 Adjust pressure when hand spraying. Spray droplet size should be regulated according to plant size.
 Low nutrient concentration rates are used to prevent injury to foliage.
 Morning applications are best.

Dry / controlled release granular
 Incorporation into the planting medium.
 When fertilizer does not leach readily.
 Used as starter fertilizers.
 Moistened and use immediately.

Topdress
 Application to the top of the medium.
 Done on long term crops.
 Supplements other methods.

Quick release
 Readily soluble.
 Applications made at regular intervals.
 Applied when foliage is dry.
 Can cause foliar burn if not removed before irrigation.
 Less expensive initially; more expensive over the long term.

Soluble liquid
 Introduced by irrigation.
 Dissolved in warm water in storage tank connected to irrigation system.
 Fertilizer proportioner
 Introduces and meters the concentration of soluble liquid fertilizer.
Indicator dye in liquid fertilizer indicates application.

Gaseous fertilizers

Carbon dioxide fertilization

Injected into greenhouse air by CO$_2$ generators.

References

Student Activity

- Read the Labels

Internet Resources

- Alberta Fertilizer Guide. Alberta Agriculture, Food, & Rural Development
 http://www.agric.gov.ab.ca/agdex/500/4100001.html

- Fertilizer: Nutrient. North Dakota Extension News
 http://www.ext.nodak.edu/extnews/procrop/fer/nutrient.html

 http://agcomwww.tamu.edu/agcom/news/Stories/TWRI/NITROGEN.HTM

 http://www.ewg.org/pub/home/Reports/Nitrate/NitrateUse.html

Transparencies

- Choosing Applications
 From *Agricultural Science and Technology, Botany / Plant and Soil Science, 510 B - Soil Fertility*:
- Information Commonly Found on a Fertilizer Bag
- Fertilizer Analysis
- Plant Nutrient Blends
4-5-6. Student Activity: Read the Labels

Purpose
- Identify plant food elements and percentage of available nutrients as listed on fertilizers.
- Identify whether the source is a dry, liquid or gaseous fertilizer.
- Match the application type for the fertilizers identified.

Materials needed
- Notebook
- Flip chart pages
- Markers

Procedure
Students will visit a local garden supply store and/or a local greenhouse to find and identify at least one each of the following fertilizer types:
- Dry
- Liquid
- Gaseous

In the notebooks record:
1. Brand name and manufacturer.
2. Size of bag (weight) or container.
3. Grade
 - Plant food elements listed
 - Percentage of available nutrients, including micronutrients.
4. Percentage of filler.
5. Acid forming tendency.
6. Application type and methods of application recommended (list all).
7. Descriptions of best use.
8. Safety information.
9. Ask the store manager (and record):
10. Which type of dry and liquid fertilizers are your best sellers? Why?
11. At the greenhouse: did the management utilize gas fertilization?
12. If so, had they compared growth rate success ratios between houses with the gas and houses without? What were their findings?

In class:
In small group discussion, choose a facilitator, a recorder, a presenter, and reporters. The facilitator organizes the flow of the group discussion. Others in the group serve as reporters, reporting the group’s findings to the recorder. The recorder writes down key words, phrases, and findings on the flip chart paper provided by your teacher. The presenter presents the group’s findings to the entire class, with the use of the flip chart paper displayed for the entire class.
As a group, answer the following questions:

- Compare the information regarding best sales among brands. Were there consistent trends? If so, were the same reasons why they were consistent shared among the group’s findings?
- Compare the information regarding use of gas for fertilization in greenhouses. Were the results for this type of fertilization largely in favor of, or not in favor of its use? Why?
- Present your findings to the class.
Choosing Applications

Considerations Before Fertilizing

- Plant rooting characteristics
- Nutrient demands at different growth stages
- Physical & chemical characteristics of:
 - Soil
 - Fertilizer
- Availability of moisture
- Irrigation system
7. Discuss Methods and Procedures Involved in Collecting a Representative Soil Sample

8. Complete a Soils Test Report Form, and Make Fertilizer Recommendations Using the Test Analysis Data

9. Complete a Soluble Salts Test

10. Calculate Problems Comparing Fertilizer Cost by Comparing Cost per Pound of Nutrients

Soil Tests
Test for pH, phosphorus, potassium, calcium, magnesium, and sulfur.
Soil tests must be representative of the area.
Quantifies potential limitations in fertility and irrigation of a soil.
Indicates nutrient levels in soils.
Used to develop an amendment program.

Amendment Program should include information on:
Plant / crop soil use history.
Potential soil production.
Land management practices.

Tests for soil chemical properties:
Assess the availability of essential elements for plant growth.
Assess chemical properties affecting:
Available nutrients
Plant growth
Physical properties of soils.

Soil tests used on a regular basis:
Monitor production
Measure trends and changes.

Choose the laboratory for submission.
University, private, or industry.
Ideal qualities of labs:
High standards of analysis
Fertilizer and amendment recommendations
Answers to soil fertility problems / low yields
Quick turnaround response times.

Soil Sampling
Field samples:
Divide field into uniform (same soil type) areas.
Assign an identification number.
Record the numbers on a map of the sample areas.
Obtain instructions and information sheets from laboratory.
Use a clean plastic bucket.
Prepare and collect samples, carefully following instructions.
Sample 10 to 20 sites within each uniform area.

Collection Depth:
Surface
Subsoil (for soluble salts and levels of nutrients moving through the root zone)
Deep (for unexpected growth patterns / chemical or physical properties)

Time:
Determined by information needs.
Advance of Planting
(e.g.) Fertilizer needs for annuals
Immediate delineation
(e.g.) Cause of poor plant growth
(e.g.) Evaluating salt / sodium hazards

Keep accurate records of:
Areas sampled.
Fertilizer use.
Amendments.
Pesticide use.
Crop / plant growing area histories.

Problem Areas:
Collect samples from the problem areas and the areas of good plant growth.
Take samples at all depths.
Send to the laboratory with a problem description.

Soils Test Report Form
Fill out the soil test report form completely, answering all questions.
Submit with labeled samples according to field area origin (identification numbers).

Applying the results:
Maintain nutrients at full growth yield levels (High Rating) from germination to maturity to support top growth yields, lower unit production costs, and increase profits.
Soil test “medium” results: bring up nutrient level rates to a high rating and check periodically to maintain fertility.
A balanced fertility program optimizes a crop’s efficient use of soil and water.
Proper recommendations depend on field research relating nutrient soil levels to how a plant responds to a certain nutrient.
Laboratories can determine total nitrogen and organic matter reserves.
Nitrogen changes and movement in soil makes assessing nitrogen needs difficult.
Deep sampling (two feet or more) for annual nitrate-N gives a better representation.
Depth of sampling varies with crop, climate and soil type.
Soil test regularly to build and maintain at high levels.

Soluble Salts Test
- Measure suitability of water for irrigation.
- Monitor changes in soil from irrigation.
- Salt content of soil.
- Sodium status of soil.
- Rate of water penetration into soil.
- Presence of toxic elements.

Results
- Relative tolerance of plants to salt.
- Suitability of soil for certain crops.

Presence of Salts
- High water table.
- Salt water contamination occurrence.
- Poor quality of irrigation water.

Dissolved salts / sodium determination
- Dissociate into electrically charged particles / ions.
- Positive / cations (sodium, calcium, magnesium, potassium)
- Negative / anions (chlorides, sulfates, bicarbonates, carbonates)
- Concentrations reported in:
 - **Ppm** (parts per million) for total dissolved solids (1 milligram of salt per kilogram of solution)
 - **Milliequivalents per liter** (me / L) measures the chemical equivalent of an ion.

Total salt content
- Reported as electrical conductivity (EC).
- Measured with an electric conductivity meter.
- The more salt in the water, the better the conductivity.
- **EC** is reported as decisiemens per meter (dS / m).
- **deci** - one-tenth
siemen - reciprocal of one ohm (equal to the conductivity of a circuit or an element having
the resistance of one ohm).

TDS total dissolved solids (evaporating known weight of water to dryness and weighing the
remaining salt).
Multiply EC by 640 = ppm of total dissolved solids (TDS).
Multiply EC by 10 = me / L of total salts.
Electrical conductivity is used to measure the salt content of soils (EC_e), measuring from a saturated
soil extract.
Greater than 4 decisiemens per meter (at 25°C) soil contains appreciable quantities of soluble salts to
interfere with plant growth.

Percent sodium
- Ratio of sodium to the total cations in milliequivalents.
- Soil with large amounts of sodium are associated with clay.
- Wet clay is nearly impervious to water.
- Dry clay forms hard clods.
- Sodic soils form “slick spots” high in exchangeable sodium.

Saline soil
- Interferes with plant growth.

Sodic (alkaline) soil
- Sodium attaches to clay particles.
- Interferes with plant growth.

Non-saline sodic soil
- Free of soluble salts.

Saline-sodic soil
- Sufficient soluble salts to restrict plant growth.

Salinity
- Salt moves in the direction of water.
- Accumulation of soluble salts in the root zone.
- All plants have a maximum tolerance of salt.

Salinity Reduction
- **Intentional leaching** increased irrigation of growing media / area is needed to remove excess salt
 from the root zone.
- **Decreasing salinity** of irrigation waters.

Sodium Reduction
- Increase calcium by adding gypsum or other soluble calcium salt.
- Reduce bicarbonate in the water by adding sulfuric acid, sulfur dioxide, or other acidifying
 amendment.

Sodium permeability
- Soil dispersal or coagulation creating reduced water penetration.

SAR sodium adsorption ratio relative activity of sodium ions as they react to clay.
Value of 10 safe for most nursery soils. Greater than 15 interferes with plant growth. pH is usually less than 8.5.

SAR adjustment

Measured from saturated soil extract.

Evidence of salt accumulation

- Leaf burn.
- Salts crystallize around orifices of drip irrigators.
- Concentrations on tops of beds, border checks or berms; in containers on top of planting media surface and edges of wetting surface.

Evidence of sodium accumulation

- Whitewash on leaves.
- Impermeability of soil.

Calculating Fertilizer Costs

Maximizing fertilization with environmentally sound methods:

- Best Management Practices
- Maximize yields
- Increase plant resistance to drought, disease, insects, stress
- Lower unit costs
- Higher profits

Efficient use of fertilizer

- Rapid plant growth produces soil-holding groundcover.
- Root systems are healthier, holding soil and absorbing water efficiently.
- Plants use nutrients & water more efficiently, increasing residue.
- Residue recycles nutrients / organic matter back into soil and increases soil retention.

Fertilizer represents a small percentage of total production costs. With efficient use, returns are high. Maximum economic yield (MEY) unit costs at highest net return. Sets off negatives (unexpected problems) and expands margin of profit.

Cost Calculation

- On basis of cost per pound of nutrient.

From information on fertilizer bag:

- Divide Price of Fertilizer Per Pound of Material by Guaranteed Percentage.

(E.g.) Fertilizer analysis: 20-10-10 (40%)

Fertilizer cost: $150 per ton or 7.5 cents per pound (to get cents per pound, divide 150 by 2000 [pounds in a ton])

7.5 cents divided by 40 % = $18.75 per pound of nutrient
Calculating costs of materials with only one nutrient.

(E.g.) Fertilizer analysis: 45-0-0 (45%)
Fertilizer cost: $240 per ton or .12 cents per pound
.12) .45 = 26.6 cents per pound

Calculating Fertilizer Application

Information needed:
Amount of nutrient application
Available fertilizers
Method of application.

(E.g.) Amount of nutrient application
40 lbs N per acre
40 lbs P$_2$O$_5$ per acre
20 lbs K$_2$O per acre

Available fertilizers
34-0-0 (ammonium nitrate)
18-46-0 (diammonium phosphate)
0-0-60 (potassium chloride)

Formula:
Amount of nutrient application per acre divided by percentage of nutrient in fertilizer used = Amount of fertilizer application per acre

With single nutrient formulas:

Potash
20) .60 = 33 lbs per acre of 0-0-60

With multiple nutrient formulas:

Phosphate
40) 46 = 87 lbs per acre of 18-46-0

Then:
Multiply % of nitrogen supplied by 18-46-0
87 x .18 = 16 lbs N per acre

Subtract pounds of additional nitrogen needed
40 - 16 = 24 lbs N needed
Divide lbs of nitrogen requirements from ammonium nitrate %
24) 34 = 71 lbs per acre of 34-0-0
Total requirements:
- 87 lbs per acre of 18-46-0
- 71 lbs per acre of 34-0-0
- 33 lbs per acre of 0-0-60
- 191 lbs per acre total

References

Student Activity
- Interpreting a Soil Survey Map

Student Labs

From *Agricultural Science and Technology, Botany / Plant and Soil Science, 510 B - Soil Fertility*:
- Soil Fertility Assignment Sheet #1
- Soil Fertility Assignment Sheet #2
- Soil Fertility Assignment Sheet #3
- Soil Fertility Assignment Sheet #4
- Soil Fertility Assignment Sheet #5

Internet Resources

Locating Your Land Holdings in the Soil Survey Report
http://hammock.ifas.ufl.edu/txt/fairs/16451

THE SOIL ORDERS
http://atlantic.evsc.virginia.edu/~alm7d/soils/ids.html

USDA-NRCS Northwest Regional Management Office (MO)
http://www.or.nrcs.usda.gov/soil/mlra.html

Transparencies
- SAR
From *Agricultural Science and Technology, Botany / Plant and Soil Science, 510 B - Soil Fertility*:

- Soil Sampling (A,B,C,D,E,F,G,&H)
- Soil Sampling: Number Each Sample and Record Its Origin
- Soil Sample Bag
- Soil Test Request and Report Form
- Compare Cost of Per Pound of Nutrient
- Calculate Amount of Fertilizer to Apply
7-8-9-10. Student Activity: Interpreting a Soil Survey Map

Purpose
- Understand how soil survey maps are helpful indicators of soil productivity.
- Interpret a soil survey map.

Information
Soil survey maps provide:
- Summary of major soil types in a set area.
- Aerial photographs of areas to scale.
- Major soils identified and mapped with boundary lines.
- Summary of land uses and limitations.

Materials Needed
- County or regional soil survey map
- Notebook

Procedure
- Choose a property in your area that you wish to research with the soil survey map.
- Locate the property on the soil survey map.
- With the information provided, identify the soil types on the property.
 (Write out the code and refer to the index for the soil description.)
- Record your findings in the notebook.

Additional information may be found on the Internet (see USDA - NRCS Northwest Regional Management Office [MO] under “Internet” on your information sheet for this section).

Q&A
(Record your answers in your notebook . . .)
- What are the land use recommendations for the area? . . . the limitations?
- What are the apparent plant growth environment problems associated with this type of soil (if any . . .)?
- In general, what type of nutrient amendments would this soil normally require?
Sodium Adsorption Ratio

This is the relative activity of sodium ions react with clay.

$$\text{Na} \quad \sqrt{\frac{(\text{Ca} + \text{Mg})}{2}}$$

Proportion of sodium on the clay fraction of soil.

$$\text{Na} \quad \sqrt{\frac{(\text{Ca} + \text{Mg})}{2}} \left[1 + (8.4 - \text{pHc})\right]$$

Added effects of precipitation and calcium solution in soils.

R is a good index of sodium and permeability problems.
1. The four sources of Plant Nutrients are
___ ___________________________________
___ ___________________________________

2. ___________ and ___________ are two of the factors that influence the use of fertilizers.

Multiple choice

3. Micronutrients
 a. must be present in large amounts.
 b. are the most important nutrients for plant growth.
 c. are essential but only needed in small amounts.
 d. must be present in moderate amounts.

4. Which of these is NOT a primary nutrient?
 a. Calcium
 b. Nitrogen
 c. Phosphorus
 d. Potassium

5. In a fertilizer analysis, the fertilizer ratio 16-4-8 would indicate
 a. the pH levels of the active and inert ingredients in an elemental fertilizer.
 b. a 16%-4%-8% ratio of active ingredients in a fertilizer composition.
 c. a solubility factor of 4 parts aqua ammonia to 8 parts water in 16 liters of water.
 d. the pressure required to distribute 16 gallons of a 4:8 saturated fertilizer solution.

Match the Primary, Secondary or Micronutrient deficiency with its subsequent characteristics.

 6. Nitrogen A. Upward curling of leaves along margins
 7. Phosphorus B. Chlorosis in older leaves
 8. Potassium C. Soft spots on fruit in tubers
 9. Sulfur D. Mottling of young leaves
 10. Magnesium E. Susceptibility to cold
 11. Iron F. Retarded growth rates of plants
 12. Boron
G. Burns or scorching around leaf margins, especially in older leaves

True or False

___ 13. Soil tests are used on a regular basis to measure trends and changes.

___ 14. Submitting a soil sample with a soil test is not required if the soil test form is completed and submitted.

___ 15. Fertilizer represents a moderate to high percentage of total production costs.

___ 16. In the cost calculation of fertilizer, the Price of Fertilizer Per Pound of Material is divided by the Guaranteed Percentage.

In what order should these SoilSampling steps go?

___ 17. Fill out the soil test report completely, answering all questions.

___ 18. Divide field into uniform (same soil types) areas.

___ 19. Obtain instructions and information sheets from laboratory.

___ 20. Assign an identification number to each sample area.

___ 21. Submit test form with labeled samples according to field are origin.

___ 22. Prepare and collect samples, carefully following instructions.

___ 23. Record the numbers on a map of the sample areas.
1. The four sources of Plant Nutrients are ___________________________ ___________________________

Answers: Water, Light, Air, Soil

2. ____________ and ____________ are two of the factors that influence the use of fertilizers.

 Answers can include:
 Rooting characteristics
 Nutrient Demands of plants
 Physical and chemical characteristics of the soil and the fertilizer applied
 Soil moisture
 Irrigation system type

Multiple choice
3. Micronutrients

 a. must be present in large amounts.
 b. are the most important nutrients for plant growth.
 c. are essential but only needed in small amounts.
 d. must be present in moderate amounts.

4. Which of these is NOT a primary nutrient?

 a. Calcium
 b. Nitrogen
 c. Phosphorus
 d. Potassium

5. In a fertilizer analysis, the fertilizer ratio 16-4-8 would indicate

 a. the pH levels of the active and inert ingredients in an elemental fertilizer.
 b. a 16%-4%-8% ratio of active ingredients in a fertilizer composition.
 c. a solubility factor of 4 parts aqua ammonia to 8 parts water in 16 liters of water.
 d. the pressure required to distribute 16 gallons of a 4:8 saturated fertilizer solution.
Match the Primary, Secondary or Micronutrient deficiency with its subsequent characteristics.

_ B_ 6. Nitrogen
_ E_ 7. Phosphorus
_ G_ 8. Potassium
_ F_ 9. Sulfur
_ A_ 10. Magnesium
_ D_ 11. Iron
_ C_ 12. Boron

A. Upward curling of leaves along margins
B. Chlorosis in older leaves
C. Soft spots on fruit in tubers
D. Mottling of young leaves
E. Susceptibility to cold
F. Retarded growth rates of plants
G. Burns or scorching around leaf margins, especially in older leaves

True or False

T 13. Soil tests are used on a regular basis to measure trends and changes.
F 14. Submitting a soil sample with a soil test is not required if the soil test form is completed and submitted.
F 15. Fertilizer represents a moderate to high percentage of total production costs.
T 16. In the cost calculation of fertilizer, the Price of Fertilizer Per Pound of Material is divided by the Guaranteed Percentage.

In what order should these Soil Sampling steps go?

6 17. Fill out the soil test report completely, answering all questions.
1 18. Divide field into uniform (same soil types) areas.
4 19. Obtain instructions and information sheets from laboratory.
2 20. Assign an identification number to each sample area.
7 21. Submit test form with labeled samples according to field area origin.
5 22. Prepare and collect samples, carefully following instructions.
3 23. Record the numbers on a map of the sample areas.
Unit Objectives

1. Match terms and definitions associated with organic matter.
2. List sources of soil organic matter.
3. List the importance of organic matter to plant production.
4. Describe how organic matter is produced.
5. List the factors affecting the rate of organic matter decomposition.
6. Identify how soil temperature, aeration, moisture, and reactions affect the biology of soil and the rate of decomposition.
7. List the basic ways in which nutrients obtained from organic matter affect the soil.
8. Identify the factors that cause the loss of organic matter from soil.
9. Name the types of organic matter which can be applied to soil.
10. List the types of manure that can be produced.
11. List the functions of growing a crop to produce organic matter.
12. List the purposes of mulching.
13. Select the organic and inorganic mulches that are available.
14. Select the factors to consider when choosing mulching material.
15. List the four physical properties of soil.
16. Identify soil particles according to size, and discuss what methods are used to determine soil texture.
17. Discuss the functions of soil related to plant growth, development and maintenance.

18. Discuss how acidity and alkalinity affect the soil and methods of correcting pH problems.

19. Identify the advantages and disadvantages of using actual soil versus potting soil.

20. Match terms and definitions associated with organic fertilizers.

21. List the disadvantages of organic fertilizers.

22. Select other sources of organic fertilizers.

23. Discuss the value of humus and organic fertilizers to soil fertility and plant growth.

24. Demonstrate the ability to construct a compost pile.
1. Match Terms and Definitions Associated with Organic Matter

2. List Sources of Soil Organic Matter

3. List the Importance of Organic Matter to Plant Production

Organic Matter
Decayed or decaying remains of plants and animals.
(E.g.) leaves, bark, manure.
Soil organisms
Substances used by soil organisms.
Microbial bacteria

Nutrients released for plant growth depend upon:
Temperature (macro and micro environment)
Moisture
Aeration
Soil pH
Microbial population of soil
Quantity of plant residues
Chemical nature of plants returned to soil

Chemical Composition of Soil Organic Matter
Sources of food for microorganisms:
Polysaccharides
Cellulose
Hemicelluloses
Sugars
Starches
Pectin

Lignins
Woody plant materials

Proteins
Contain nitrogen

Fats
Waxes

Decomposition is aided by:
Bacteria
Fungi
Actinomycetes (mycelium-forming bacteria)
Earthworms and insects
 Ingest organic residue and soil, passing it through their bodies and generating castings which bind soil.
 Transport microbes, distributing them throughout the soil.

Humus
Final product of decomposition.

Importance of Organic Matter to Plant Production
Improves:
 Aeration
 Water infiltration
 Drainage
 Soil structure opens up tight pore spaces in soil.
 Soil moisture-holding capacity.
Provides:
 Negatively-charged colloids.
Holds and exchanges:
 Nutrient cations.
Stabilizes:
 pH of soil
 Soil micronutrient availability.
High in nutrient value.

Organic Matter as Energy
Soil organisms require organic matter.
Ammonia produced as by-product of soil organisms is nitrified by microbial bacteria.

Soil microbes Versus Plants
Both require nitrogen.
Microbes can rob availability of nitrogen to plants if insufficient nitrogen exists in soil.
Maintaining balance is essential for plant growth.

References

Student Activities

- **Writing the Researcher**

From *The Growing Classroom: Garden-Based Science*, Addison-Wesley (p.77):

- **Living in the Soil**

Internet Resources

Soil Organic Matter
http://res.agr.ca/ecorc/program3/pub/status/soilom.htm

Benefits of Adding Organic Matter
http://hammock.ifas.ufl.edu/txt/fairs/29671

Walz, J.Y., Ph.D. The Effect of Natural Organic Matter Between Colloidal Particles.
http://www.mcl.tulane.edu/cbr/DoD_Projects/Walz_home.html

Transparency

- **The Carbon Cycle**
1-2-3. Student Activity: Writing the Researcher

Purpose
- Understand the contribution of organic matter to soil.
- Understand how research generates questions as much as answers.
- Discover how writing generates active thought and learning.

Procedure
- Use the internet to research current studies on organic matter in soil (one research project is listed under Internet Resources for this section).
- After reading the research project description and/or results, generate and write questions to researchers about their research.

 Include in your questioning strategy:
 ⇒ Any curiosity you have about how the researchers arrived at their decisions to study (fill in the blank).
 ⇒ Play the devil’s advocate with the researchers. Ask them, “What if?” questions related to the results of their studies.

- Write a brief report detailing your questioning strategy and results. Cite your internet sources.
- Present your questions and responses to the class, choose one project response, and add what you would have studied if the project had been your own.
 Include:
 ⇒ Attempt to resolve the problem in a different way.
 ⇒ What would you hypothesize for your results?
 ⇒ Invite the class to debate your hypothesis.

Notes
The Carbon Cycle

Humus

Plants Die & Decay

Plants are Eaten

Animals Die and Decay

Nutrients

Animals
Organic matter is produced in three steps:

Degradation
- Organic materials are broken down by the process of:
 - Microorganisms consuming proteins and carbohydrates.
 - Microorganisms feed and multiply.
 - Create heat energy.
 - Release water and carbon dioxide.
 - Microorganisms reach dormancy or consummation by other microorganisms.
 - Soil temperature rises.

Conversion
- Soil temperature drops.
- Microorganisms tolerant of lower temperatures complete the degradation process.
- Microbes will consume soil nitrogen to the point of plant deprivation.

Curing
- Microbial activity slows.
- Soil temperature cools.
- Larger invertebrates consume, move, and excrete throughout the soil.

Factors Affecting Rate of Organic Matter Decomposition

The Activity of Organisms
- **Utilization by organisms of carbon and nitrogen.**
 - Carbon for energy.
 - Nitrogen for growth and reproduction.
Undigested remains are humus.

Feeding Patterns (the decomposition food chain)
Digestion excrement of one organism becomes food for another.
Organic material undergoes progressive, continuous digestion-produced decomposition.
End product is humus.

Decomposition rate is directly proportional to the numbers of organisms present in the soil.
Microbe population increases as food is available.
Greater numbers of microbes more rapidly break down organic matter.
Ratio of carbon and nitrogen materials available is important to the rate of decomposition.

Carbon
- Dried leaves
- Grass straw
- Wood chips / bark
The ratio of carbon to nitrogen in humus is about 15 to 1.
Organisms need the proper ratio to break down materials.
Too much carbon takes more time to generate a population large enough to consume materials.

Nitrogen
- Animal manure
- “Green” plant materials
Nitrogen balances carbon.
Heat generated from microbial activity speeds up the process of decomposition.
Without enough nitrogen decomposition slows and the soil temperature cools.

Air
- Oxygen is needed for organisms to live and reproduce.
Feed on surfaces with air contact.
Smaller particles allow more air contact.
Anaerobic conditions allow decomposition but very slowly.
Different bacteria work in anaerobic conditions.

Moisture
- Balance of moisture important.
Too little moisture - slows decomposition.
Too much moisture - floods air spaces - creates smell due to forced air out.
(i.e., wetland muck)
Ideal ratio: 40 to 60 percent moisture (damp).

Bacteria Do the Work
Three main types:
Psycrophiles
- Prefer cool soil temperatures (to 280°F).
Digest carbon.
Generate heat.

Mesophiles
Digest carbon.
Prefer 60° to 70°F.
Can raise temperature over 100°F.

Thermophiles
Work above 100°F.
Temperature kills pathogens and seeds.
Prefer 131° to 140°F.
Above 160°F kills thermophiles and other beneficial organisms.
Eventually soil cools and mesophiles decompose remaining organic material.

Actinomycetes
Transitional between bacteria and fungi.
Microorganisms break down organic matter in the latter half of decomposition.
Reduce lignin and more resistant materials.
Secrete digestive enzymes which help decompose cellulose, protein, and starch.

Fungi
Break down cellulose and lignin (resistant woody parts).

Large Invertebrates
As they feed, break raw materials into smaller pieces.
Make materials easier for microorganisms to process.
Distribute microorganisms by transport microorganisms from one site to another.
Excrete organic material.
Move to outer surface of soil when temperature rises by microbial activity.
Return when soil cools.

Soil Food Web:
- Mites & springtails eat fungi.
- Nematodes eat bacteria.
- Pseudoscorpions eat mites, springtails, and nematodes.
- Pseudoscorpions eaten by other invertebrates.
- Beetles, millipedes, sowbugs, slugs, and snails eat plant tissue.

References

Student Activities

From *Bottle Biology*, Kendall / Hunt (p. 33):
- Soil Meditations

From *The Growing Classroom: Garden-Based Science*, Addison-Wesley (p. 69)
- Space Travelers

Internet Resource

Cornell Composting Science & Engineering
Invertebrates of the Compost Pile
http://www.cfe.cornell.edu/compost/invertebrates.html

Transparencies

- Breakdown: the Soil Organisms
- Microorganisms and the Rate of Decomposition
Breakdown: The Soil Organisms

The Microorganisms

Chemical Breakdown:
Bacteria
Fungi
Actinomycetes

The Larger Invertebrates

Feed, Move and Transport, Excrete
(e.g.)
Earthworms
Centipedes
Mites
Nematodes
Pseudoscorpions
Rove beetles
Sowbugs
Springtails
Symphylans
Microorganisms and the Rate of Decomposition

Organism Population

CO₂ and H₂O

Original Compounds

Compounds synthesized by microorganisms

Soil Humus

New Soil

Fresh to Older Humus

Time
7. List the Basic Ways in Which Nutrients Obtained from Organic Matter Affect the Soil

8. Identify the Factors that Cause the Loss of Organic Matter from Soil

9. Name the Types of Organic Matter Which Can be Applied to Soil

10. List the Types of Manures that Can be Produced

11. List the Functions of Growing a Crop to Produce Organic Matter

Benefits of Organic Matter to Soil

Physical properties of soil are improved.
Better pore structure / drains efficiently, yet holds air and soil moisture.
Clay, silt, and sandy soils become more like loam.

Addition of microorganisms to soil:
Decompose organic matter in soil.
Convert nitrogen, phosphorus, potassium, calcium, and micronutrients into soluable forms for plants to absorb.
Addition of nitrogen-fixing bacteria.
Manufacture antibiotics that protect plants from disease.

Contribution of nutrients:
Carbon/nitrogen ratio depends on source of raw materials.
Slower, long-term release of nutrients.
Organic matter is food source for existing soil microorganisms.
Acids formed as a by-product of decomposition help break down rock particles in soil, releasing more nutrients to plants.

Balanced soil chemistry
Avoids extremes of alkalinity or acidity.
Increases buffering capacity - ability to resist change in pH.
Bonds micronutrients:
Iron, zinc, copper, manganese made available to plants.
Moderates soil temperature
Microbial activity stimulates warmer soil for better seed germination in spring. Cooler summer temperatures due to increased aeration and moisture-holding capacity. Maintains more ideal soil temperature for plant growth: 65° to 85°F.

Influences plant health
Consistent supply of water, air, and nutrients results in uniform root growth. Larger population of beneficial soil microorganisms control harmful microorganisms. Healthier plants are more pest-resistant (weaker plants are more subject to predation). Controls harmful soil fungal growth with larger populations of beneficial soil bacteria and fungi. Toxicity of decomposed leaf compounds to harmful organisms (i.e., decomposed pine needles kill nematodes).

Loss of Organic Matter in Soil

Vegetation removal
Erosion
Leaching due to soil texture.
Sandy soils lose more water and oxidize the rest.

Adsorption by plants.

Rate of Organic Decay
Most organic materials entering the soil carry large amounts of carbon and small amounts of nitrogen. Competition for available nitrogen is high between soil microbes and plants. Microbial activity to break down influx of carbon requires nitrogen to build their energy level.

Nitrate depression:
Reduced nitrogen availability to plants when microbial activity is high during carbon breakdown.
Nitrification picks up when carbon dioxide formation is reduced from reduction in microbial activity.

Stabilization:
At bottom of cycle nitrogen is available to plants.

Managing the carbon/nitrogen ratio is therefore very important to amending soils with organic matter.

Figuring the Organic matter to nitrogen ratio:
Organic matter content is 1.7 times the carbon content in soil. If a carbon to nitrogen ratio of 11.7 to 1 is assumed, then the organic matter to nitrogen ratio is 11.7 X 1.7 = 20:1
Temperature and rainfall

Warm climates accelerate decay and the disappearance of organic material. Increasing moisture favors nitrogen and building organic matter.
A balance, therefore, is reached where the average annual temperature is cooler and moisture is uniform.

Vegetation Type

Vegetation higher in nitrogen-fixing ability (legumes) increase nitrogen in soil. Grasses cycle faster, regenerating soil organic matter more efficiently than a forest cover.

Types of Organic Matter Which Can be Applied to Soil

Sod and green manure
Animal manure
Compost

Piling up kitchen, garden, and yard waste and permitting them to decompose from six weeks to six months, depending upon temperature, moisture, and material size. Some farm manures are better composted before application.

Organic amendments

Bark or sawdust
Peat moss

Need to supplement with nitrogen. Sawdust lowers pH / need to supplement with lime in acid soils.

Bark and sawdust

Used as mulch. Mixed with soil to improve aeration and drainage.

Peat moss

Used in container production as propagation medium or to improve aeration and drainage.

Types of Manure

Green manure

Animal manures

Source of slow-release nutrients. Stable manure has low concentrations of plant nutrients. Must apply at high rates or frequently. Application in late winter and cultivated into soil in spring. Weeds are a problem.
Poultry manure is higher in nitrogen but decays rapidly, releasing ammonia and causing plant injury. Both manure types are best by composting prior to use.

Functions of Crops Producing Organic Matter (Green Manure)

Grasses
- Supply organic matter.
- Root soil.
- Cycle quickly.

Legumes
- Improve drainage.
- Fix nitrogen.

Green manure types:
- Annual ryegrass
- Alfalfa
- Field corn
- Foxtail millet
- Soybeans
- Sorghum
- Sudan grass
- Sudan-sorghum hybrids
- Wheat over-seeded with clover.

References

Student Activity

From *The Growing Classroom: Garden-Based Science*, Addison-Wesley:

- **The Matchmaker** (p. 93)

Student Labs

From *Bottle Biology*, Kendall / Hunt:

- **Decomposition Column** (p. 11)
● *Rot Race: A Decomposition Experiment* (p. 15)
● *What Is All That Rot?* (p. 16)

Internet Resources

Soil Organic Matter
http://hammock.ifas.ufl.edu/txt/fairs/17729

Organic Matter
http://hammock.ifas.ufl.edu/txt/fairs/177553

Watersheds Organic Matter
http://h2osparc.wq.ncsu.edu/info/norganics.html

Transparencies

● *Temperature / Moisture Effects on Organic Matter*

From *Agricultural Science and Technology, Botany / Plant and Soil Science, 510 A - Elementary Study of Soils*:
● *Soil Profile*

From *Agricultural Science and Technology, Botany / Plant and Soil Science, 510 B - Soil Fertility*:
● *Nutrient Sources*
As the average temperature increases, soil organic matter decreases due to increased decay rates.

As the average moisture level increases, soil organic matter increases due to better growth.
12. List the Purposes of Mulching

13. Select the Organic and Inorganic Mulches that Are Available

14. Select the Factors to Consider when Choosing Mulching Material

Purpose of Mulching

- Retain soil moisture by reducing runoff:
 - Protect against sheet erosion, gullies, and rills.
 - Protect against seed & fertilizer displacement.
- Allow more moisture absorption by soil.
- Reduce soil moisture loss by preventing evaporation.
- Keep soil cool.
- Protect roots from heat, cold, or drought.
- Keep fruit clean.
- Allow earlier planting.
- Protect seeds during germination.
- Allow plant establishment.
- Weed control.

Organic and Inorganic Mulches

Organic

- From living material (i.e.):
 - Tree bark
 - Pine needles
 - Rice hulls
 - Peat moss
 - Wood chips
 - Corn cobs
 - Coco bean hulls
 - Straw
 - Sawdust
 - Manure
 - Chopped leaves
Stubble (keep refuse of previous crop in field)
Grass clippings
Seaweed (rinse first)

Inorganic

From non-living material (i.e.):
Gravel
Crushed stone
Sand
Brick chips
Paper (not considered organic as a mulch)
Plastic

Paper and plastic mulches are used in truck and vegetable gardens and pineapple growing for row culture.

High in cost but very effective in:
- Control of weeds
- Conserving moisture
- Encouraging rapid growth
- Eliminating need for cultivation.

Factors to Consider when Choosing Mulching Material
Organic
Regional availability.
Decay quickly in the landscape.
Require a yearly top dressing for aesthetics and due to decay.

Inorganic
More permanent.
Seldom require top dressing.
Wide variety of materials generally available.

Some mulches should be used with caution.
Juglone - walnut leaves / highly toxic to plants.
Phenols - maple leaves / inhibit root growth.
Acidic - pine needles / good for acid-loving plants / not for neutral or alkaline situations / control soil fungi (i.e. fusarium).

Leaves which should be composted first for use in general conditions:
Acacia
California bay
Camphor
Cypress
Eucalyptus
Madrone
Oak
Pine
Pittosporum
Red cedar
Walnut

Mulch thickness

Inorganic:
More than 4 inches thick can smother soil (restricts oxygen).

Organic:
Leaves break down fast / start with 6 to 8 inch layer / breaks down to 2 to 4 inches.
Wood chips break down slowly / start with 2 to 3 inches.

Spread mulch on moist (but not saturated) soil.

When to mulch:

Fall
Garden beds.
Around trees and shrubs.
Work previous year’s mulch into soil.

Spring
Remove mulch to warm soil.
Replace mulch when plants are established.
Leave mulch around trees and shrubs.

Add mulch
When top dressing thins.

Mulch Problems

Cold soil into spring.
Remove to warm up.

Instability
Siting mulch on slopes or windy areas.
Use heavier materials.

Mice
Keep organic mulch two inches from trunks of trees and shrubs.
Put down after ground freezes.

Slugs and snails
Prefer wood chips and bark.
Use pest control measures.

References

Student Activities

From *The Growing Classroom: Garden-Based Science*, Addison-Wesley:
- What’s to Worry? (p. 96)
- Splash (p. 99)
- A Day at the Races (p. 101)

Internet Resources

NebGuide
Cooperative Extension, Institute of Agriculture and Natural Resources
University of Nebraska-Lincoln
http://ianrwww.unl.edu/ianr/pubs/extnpubs/hort/95-1257.htm

Various Mulches Available
http://aggie-horticulture.tamu.edu/plantanswers/earthkind/ekgarden20.html

Protecting Trees from Winter Injury
NDSU Extension Service Horticulturists
http://ndsuext.nodak.edu/extnews/askext/treeshr/1416.htm

Transparencies

From *Agricultural Science and Technology, Botany / Plant and Soil Science, 510 C - Soil Conservation*:
- Soil Detachment by Raindrops
- Water Erosion
- Erosion Caused by Running Water
- Factors Influencing Soil Erosion
15. List the Four Physical Properties of Soil

16. Identify Soil Particles According to Size, and Discuss What Methods Are Used to Determine Soil Texture

17. Discuss the Functions of Soil Related to Plant Growth, Development, and Maintenance

18. Discuss How Acidity and Alkalinity Effect the Soil and Methods of Correcting pH Problems

19. Identify the Advantages and Disadvantages of Using Actual Soil Versus Potting Soil

The Four Physical Properties of Soil

Air

Water

Available capillary water
Water held around soil particles in pore spaces available for plants.
Clay particles provide the surface area for clinging water.
Gravitational water (downward motion);
Free-moving (moves in all directions);
Unavailable capillary (can only be moved as vapor).

Minerals
Sand
Silt
Clay

Organic Material
Decayed remains of plants and animals.

Combined in varying amounts in different types of soils.
Variety of moisture levels in soils.
Soil Particles According to Size

Sand
Largest mineral particles.
Soils more than 85% sand are classified as sand.
Sand assists soil drainage.
Too much sand may not hold enough moisture for plant growth.

Silt
Particles smaller than sand.
Formed by water and other action that breaks minerals down.
River bottomland (the land along the watercourse of a river valley) is high in silt deposits due to overflowing waters.

Clay
Smallest-sized particles.
At least 30% clay.
Fill spaces between sand and silt particles.
Holds water; keeps soil moist.
Slow drying, forming a hard, compact surface known as hardpan.
Hardpan is not good for plant growth.
Restricts root growth and moisture adsorption.

Loam
Particles of intermediate size.
Equal parts sand, silt, and clay.
If more sand, sandy loam.
If more silt, silty loam.
If more clay, clayey loam.
Usually contains high amounts of organic matter.
Loam is excellent soil for plant growth.

Methods Used to Determine Soil Texture

Soil texture
Determined by proportions of sand, silt, and clay present in soil (mechanical analysis).

Determination by feel:
- Loose, large particles, and crumbly - sandy
- Wet, ribbonlike - clayey
- Moist, clingy, finer particles than sand - silty
- Holds together when squeezed yet breaks apart easily - loam

Determination by color (lighter colors generally sandy; darker brown colors more toward loam; grey - clay).

Determination of organic content.

Soil triangle
Method of classifying soil on the basis of mineral content / texture.
Twelve textural classes:
1. Clay
2. Sandy clay
3. Silty clay
4. Clay loam
5. Silty clay loam
6. Sandy clay loam
7. Loam
8. Sandy loam
9. Loamy sand
10. Sand
11. Silt loam
12. Silt

Exchange capacity
Ability to hold plant nutrients.
Related to amount & kind of clay in soil.

Water-holding capacity
Determined by particle size distribution.
Fine-textured soil holds more water than coarse-textured soil.
More compact.
Slower movement of air and water throughout.
Difficult to “work” soil.

Soil structure and organic matter

Four primary types / shape and arrangement of aggregates:
Plate-like or platy
Particules arranged on a horizontal plane
Puddling or pond-like

Prism-like / prismatic / columnar
Particules arranged around a vertical line
Bounded by flat, vertical surfaces
Arid

Block-like / angular blocky / subangular blocky
Equal lengths of all three dimensions
Humid

Spheroidal / granular / crumb
Rounded aggregates
High content of organic matter
Formed by decomposition of organic matter - stable.
Formed by physical forces of freezing, thawing, drying - unstable / decompose rapidly.

Functions of Soil Related to Plant Growth, Development, and Maintenance

Moisture - availability to plant by soil / nitrogen-fixing ability / moisture-fixing ability.
Aeration - pore space allows air to flow in and out; release of carbon dioxide.
Heat transfer - warming and cooling to maintain moisture balance and good germination conditions.
Impeding or promoting root growth - too much clay in soil can impede root growth by reducing pore space; little or no clay reduces nitrogen-fixing ability of soil and moisture bind necessary for root adsorption.

Acidity and Alkalinity Effects on Soil

The relative concentrations of hydrogen ions (H+) and hydroxyl ions (OH-) in the soil solution indicate the range of active acidity in the soil solution as measured in pH values.

pH Values Can Indicate:
- Acid soil
 With a higher concentration of hydrogen ions.
- Alkaline soil
 With a higher concentration of hydroxyl ions.
- Neutral soil
 The two kinds of ions (H+ and OH-) are present in equal amounts.

Soil Reaction to Ph and Methods of Correcting Ph Problems

Nutrient availability
- Varies at different pH levels.
 - Primary nutrient maximum availability is between 6.5-7.5 with a high availability of other nutrients.
 - High alkalinity can affect nutrient availability. Sulfur is added to lower pH.
 - Use of nitrogen fertilizers contributes to soil acidity.
- Improves nutrient uptake in high pH soils (overly alkaline) but decreases nutrient uptake in low pH soils.
- Hence, the necessity for soil testing.

Solubility of toxic substances
- Cations removed from soil by leaching are replaced with acid-forming hydrogen & aluminum which is toxic to plants.
- Liming the soil - calcium carbonate acts as a buffering agent to acidification.

Root cell pH must be in the correct range for the plant to insure good uptake ability of soil solution-held nutrients and water
- Cation exchange capacity of soil
 - Is the measure of the quantity of cations that can be adsorbed or held by a soil.
- Clay particles and organic matter
 - Carry a net negative charge.
Cations (positively charged) are attracted to and held by clay and organic matter. Calcium, magnesium, potassium, ammonium are cations essential to plant growth. Sodium and hydrogen are cations affecting nutrient and moisture availability to plants. Highly acid soils have a high percentage of adsorbed hydrogen. Neutral or favorable pH (6.0 to 8.0 range) is predominant in calcium ions. Sodium ions - resist water. Calcium ions - favor water.

Adjusting pH for cation exchange capacity:
Mineral soils with a high exchange capacity are more fertile; they resist loss of plant nutrients by leaching.

Soil microorganisms
Bacteria, fungi, actinomycetes, and algae
• Effect fertility level of soil.
• Decompose organic material.
• Fix nitrogen from the atmosphere.
• Release nutrients to plants.
Heterotrophic bacteria
Decomposers
Autotrophic bacteria
Obtain energy from the oxidation of minerals.
Nitrification - oxidation of ammonium to nitrate nitrogen - provides nitrogen for plant growth.
Convert atmospheric nitrogen into useful forms.
Nodule bacteria (rhizobia)
Live in conjunction with roots of legumes.
Derive energy from carbohydrates of host plants.
Fix nitrogen from soil atmosphere.
Free-living bacteria (azotobacter and clostridium)
Fix atmospheric nitrogen.

Biological activity is favored at near or neutral pH, with good soil aggregation and structure.

Advantages and Disadvantages of Using Actual Soil Versus Potting Soil

Potting Soil
Advantages:
Combined with organic material (bark, peat moss, leaf mold, compost) and mineral matter (soil, sand, perlite, vermiculite) mixed in desired proportions produce best porosity, drainage, and moisture retention.
Sterilization lessens the danger from soilborne disease.
Disadvantages:
When soilless, dry out fast.
Need frequent fertilization.
Leach from frequent watering.

Disadvantages:
When soilless, dry out fast.
Need frequent fertilization.
Leach from frequent watering.

Soil

Advantages:
Soils high in organic matter release nutrients slowly to plants.
Have good water-holding capacity.
Good aeration.
Good source of nitrogen.

Disadvantages:
Soils not high in organic matter do not have complete availability of nutrients.
May need pH adjustments per soil and plant type.
May need additional fertilization and organic amendments.
May need increased watering due to need for moisture, and to rid soils of excess salts.
Due to swing cycle in available nitrogen caused by microorganisms, temporary nitrogen depletion and stunted plant growth may result.
Organic matter amendments to soils can lower soil pH, increasing acidity over time.

References

Student Activities

- If I were a Schefflera . . .

From *The Growing Classroom: Garden-Based Science*, Addison-Wesley (p. 75):

- Water, Water Everywhere

From *Bottle Biology*, Kendall / Hunt (p. 40):

- Film Can Mysteries: How Dense is Dirt?

From *Agricultural Science and Technology, Botany / Plant and Soil Science, 510 A - Elementary Study of Soils*:

- Assignment Sheet #1 - Using the Textural Triangle
Student Lab

From *Agricultural Science and Technology, Botany / Plant and Soil Science, 510 A - Elementary Study of Soils*:

- Laboratory Exercise #3 - Determine Soil Textural Class by Mechanical Analysis
- Laboratory Exercise #4 - Determine Soil Textural Class by Feel
- Laboratory Exercise #5 - Studying Soil Samples
- Laboratory Exercise #6 - The Origin and Meaning of Color in Soil

Internet Resources

Soil pH: What It Means
http://www.esf.edu/pubprog/brochure/soilph/soilph.htm

☞ Teacher Information

Lesson Plan: Titration
http://www.sonoma.edu/cthink/K12/k12class/9-12/titra.nclk

Eckert, D. & Sims, J.T.
Recommended Soil pH and Lime Requirement Tests
http://bluehen.ags.udel.edu/deces/prod_agric/chap3-95.htm

Transparencies

From *Agricultural Science and Technology, Botany / Plant and Soil Science, 510 A - Elementary Study of Soils*:

- The Relative Sizes of Sand, Silt, and Clay Particles
- Soil Texture
- Characteristics of the Various Soil Classes
- Permeability Related to Nutrient Capacity
- The Texture Triangle
- Soil Structure
- Hard Pans Effect on Soil Depth
- pH Scale for Soil Reaction
- Ion Exchange of Soil Particles
Student Activity: If I Were a Schefflera...?

Purpose
- Understand native soils and their advantages for plants.
- Devise a potting soil mix with similar advantages for plants.
- Understand that the right soil combined with other environmental factors results in a healthy growth environment.

Materials
- Notebook
- Plant of choice
- Container
- Potting soil ingredients
- Fertilizer ingredients
- Plant tag
- Hand-out sheet

Procedure
- Choose one plant for a container planting.
- Research the plant’s native history.
- Write a journal entry in your notebook about your plant of choice, indicating the origins of the plant and what elements the plant enjoyed from its home soil and environment. This is called a “living history” of the plant.
- Create a potting soil mix based on what you have learned about the plant’s needs.
- Keep a record of the mix in your journal, identifying its components and the amounts of each.
- Specify any fertilization the plant might need and at what intervals.
- Note in your record what other environmental elements the plant might need in its non-native environment as a container plant; i.e., humidity, partial shade, etc. and how those elements might replicate the original environment of the plant.
- Pot up your plant of choice in the potting soil you have created.
- Create a “care tag” for your plant, specifying the plant’s moisture, light, and fertility needs. In addition, it may be helpful to point out the plant’s total space needs for optimum growth.
- Do a hand-out sheet for your classmates. This should include the living history of your plant and its care.

Be creative!
⇒ Name your plant.
⇒ Make your care tag an adventure in graphics.
⇒ Do the same with your hand-out sheet.
Optional activity:
⇒ Plant sale!
⇒ Valentine’s day . . .
⇒ Mother’s day . . .
⇒ Hold a plant care workshop at a senior citizens center and give your plants to the residents. Follow up with the center and help with advice and care for the plants.

References

Internet Resources

Plant Tracker
http://www.axis-net.com/pfaf/

Florabundance Plant Encyclopedia

Gardening.com Plant Encyclopedia
http://gardening.com/Encyclopedia/Default.htm
Organic Fertilizers

Naturally occurring materials derived from plants (carbonaceous compounds) or animals. Multielement compounds. Release nutrients through decomposition.

Disadvantages

Organic fertilizer analysis is low - large amounts are needed. Nutrient release through decomposition can vary. May contain weed seeds. Strong odors may be associated with decomposition. Sludge may contain metals which are toxic to plants.

Sources

Blood meal
Hoof and horn meal
Bonemeal
Cotton seed meal
Kelp or seaweed
Peanut hulls
Fish emulsion
Manure (e.g.)
Cow
Horse
Chicken
Sheep
Swine
Bat
Mushroom compost
Tobacco stems
Wood ashes
Sewage sludge (activated - microorganisms added)

Other Sources of Organic Fertilizers

Synthetic organic fertilizers
Manufactured products that are slow-release organic nitrogen compounds:

- **Release by osmotic barrier:**
 - Resin/plastic-coated NPKS
- **Release by slow breakdown of sulfur coating:**
 - Sulfur-coated urea (SCU)
- **Release by solubility and bacterial degradation:**
 - Methylene ureas (MU)
- **Release by effects of water solubility on particle size:**
 - Isobutylidene-diurea (IBDU)
 - Urea-formaldehyde (UF)

Value of Humus and Organic Fertilizers to Soil Fertility and Plant Growth

1. Slow release of nitrogen for a longer supply of the nutrient over time.
2. Improves nutrient and moisture-holding capacity in all soils, particularly sandy soils.
3. Improves root distribution patterns.
4. Directly influences the physical and biological properties of the soil.
5. Serves as a source of energy for microorganisms responsible for conversion of minerals into forms available for plant growth.
6. Improves plant quality.
7. Improves tilth and soil structure.
8. Reduces tendency of clay soils to “pond” when wet or “bake and cake” when dry.
9. Improves water penetration in clay soils.
10. Improves aeration.

Constructing a Compost Pile

- Replicating nature’s process of decomposition.
- Interrelated feeding patterns of microorganisms fuel the process.
- Consume carbon for energy and nitrogen for growth and reproduction.
- Need to add proper mix of nitrogen and carbon-bearing materials to the compost pile.
Pile height:
4 to 6 feet inside an enclosure.

Enclosure types:
- Wire bins
- Slatted bins (1 to 3 for movement from pile to pile)
- Tumblers

Materials
- Carbon
 - Dried leaves, straw, wood chips
- Nitrogen
 - Grass clippings, stable animal manure, kitchen scraps.

Handling
- Air
 - Turn the compost pile with a composting fork.
 - Move bin to bin, pile to pile or toss if pile is still small enough.
 - Use a compost tumbler (looks like a miniature cement mixer).
 - Make air vents with perforated PVC pipes inserted into piles or use aerating tools (same principle: paddles on ends move compost around).

Temperature
- Do not turn the pile when the temperature inside the pile is between 104°F and 131°F.
- **Turn between 131°F and 140°F.**
 - This method prevents destroying beneficial organisms and allows the pile to cool down and heat up, maintaining optimum bacterial activity.

Water
- Water pile after turning to slightly moist but not wet. Too wet closes air space.
- Mix wet with dry materials.
- Cover to retain moisture.

Compost is ready to use when reduced to:
- Homogenous, fine-grained material.
- Looks and smells like humus.
- **Time:** anywhere from six weeks to six months depending upon temperature, moisture, and size of materials.

Sheet Composting
- Layer organic waste over an area.
- Till in: leaves, grass clippings, manure, and food waste.
- 4-6 inches of layer in fall.
- 2-3 inches in spring one month before planting.
Cover with soil.

Double-digging
- Incorporates sheet composting and digging a bed.
- Dig a trench 1 foot wide and 1 shovelful deep.
- Add a 2-to 4-inch layer of organic material at the bottom of the trench.
- Replace with topsoil.

Vermicomposting
- Composting with worms.
- Used in a passive pile (left alone to rot).

Earthworms:
- Worms consume organic material and process it through their bodies.
- Leave nutrient-rich castings.
- Secrete calcium carbonate - helps moderate soil pH.
- Loosen and aerate soil.
- Tunnels provide access for other invertebrates to get into soil and help with the decomposition process.

Composting worms:
- *Eisenia foetida* (can’t live in soil)
- *Lumbricus rubellus* (can survive in a soil medium but not just soil)
- More efficient.
- Voracious.
- Must maintain fresh waste material for them to eat.
- Stay above soil. Do not hibernate.
- Keep compost bin in a warm area - 55⁰ to 77⁰F.

The Worm Box
- Line with organic bedding material.
- Add garden soil.
- Add kitchen waste.
- Periodically remove the compost and add new bedding.
- Expose the worm box to light.
- Worms will move to the center of the box.
- Remove compost from around the edges.
- Add fresh bedding.

Anaerobic compost
- Waste must be contained in a closed environment.
- Anaerobic bacteria do the breakdown.
- Recommend tied off trash bags.
- Moisten materials.
- Turn bag every two weeks.
- Expose all sides to sun.
- Check after a few months.
- If it still smells bad, repeat procedure for another two months.
References

Student Activities

From *The Growing Classroom: Garden-Based Science*, Addison-Wesley (p. 91):
- What Good is Compost?

From *Bottle Biology*, Kendall / Hunt (p. 18):
- Worm Composting: Never Underestimate the Power of a Worm

Internet Resources

Eric S. Johnson
Welcome to the Rot Web!
http://net.indra.com/~topsoil/Compost_Menu.html

Missouri Department of Natural Resources
Solid Waste Management Program
Worm Composting System
http://www.state.mo.us/dnr/deq/swmp/worm1.htm

Waste Reduction at Home
Composting
The Science of Composting
http://www.gvrd.bc.ca/waste/bro/swcnr.html

Carbon / Nitrogen Ratios for Composting Materials
http://www.gvrd.bc.ca/waste/bro/swcnr.html
Transparencies

- Do Not Add to the Compost Pile
- Types of Compost
Types of Compost

HOME COMPOST

Grass and
Plant trimmings
Garden & Kitchen Wastes

BIOSOLID COMPOST

Municipal waste as sludge

AGRICULTURAL COMPOST

Stable manure
Crop residue
Forest products

VERMICOMPOST

Decomposition assisted by worms.
Do Not Add to the Compost Pile

Coal or Charcoal Ashes

Diseased Garden Plants

Glossy Paper / Colored Ink

Invasive Weeds:
 Morning Glory
 Buttercup
 Quack Grass
 Cheat Grass

Meat and Dairy Products

Pesticide-treated Materials

Pet Litter
1. Decomposition of organic matter is aided by:
 A. Insects
 B. Bacteria
 C. Earthworms
 D. All of the above

2. The final product of decomposition is:
 A. Soil
 B. Humus
 C. Clay
 D. Silt

3. Organic matter is produced in which order?
 A. Degradation, conversion, curing
 B. Conversion, degradation, curing
 C. Degradation, fermentation, curing
 D. Curing, degradation, fermentation

4. List four (4) factors which affect the rate of organic matter decomposition.
 (List on the following lines . . .)
Please continue . . .

5. Which of the following types of organic matter is high in nitrogen?
 A. Dried leaves
 B. Grass straw
 C. Animal manure
 D. Wood chips

6. Organic matter affects soil pH by:
 A. Increasing soil acidity
 B. Releasing hydrogen ions
 C. Increasing alkalinity
 D. Increasing buffering capacity

7. Organic matter can be lost from soil by:
 A. Removing plant residues
 B. Irrigation
 C. Bleaching by the sun
 D. Drying by air and sun

8. Which type of crop increases nitrogen in soils?
 A. Grasses
 B. Legumes
 C. Fiber crops
 D. Tuber crops

9. Crops that are planted to add organic matter to the soil are called:
 A. Green manure
 B. Compost
 C. Organic amendments
 D. Peat moss

10. List four (4) purposes of mulching soils:
 (List on the following lines . . .)
11. What are the two types of mulches? (*List on the following lines ...*)

12. One problem with using wood chips as mulch is:
 A. They retain moisture
 B. They get infested with slugs and snails
 C. They can produce an odor
 D. They can add harmful lignin to soils

13. List the four physical properties of soil: (*List on the following lines ...*)

14. Describe how the type of soil texture (e.g., sand, silt, clay, loam) affects the water holding capacity of soils: (*Describe on the following lines ...*)

 Sand -

 Silt -

 Clay -

 Loam -

15. Which type of soil structure has particles arranged in a vertical line?
 A. Platy
 B. Blocky
 C. Granular
 D. Columnar

16. Which type of soil structure is usually high in organic matter content?
 A. Platy
 B. Blocky
 C. Granular
 D. Columnar
Please continue...

17. Blood meal, bonemeal, cotton seed meal, and peanut hulls are all considered:

 A. Organic matter
 B. Organic fertilizers
 C. Humus
 D. Animal by-products

Thank you! Please return the test sheets to your instructor.
1. Decomposition of organic matter is aided by:
 A. Insects
 B. Bacteria
 C. Earthworms
 D. All of the above

2. The final product of decomposition is:
 A. Soil
 B. Humus
 C. Clay
 D. Silt

3. Organic matter is produced in which order?
 A. Degradation, conversion, curing
 B. Conversion, degradation, curing
 C. Degradation, fermentation, curing
 D. Curing, degradation, fermentation

4. List four (4) factors which affect the rate of organic matter decomposition.
 (List on the following lines . . .)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Microbial population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>Quantity of plant residues</td>
</tr>
<tr>
<td>Aeration</td>
<td>Chemical nature of plants returned to soil</td>
</tr>
<tr>
<td>pH</td>
<td></td>
</tr>
</tbody>
</table>

Please continue . . .
5. Which of the following types of organic matter is high in nitrogen?
 A. Dried leaves
 B. Grass straw
 C. Animal manure
 D. Wood chips

6. Organic matter affects soil pH by:
 A. Increasing soil acidity
 B. Releasing hydrogen ions
 C. Increasing alkalinity
 D. Increasing buffering capacity

7. Organic matter can be lost from soil by:
 A. Removing plant residues
 B. Irrigation
 C. Bleaching by the sun
 D. Drying by air and sun

8. Which type of crop increases nitrogen in soils?
 A. Grasses
 B. Legumes
 C. Fiber crops
 D. Tuber crops

9. Crops that are planted to add organic matter to the soil are called:
 A. Green manure
 B. Compost
 C. Organic amendments
 D. Peat moss

10. List four (4) purposes of mulching soils:
 (List on the following lines . . .)

 Please continue . . .
Keeps soil cool Reduces soil erosion
Allows for earlier planting Protects roots from heat, cold, or drought
Retains soil moisture Protects seeds during germination
Weed control Allows plants to become established

11. What are the two types of mulches? (*List on the following lines . . .*)

Organic
Inorganic

12. One problem with using wood chips as mulch is:
 A. They retain moisture
 B. They get infested with slugs and snails
 C. They can produce an odor
 D. They can add harmful lignin to soils

13. List the four physical properties of soil:
 (*List on the following lines . . .*)

Air Minerals
Water Organic matter

14. Describe how the type of soil texture (e.g., sand, silt, clay, loam) affects the water holding capacity of soils: (*Describe on the following lines . . .*)

Sand -
Silt -
Clay -
Loam -

*Please continue . . .
Sandy soils have a large amount of air space and drain easily.
Silt can be easily washed away by flood waters.
Clay holds water well and is slow to dry.
Loamy soils can hold enough water to promote plant growth without being too wet.

15. Which type of soil structure has particles arranged in a vertical line?

A. Platy
B. Blocky
C. Granular
D. Columnar

16. Which type of soil structure is usually high in organic matter content?

A. Platy
B. Blocky
C. Granular
D. Columnar

17. Blood meal, bonemeal, cotton seed meal, and peanut hulls are all considered:

A. Organic matter
B. Organic fertilizers
C. Humus
D. Animal by-products

Thank you! Please return the test sheets to your instructor.
From *Agricultural Science and Technology, Botany / Plant Growth and Development, 512 C - Plant Processes:*

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>List the Important Plant Functions in Food Manufacture and Growth</td>
</tr>
<tr>
<td>2.</td>
<td>Explain Why Photosynthesis is an Important Plant Process</td>
</tr>
<tr>
<td>3.</td>
<td>Explain the Chemical Process of Photosynthesis</td>
</tr>
<tr>
<td>4.</td>
<td>List Factors that Affect Photosynthetic Rate</td>
</tr>
<tr>
<td>5.</td>
<td>Explain the Chemical Process of Respiration</td>
</tr>
<tr>
<td>6.</td>
<td>Distinguish Between Photosynthesis and Respiration Characteristics</td>
</tr>
<tr>
<td>7.</td>
<td>Explain Transpiration and List Factors that Affect Transpiration Rate</td>
</tr>
<tr>
<td>8.</td>
<td>Explain Osmosis and the Process of Absorption by Plant Roots</td>
</tr>
</tbody>
</table>

From *Agricultural Science and Technology, Botany / Plant Growth and Development, 512 B - Cells: Structure, Functions, and Division:*

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9.</td>
<td>Label the Parts of a Common Plant Cell and Describe the Function of Each Part</td>
</tr>
</tbody>
</table>
Unit Objectives

1. List the primary parts and functions of a plant.
2. Identify two types of root systems.
3. Label a drawing showing the parts of a plant stem.
4. Match stem modifications with the correct descriptive term.
5. Label the parts of a leaf.
6. Identify the parts and stages in the development of a seedling.
7. Distinguish between a monocot and a dicot.
8. Label a drawing showing the parts of a complete flower.
9. Match types of flowers to the correct botanical description.
10. List the stages of plant growth and development.
11. List conditions affecting the vegetative growth of crop plants.
12. List the requirements for good seed germination.
13. List the factors that cause poor seed germination.
14. Discuss asexual and sexual reproduction in plants.
15. List methods of pollination.
Information from Agricultural Science and Technology, Botany / Plant Growth and Development, 512 E - Vegetative Plant Parts:

1. List the Primary Parts and Functions of a Plant
2. Identify Two Types of Root Systems
3. Label a Drawing Showing the Parts of a Plant Stem
4. Match Stem Modifications with the Correct Descriptive Term
5. Label the Parts of a Leaf

Information from Agricultural Science and Technology, Botany / Plant Growth and Development, 512 F - Reproductive Plant Parts:

6. Identify the Parts and Stages in the Development of a Seedling
7. Distinguish Between a Monocot and a Dicot
8. Label a Drawing Showing the Parts of a Complete Flower
9. Match Types of Flowers to the Correct Botanical Description

Information from Agricultural Science and Technology, Botany / Plant Growth and Development, 512 G - Vegetative Plant Growth:

10. List the Stages of Plant Growth and Development
11. List Conditions Affecting the Vegetative Growth of Crop Plants
12. List the Requirements for Good Seed Germination

13. List the Factors that Cause Poor Seed Germination

14. Discuss Asexual and Sexual Reproduction in Plants

15. List Methods of Pollination
Agricultural Science and Technology

Ag 514

Botany / Horticulture Plant Science

Ag 514 F - Plant Growth Regulators

Unit Objectives

1. Match terms and definitions associated with plant growth regulators.

2. List the controllable plant growth processes.

3. List the way hormones influence plant growth.

4. Describe statements as true or false regarding how auxins, gibberellins, cytokinins, abscisic acid, or ethylenes affect plant growth and development.

5. Select statements that describe plant responses to auxins.

6. List the uses of auxins.

7. Identify the effects of growth regulators on plants.

8. List the important commercial uses for plant growth regulators.

9. List the effects of chemicals on plant growth.

10. List the important chemical growth regulator groups.

11. Identify as either true or false reasons for using chemical growth regulators.

12. List the environmental factors that influence plant growth.

13. List the biological factors that influence plant growth.

14. Name the photoperiod responses.

15. Select statements that describe the effects of photoperiod on plant growth.

16. Explain how plants respond to day length.

17. Select statements that either describe how to shorten or lengthen the day for plants.
18. List the techniques for physical control over plant growth.

1. Match Terms and Definitions Associated With Plant Growth Regulators.

2. List the Controllable Plant Growth Processes.

3. List the Ways Hormones Influence Plant Growth.

4. Describe Statements as True or False Regarding How Auxins, Gibberellins, Cytokinins, Abscisic Acid, Or Ethylenes Affect Plant Growth and Development.

5. Select Statements that Describe Plant Responses to Auxins.

6. List the Uses of Auxins.

7. Identify the Effects of Growth Regulators on Plants.

8. List the Important Commercial Uses for Plant Growth Regulators.

9. List the Effects of Chemicals on Plant Growth.

10. List the Important Chemical Growth Regulator Groups.

11. Identify as Either True or False Reasons for Using Chemical Growth Regulators.
Plant Growth Regulators:

- **Natural** hormones
- **Synthetic** artificially produced

Natural (hormones) or synthetic growth regulators can control plant growth processes:
1. Cell enlargement and division
2. Cell differentiation
3. Root and shoot growth
4. Lateral bud development
5. Fruit and leaf abscission
6. Tropic movement
7. Fruit set and enlargement
8. Fruit ripening
9. Dwarfism
10. Flowering
11. Dormancy
12. Germination
13. Senescence (plant aging)

Hormones Influence Plant Growth

- **Hormones are Chemical substances** produced by plant tissue.
- These substances are transported to other plant parts where they direct plant growth (i.e.):
 - Cause stems to bend toward light
 - Fruit ripening
 - Initiate flowering.

Major hormone groups:

- Auxins
- Gibberellins
- Cytokinins
- Abscisic acid
- Ethylene

Auxins

- **Indo-acetic acid (IAA)**
 - Formed in growing tips, buds, and young leaves.
 - Controls plant response toward light (phototropism).
 - Promotes cell elongation.
 - Controls apical dominance and branching.
 - Induces root growth on cuttings.
 - Affects fruit development and ripening.
 - Moves from tips of plant downward toward base (not in phloem).

Synthetic Auxin
Indole-butyric acid (IBA)

Naphthalene acetic acid (NAA)
- Induces root formation on stems and leaf cuttings.
- Used in orchards to promote uniform flowering and fruit setting.
- Creates seedless fruit if used before pollination.

(2,4-D and 2,4,5-TP are controlled herbicides in low doses. Higher doses banned by U.S. Environmental Protection Agency.)

Gibberellins
- Stimulate stem growth.
- Induce flowering.
- Regulate seed enzyme production.
- Bring seeds and buds out of dormancy.
- Increase fruit size.

Synthetic Gibberellins
- Gibberellic Acid #3 (GA₃)
- (GA₁)
- Used to:
 - Increase size of seedless grapes.
 - Improve length and crispness of celery stalks.
 - Regulate flowering times in biennials.

Cytokinins
- Regulate cell division.
- Found in meristems, developing tissues.

Synthetic Cytokinins
- Zeaton ®
- Kinetin
- Benzyladenine (BA)
 - Added medium in tissue culture.
 - Speeds up cell division in micropropagation.
 - Induces branching and fullness.
 - Delays senescence:
 - Retards maturity and prevents flower drying.

Abscisic Acid (ABA)
- Inhibits cell growth.
- Prevents seed germination.
- Stimulates opening and closing of stomata in response to water availability.
- Promotes abscission of leaves (autumn).
- Flower abscission (at onset of seed development).
- Induces dormancy.

Synthetic Abscisic Acid
- B-Nine ®
Cycocel®

Ethylene

Water-soluble gas moves readily throughout the plant.
Produced by ripening fruits, germinating seeds, and decaying flowers.
Responsible for ripening process.
Sprayed onto fruit to induce consistent ripening.
Ethylene is produced in response to:
 - Wind
 - Breakage
 - Lack of oxygen in root zone.

Reasons for Using Chemical Growth Regulators
Lessens the cost of manual alteration.
Produces effects which are not available by genetic selection or physical manipulation of plant structure.
Florists and nursery managers use to promote and accelerate root formation on cuttings.
Auxins reduce the time needed to induce root initiation.

Rooting Auxins:
 - Indoleacetic acid (IAA)
 - Indolebutyric acid (IBA)
 - Napthaleneacetic acid (NAA)

Applied as dusts or solutions to end of cuttings.
 - IBA produces strong, fibrous root systems.
 - IAA produces bushy, stunted root systems.
 - IBA / NAA solution mixed with talcum powder used most often.

Procedure:
 - Make a fresh cut.
 - Treat with talcum powder or dip in for 5 to 15 seconds.
 - Place cuttings in rooting medium for four to eight weeks.

Cycocel reduces stem growth.
Used on plants likely to become “leggy.”
Also increases number of flower buds.

Florists use chemical preservatives to improve longevity and quality of cut flowers.

Cytokinins
 - Absorbed by stems.
 - Extend vase life.
 - Maintain pigment colors.
 - Prevent leaf and stem yellowing in cut flowers.

Ethylene is produced by decaying or wilting plant tissue.
Ethylene makes florals wilt or drop their petals.
Reduction of ethylene is a method of preservation.
Reduce ethylene by removal of decaying plants.
Use disinfectant to keep area sanitized.
Ventilate plant storage areas.

Used in Turfgrass Management:

Maleic hydrazide (MH)
- Controls vegetative growth by causing growth retardation.
- Inhibits cell division.
- Reduces mowing frequency.

Chlorflurenol (Maintain CF 125 ®)
- Foliar-absorbed growth regulator.
- Used in combination with MH to reduce the growth of turfgrass.
- Inhibits cell division.
- Controls broadleaf weeds.

Paclobutrazol (TGR ®)
- Used on golf courses.
- Taken into plant through root absorption.
- Transported in xylem tissue to developing and dividing cells.
- Inhibits cell elongation.
- Controls growth.

Flurprimidol (Cutless ®)
- Growth regulator.
- Absorbed by foliage, stems, and roots.
- Requires watering in.
- Both TGR and Cutless used on putting greens to suppress annual bluegrass.

Mefluidide (Embark ®)
- Absorbed by grass leaf.
- Inhibits cell elongation.
- Suppresses seedhead formation.
- Suppresses growth.

Trinexapac-ethyl (Primo ®)
- Decreases mowing frequency on the average of 50 percent over four to six weeks.
- Absorbed into leaf.
- Rainfast within one hour.
- Decreases cell elongation and internode length.
- Does not stunt growth over long periods of time.
- Reversible with application of gibberellic acid.

Use by Nurseries and Landscape Companies:
- Application of plant growth regulators to unwanted sprouts and suckers.
- Absorbed by cut surfaces.
Maintain A ®
Asphalt tree wound paint used on suckers and sprouts.

Anti-gibberellins
Counteract effects of naturally occurring gibberellins in plant tissue.
Reduces growth rates rather than increasing them.
Clipper ® reduces internode elongation.
Reduces total growth rates of shade trees.
Remains active for up to four years.
Applied by trunk injection during growing season before pruning.

Procedure:
Drill 3/16 inch diameter holes at base of tree 2 inches deep.
Inject Clipper at 70 psi pressure into holes for three minutes.
Seal each hole with a vinyl plug (prevents back flushing).

NAA
Prevents flowering and fruit set with several applications.

MH
Inhibits fruit production of Ginkgo trees.

Off-Shoot-O ®
Chemical pruner.
Fatty acid which destroys meristematic tissue of shoot apex.
Inhibits shoot elongation.
Promotes lateral branching.
Foliar burn is a problem.

Atrinal ® or Atrimec
Used after pruning or shearing.
Apply as foliar spray after trimming to maintain shape.
Suppress flowering and fruit development.
Used primarily on ornamental olive and glossy privet.

References
Student Labs

- The Sweeter the Rose
- Taking Root / Taking Off!

Internet Resources

Propagation Methods
http://hammock.ifas.ufl.edu/txt/fairs/10613

Cut Flowers - Preservatives
http://www.ag.uiuc.edu/~robsond/solutions/horticulture/docs/cutflwr1.html

Transparency

- Movement and Synthesis of Auxins (IAA), Cytokinins, and Gibberellins
Student Lab: The Sweeter the Rose

Purpose
Understand the effects of chemical preservatives on cut flowers.
 1. Adds nutrients to the water.
 2. Contains a disinfectant to reduce or inhibit bacterial growth.
 3. Contains a surfactant to break the stem seal, allowing some water uptake by the plant.

Materials
Chemical preservative for cut flowers.
Lemon/lime soda (do not use a diet soda)
Cut hybrid tea roses (*Rosa hybrida*) or carnations (*Dianthus caryophyllus*)
Three single stem vases, clean / sterile
Aerated room

Procedure
Use the single stem vases to place one cut flower each in one vase each containing:

 1. One packet of chemical preservative
 2. One 2-ounce measure of lemon/lime soda
 3. Water only.

Fresh water should be at a temperature of 100°F to 110°F, and all three containers should have water added so that it almost reaches the top of the vases (about ¼” from the top).

Maintenance: water daily.

Hints:
Trim the stem at an angle just before placing in the solution.
Keep the flowers in a relatively cool place, away from direct heat.

Recording the Results:
Use a notebook or journal log to record daily:
 1. Amount of petal opening
 2. Amount of petal color turn
 3. Amount of stem/leaf wilt

- After one week, graph your results on a separate sheet by computer or by hand.
- After two weeks, graph your results, et al.
- At the end of the two-week period, put a drop of each solution from the vases on a slide and observe them under a magnifying lens. What did you find in each? Record your results in your notebook.
Compare your results with your classmates in small discussion groups.
Discuss the following:
- Which solution preserved the flowers the longest?
- What other solutions could you try to preserve the flowers?
- What other changes did you observe?
- What other factors could have contributed to your results?

Each group should choose a reporter to present the group’s findings to the class.

Turn in your notebook and graphed results.
Student Lab: Taking Root / Taking Off!

Purpose
• Use natural hormones to stimulate plant growth.
• Understand which plant hormones control which areas of plant growth.

Materials
(Your instructor will direct you on choice of plant materials)
1. Three fresh leaf cuttings with stems
 IBA
2. Two transplanted plants, about one week into new growth.
 Alfalfa pellets

Procedure #1
1. Apply the rooting hormone, IBA, to the bottom of the stem of two of the cuttings. Try one application with a talcum powder solution, one dipped into a solution, and one without.
2. Place the cuttings in 4 inch pots filled with a greenhouse potting mix appropriate for the plant.
3. Keep the plants moist.
4. Predict your findings in your notebook. What do you expect to happen to all three cuttings?
5. After two weeks, check the root growth of the plants.
6. Record your results in your notebook. Note any other findings other than those you expected.
7. Record the answers to the following questions in your notebook:
 • Which plant had the best results in rooting growth? Why?
 • Were there any other factors that could affect the results of your experiment?
 • Name at least three.

Procedure #2
Per class: Mix a tea solution of 1 ½ cups of alfalfa pellets per 5 gallons of water (the solution should sit for a day). Each recipe makes 80 cups (divide the recipe appropriately according to class size).
1. Water one plant with ½ cup of the tea:
 • At the beginning of your experiment.
 • After one week.
2. Water the other plant without the solution.
3. Predict your findings in your notebook. What do you expect to happen to the two plants after one week? After two weeks?
4. Record your results in your notebook at the end of two weeks. Note any changes that you did not expect to see.
5. Record the answers to the following questions in your notebook.
 • Which plant grew the most? Why?
 • Were there any other factors that could effect the results of your experiment?
 • Name at least two.
Movement and Synthesis of Auxins (IAA), Cytokinins, and Gibberellins
Environmental Factors that Influence Plant Growth

- Sunlight
- Temperature
- Moisture
- Air
- Nutrients

Provided by environments in which plants live. Plant are adapted to their environments. Environments can be artificially created to replicate a plant’s natural environment (i.e., greenhouses). **Environmental factors are the major external factors of plant growth.**
Plant environments:
- Atmospheric
- Edaphic
- Biotic

Atmospheric Environment
Above ground environment of a terrestrial plant.
- **Macroenvironment**
 - Atmosphere above a plant.
- **Microenvironment**
 - Area immediately surrounding a plant.

Atmospheric conditions
- Temperature
- Moisture
- Light
- Wind

Air Temperature
- **Hardy** ability of plants to withstand colder temperatures.
- **Tender** plants that succumb to colder temperatures.

Seasonal fluctuations in temperature
Sets optimum growth rate for plants and limits of plant adaptations.

Thermotropism
Plant growth response to temperature.

Thermoperiodic
Plant response to changes in day and nighttime temperatures.

Moisture
Most important requirement for plant growth.

Seasonal moisture and temperature variations
Crops adapted to moisture availability and a range in temperatures are grown in certain regions to take advantage of the particular fluctuations in moisture and temperature.

Turgidity
- **Cells harden** with water.
- **Wilt** cells become soft without water.
 Watering plants can bring them back from wilt conditions if the cells are not destroyed.
- **Willetting point** when plants cannot get enough moisture.
- **Permanent wilting point** when plants fail to recover turgidity and die.
- **Protoplasm** is primarily water.
- **Water assists in hardening** plants to extreme temperature fluctuations.

Transpiration
Cools plants in hot weather.

Absorption
Transport
Release of water to the atmosphere.

Evaporation
Influenced by temperature. Changes water availability to plants. Water changes from a liquid to a gaseous state.

Evapo-transpiration / ET rate
Rate of transpiration as affected by the rate of evaporation.

Moisture is made available to plants by:
Precipitation rain and snow
Water vapor humidity
Dew accumulation of visible moisture on plant leaf surfaces (or any surface).
Condensation occurs when surface temperature is cooler than surrounding air.
Frost frozen dew.
Field moisture capacity water content of soil fills small pore spaces. As amount of moisture is reduced within pore spaces, or is held by soil colloids, it may become unavailable to plants.
Wick action capillary flow of water from lower to upper soil. Movement from fine to coarse soil is restricted unless top layer attraction is greater.
Water infiltration, percolation, and gravitational movement downward.

Light
Photoperiodism:
Plant reactions to light vary with how the plant is adapted to its environment.

- Artificial light systems can induce plants to respond (e.g., poinsettias).
- Cycle of day and night and seasonal changes are important to plant responses.
- Plant growth is actually controlled by the amount of darkness the plant receives. Plant growth is greater at night when temperatures are lower.

Plants are classified according to their reaction to day length:
Short-day plants
Flower under short-day conditions.
Long days of light promote vegetative growth only.
Examples: spring ephemerals (trillium); autumn-flowering plants (ragweed, asters).

Long-day plants
Need long hours of daylight to bloom (at least 12 hours).
Examples: midsummer.

Indeterminate
Plants that do not seem to exhibit favoritism toward a certain amount of light. Can complete cycles over a range of light conditions.

Other plant interactions with light:
Glossy leaves are more light reflective than dry, dull leaves.
Horizontal leaves and blades absorb more energy than vertical leaves.
Spectrum of light affects plant growth.
- **Red and yellow bands** of the morning light spectrum (angular rays) promote **cellular elongation**.
- **Green and blue bands** of the midday light spectrum promote **cellular stunting**.
- **Combination** promotes **normal plant growth** (the effects balance each other).
 Certain wavelengths trigger germination.

Internode length varies with the amount of light received (more sun, shorter length; less sun, longer length).
Plants which grow in **direct sunlight** are **compact**.
Plants which grow in the **shade** are **longer and taller**.

Light intensity controls color and size in combination with temperature.
Size for instance, a plant that grows in Alaska (indirect light) during the 24-hour summer may have a much larger bloom than the same plant in Florida (direct light).
Color that same bloom may be much lighter in color in Florida than in Alaska. Carbohydrates accumulate in cool temperatures, revealing anthocyanins and other pigments. High temperatures produce smaller, lighter-colored plants.

Wind
Beneficial
Provides cooling for plants during hot weather.
Dries plant surfaces / soil surfaces; reduces fungal growth.

Harmful
Excessive drying.
Scatters weed seeds, fungal spores, salt spray, and pollutants.
Damages or destroys plants (batters or breaks stems).

Edaphic environment
Soil and area where the roots are located.
Includes synthetic materials, native soil, organic residues.
Can include non-root plant growth.
Provides nutrients, water, gas exchange with atmosphere, & physical support of plants.

Nutrients:

16 elements needed for plant growth.
Carbon, hydrogen, oxygen; nitrogen, phosphorus, potassium; calcium, magnesium, sulfur, boron, chlorine, copper, iron, manganese, molybdenum, & zinc.
Others: aluminum, arsenic, barium, bromine, cobalt, fluorine, iodine, lithium, nickel, selenium, silicon, sodium, strontium, titanium, & vanadium.

Edaphology
Influence of soil and planting media on the growth of plants.

Soil aeration movement of atmospheric air into soil.

Diffusion movement of gases through air-filled pores from high to low concentrations.
Changes in temperature and barometric pressure promote diffusion.
Expansion and contraction of soil promotes aeration.

Soil temperature
Warm soil is important for good seed germination.
Frozen soil stops growth or kills plants.
Temperature is influenced by thermal radiation, absorption, and conductivity.
Also by plant cover.

Soil pH
Important to plant growth as a measure of soil acidity or alkalinity. Based on plant preference to acidic or alkaline conditions, pH serves as an important environmental regulator to plant growth due to:

1. Effects on nutrient availability.
2. Effect on solubility of toxic substances.
3. Effect on soil microorganisms.
4. Effect of pH on root cells, which affect the uptake of nutrients and water.

Soil salinity
Although tolerance varies, plants do not grow well in saline conditions.
Amount of salt in soil measured by soluble salt content and percentage of exchangeable sodium.

Soil biomass
Living organisms and non-living residues that make up a portion of soil matter.

Living:

Microflora
Bacteria, fungi, actinomycetes, algae

Microfauna
- Protozoa, nematodes

Macrofauna
- Earthworms, arthropods, gastropods, moles, gophers, mice

Non-living:
- Dead organic matter
- Partially and completely decomposed plant and animal remains

Residual:
- Thatch
- Organic material and soil
- Humus

Thatch as a portion of organic residue
Layer of dead but not yet decomposed plant material between soil surface and living plants.

Soil biomass contains its own microenvironment, complete with *competition* for nutrients and resources, and *niches* for organisms that improve the soil.

Biotic Environment
- Use and culture of plants by humans.

Negative:
- Soil compaction, turf wear, improper cultural practices (e.g. misuse of pesticides; nonselective pruning).

Positive:
- Good cultural practices fostering healthy, stress-tolerant plants.

Other Biological Factors Affecting Plant Growth:

Heredity
- **Male & female sex cells** *(gametes)* contain specific characteristics which they pass to offspring.
- Genetic characteristics modify the rate of plant growth.

Genes
- Protoplasm located on chromosomes of cells that carry the genetic blueprint for developing cells.

Geotropism
- Downward growth caused by the response of roots to the pull of gravity.
- Unequal distribution of hormones induce response.
- Positive geotropism downward bending of roots.
- Negative geotropism upward bending by shoots.

Photosynthesis
- A small amount of light is needed for photosynthesis.
- Plant uses energy absorbed by chlorophyll from sunlight.
Plants produce carbohydrates from the absorbed radiation. Organic compounds are synthesized for the plant’s use by the reduction of carbon dioxide.

Physical Controls Over Plant Growth

Biological modifiers:
- Pruning, pinching, root pruning, girdling, staking, hormone application.

Environmental modifiers:
- Temperature, light intensity, light duration, carbon dioxide and media fertilization, watering, pest management, spacing, digging up/cold storage, transplanting.

Temperature

Indoor
- Modifying optimum temperature range for root growth - 60°F-80°F.
- Reduce temperatures by shading sides of containers.
- Use fiber or paper-mache containers, or light colored containers which reduce heat absorption by reflection.

Outdoor
- Shield tender plants from dessicating cold winds and the direct rays of sun.
- Application of antidessicants which inhibit transpiration, allowing the plant to retain moisture and increasing their resistance low temperatures.

Low temperature injury occurs from:
- Early fall or late spring frosts
- Extreme cold
- Rapid temperature changes from warm to cold.

Injury types:
- Destruction of flower buds, roots, shoots, branches, or stems
- Death of plant.

Frost heaving
- Roots are “heaved” out of the ground due to lack of establishment of roots in soil. Especially problematic in clay soil.
- Prevent by planting fall transplants into composted or well-drained soil.
- Delay planting into clay soils until spring.

Ice and snow
- Damage by weight, which downwardly girdles trees and shrubs at the base.
- Kills the root system.
- Prevent by wire staking or fencing, providing support to the plants.

Acclimatization of plants
- Decreasing day length / gradually decreasing temperature (short days to induce cold hardiness).
- Dig up and place plants in cold storage to avoid direct exposure and to control winter temperature range.
- Choose plants hardier to the plant zone.
Managing for damage from human interaction
 Running over plant leaders not evidenced by snow cover.
 Restrict usage of an area where young plants are starting. Fence, use plastic sleeves or
 pipes to protect leaders, or post signage to warn of young plant growth.

Managing for damage by wildlife
 Stripping bark, biting off young stems, rubbing bark down.
 Methods of control:
 Hunting and trapping by permit
 Encouraging natural predators
 Using non-toxic repellants.

Controlling disease, insects, weeds, and other pests
 Best management practices make the best defense:
 Spacing, pruning, fertilization, and watering.
 BMPs:
 ⇒ Fertilization for healthy plants / improved resistance.
 Well-fertilized plants provide more oxygen and consume carbon dioxide.
 ⇒ Watering appropriately - neither over- or under-watering.
 ⇒ Cultivar selection for the plant zone - disease and pest-free.
 ⇒ Avoid species prone to problems.
 ⇒ Proper placement to avoid host-pest problems
 (e.g., cedar-apple rust, Cooley spruce gall-Douglas fir or blue spruce)
 ⇒ Media sterilization/pasteurizing
 ⇒ Composting
 ⇒ Cultivating and mowing to reduce weeds.
 ⇒ Using exclosures (e.g., screens and fences) to keep wildlife out.
 ⇒ Using repellants, natural predators.
 ⇒ With proper permits, hunting / trapping.
 ⇒ Targeting pesticide and herbicide applications / proper licensing for use.

Controlling Light
 • Maximum / appropriate light intensity managed by greenhouse layout.
 • Cleaning covers.
 • Proper plant spacing on benches to avoid shading out by other plants.
 • Add artificial lighting when necessary to increase light needed during winter
 months.
 • Reducing light intensity by applying shade compounds or covering greenhouse
 windows with shade fabric.
 • Controlling vegetative growth of plants by artificial lighting - adding
 incandescent light to extend day length for plants requiring it.
 • Shorten days by covering plants with lightproof cover to induce flowering.
Pinching
A simple form of pruning, done with forefinger and thumb.
Three types of pruning:

Disbudding
Removal of lateral buds on stems.
Allows terminal flower to become larger.

Soft pinch
Removal of terminal bud and up to ½ inch of stem.
Produces branching.

Hard pinch
Removal of terminal bud and more than ½ inch of stem.
Reduces growth.
Takes a longer time for the plant to recover.

Pruning
Roots
Induces lateral branching and restores vigor to potted plants.
Stimulates flower bud development on some plants (e.g., wisteria).

Stem Pruning and Staking
Develops strong leaders.
Prune upper stems to improve crown structure and good stem structure.
Confine staking to lower portion of tree, allowing upper portion to sway in the wind.
Remove when tree develops wider caliper in lower portion of trunk, “tapering” toward crown.
Branchlets may or may not be removed from trunk to promote development of trunk (not removed), or smoother bark (removed).

Girdling / ringing
Scoring, bark inversion
Reduces root growth / decreases vegetative growth / induces flower bud initiation.

Scoring cutting through bark making a ring without removing the bark.
Bark inversion removing a ring of bark and replacing it in an inverted position.

References

Student Activities / Labs

- The Amazing Technicolor Test

From *Exploring with Wisconsin Fast Plants*, Kendall / Hunt:
- Tropisms (pp. 157-167)
- The Hypocotyl Hypothesis (p. 168)
- The Crucifer Cross (p. 169)

Internet Resources

Investigating Plant Growth Regulators
http://nasc.nott.ac.uk:8100/EXPERIMENTS/growthregulators.html

Factors Affecting Plant Growth
http://hammock.ifas.ufl.edu/txt/fairs/10896

The Salk Institute
Salk Team Identifies Gene That Drives Plant Growth
http://www.salk.edu/NEWS/cyclin.html

The Salk Institute
Salk Team Shows That Steroid Hormones, Important In Animal Development, Are Also Significant In Growth Of Plants
http://www.salk.edu/NEWS/steroid.html

Transparency

- Chrysanthemum A Short-Day Plant
Student Activity: The Amazing Technicolor Test

Purpose
Discover the qualities exhibited by flowers as a result of temperature, light and humidity.

Materials
- Six (6) spring bulbs for forcing
 Suggestions:
 Crocus, iris, grapehyacinth, scilla, & tulip. Choose colored varieties (as opposed to white).
 For expediency, you may use prechilled bulbs.
- Pots sized to accommodate one bulb each (4 to 6 inches).
- Labels for pots.
- At least two separate rooting rooms for temperature control.
- Notebook for record-keeping.

Procedure
- Put one bulb each in a pot filled with pea gravel, nesting the bulbs about halfway into the gravel.
- Label the pots according to the plants’ common and species/genus names. Be sure to include your name to identify your pots.
- Label the pots 1, 2, or 3, and proceed with the following for each pot.

(Do not use steps 1 & 2 if you use prechilled bulbs.)

Culture for Pot #1:
1. Chill for 6 to 8 weeks below 45°F in the dark, keeping the bulbs moist.
2. Remove from cold storage.
3. Give the plant bright light for 10 to 12 hours per day.
4. Bring up the temperature above 45°F slowly (over three to five days) to no higher than 60°F.
5. Fertilize (quick release with each watering).
6. Maintain a cool temperature.

Culture for Pot #2:
1. Chill for 6 to 8 weeks below 45°F in the dark, keeping the bulbs moist.
2. Remove from cold storage.
3. Give the plant bright light for 10 to 12 hours per day.
4. Bring up the temperature above 45°F slowly (over three to five days) to a warm temperature (at least 72°F, preferably up to 86°F).
5. Fertilize (quick release with each watering).
6. Maintain the warm environment.

Culture for Pot #3:
1. Chill for 6 to 8 weeks below 45°F in the dark, keeping the bulbs moist.
2. Remove from cold storage.
3. Give the plant very dim light only (you may use a shading cloth) for 10 to 12 hours per day.
4. Fertilize (quick release with each watering).
5. Bring up the temperature up above 45°F slowly (over three to five days) to no higher than 60°F.
6. Maintain a cool temperature.

Record in your notebook:
- Controlled variables for pots 1, 2, & 3 (what you manipulated differently in each pot)
- Before the experiment, devise an hypothesis. What do you expect to happen to each flower in each pot?
- Note any circumstances that occurred during your experiment that may have altered the results of the experiment (e.g., things that did not go as planned).
- Note all the changes as each plant achieves bloom.
- Be sure to include dates and times.

Primary items to look for (but note all of your observations):
- Bloom
- Stem length
- Internode length.

Conclude the experiment:
- Record the results of all the observations you made regarding pots 1, 2, & 3 in your notebook.
- Present your results to your classmates by writing a brief paper which includes:
 - What you were trying to discover by performing the experiment
 - Your hypothesis (what you thought might happen)
 - The variables which were manipulated & the variables which were not manipulated (your experimental controls)
 - Note any unexpected results or uncontrolled variables
 - Discuss the results you observed (tell what happened)
 - Make conclusions about the results you observed (this probably happened because . . .).
- Include the paper with your notebook and turn it in to your instructor.
- Be prepared to present your results to the class.
Chrysanthemum

A short-day plant.

Induce flowering on a year-round basis by controlling length of day and temperature.

- If a short-day plant is grown under a short day, it will flower.
- 60°F night temperatures are required until buds form, then reduce to 5
List six examples of plant growth processes regulated by natural or synthetic growth regulators:
(List on the following lines . . .)

1.
2.
3.
4.
5.
6.

The five major hormone groups are:
(List on the following lines . . .)

1.
2.
3.
4.
5.

Gibberellins:
(Indicate as T = True or F = False)

___ Stimulate stem growth
___ Induce flowering
___ Regulate seed enzyme production
___ Cause seeds and buds to go into dormancy
___ Reduce fruit size

Please continue . . .
Ethylene is:
(Indicate as T = True or F = False)

___ An insoluble gas that does not move readily throughout the plant.
___ Produced by ripening fruits, germinating seeds, and decaying flowers.
___ Responsible for the ripening process.
___ Produced in response to rain, abundant oxygen in the root zone, and plant sturdiness.

Mix and Match:
(Place the number of your selection on the line in front of your choice)

1. IAA ___ Indolebutyric acid
2. IBA ___ Naphthaleneacetic acid
3. NAA ___ Indoleacetic acid

Mix and Match:
(Place the number of your selection on the line in front of your choice)

1. IAA ___ Mixed with talcum powder in solution.
2. IBA ___ Produces strong, fibrous root systems.
3. IBA / NAA ___ Produces bushy, stunted root systems.

Multiple Choice:
(Circle your choices)

1. Maintain A
 A. Reduces growth rates rather than increases them.
 B. Prevents flowering and fruit set with several applications.
 C. Is a wound paint used on suckers and sprouts.
 D. Promotes lateral branching.

2. Off-Shoot-O
 A. Chemically prunes.
 B. Is used after pruning or shearing.
 C. Reduces the total growth of shade trees.
 D. Inhibits fruit production.

Please continue . . .
3. NAA

A. Is a fatty acid which destroys meristematic tissue.
B. Prevents flowering and fruit set with several applications.
C. May cause foliar burn.
D. Is used primarily on ornamental olive and glossy privet.

List the five environmental factors that influence plant growth:
(List on the following lines . . .)

1.
2.
3.
4.
5.

The three plant environments are:
(Check three)

- Atmospheric
- Tropospheric
- Edaphic
- Adaptive
- Biotic

Mix and Match:
(Place the number of your selection on the line in front of your choice)

1. Short-day plants ___Are midsummer plants.
2. Long-day plants ___Can complete cycles over a range of light conditions.
3. Indeterminate ___Long days of light promote vegetative growth only.

Mix and Match:
(Place the number of your selection on the line in front of your choice)

1. Red and yellow bands of light ___Promote normal plant growth.
3. All bands of light ___Promote cellular elongation.

Please continue . . .
Give **three examples** of biological plant growth modifiers:

List on the following lines . . .

__

Give **six examples** of environmental plant growth modifiers:

List on the following lines . . .

__

__

List **six examples** of best management practices (BMPs) in controlling disease, insects, weeds, and other pests:

List on the following lines . . .

1. __
2. __
3. __
4. __
5. __
6. __

Describe the **three forms** of pinching and their purpose:

Describe on the following lines . . .

1. __
2. __
3. __

Thank you! Please return the test sheets to your instructor.
List **six examples** of plant growth processes regulated by natural or synthetic growth regulators:
List on the following lines . . . [SEE TEACHER INFORMATION]

1.
2.
3.
4.
5.
6.

The **five** major hormone groups are:
List on the following lines . . .

1. **Auxins**
2. **Gibberellins**
3. **Cytokinins**
4. **Abscisic acid**
5. **Ethylene**

Gibberellins:
(Indicate as T = True or F = False)

- T. Stimulate stem growth
- T. Induce flowering
- T. Regulate seed enzyme production
- F. Cause seeds and buds to go into dormancy
- F. Reduce fruit size

Please continue . . .
Ethylene is:
(Indicate as T = True or F = False)

F An insoluble gas that does not move readily throughout the plant.
T Produced by ripening fruits, germinating seeds, and decaying flowers.
T Responsible for the ripening process.
F Produced in response to rain, abundant oxygen in the root zone, and plant sturdiness.

Mix and Match:
(Place the number of your selection on the line in front of your choice)

1. IAA
2. IBA
3. NAA

Mix and Match:
(Place the number of your selection on the line in front of your choice)

1. IAA
2. IBA
3. IBA / NAA

Multiple Choice:
(Circle your choices)

1. Maintain A
 A. Reduces growth rates rather than increases them.
 B. Prevents flowering and fruit set with several applications.
 C. **Is a wound paint used on suckers and sprouts.**
 D. Promotes lateral branching.

2. Off-Shoot-O
 A. **Chemically prunes.**
 B. Is used after pruning or shearing.
 C. Reduces the total growth of shade trees.
 D. Inhibits fruit production.

Please continue . . .
3. NAA

A. Is a fatty acid which destroys meristematic tissue.
B. Prevents flowering and fruit set with several applications.
C. May cause foliar burn.
D. Is used primarily on ornamental olive and glossy privet.

List the five environmental factors that influence plant growth:
(List on the following lines . . .)

1. Sunlight
2. Temperature
3. Moisture
4. Air
5. Nutrients

The three plant environments are:
(Check three)

☐ Atmospheric
☐ Tropospheric
☐ Edaphic
☐ Adaptive
☐ Biotic

Mix and Match:
(Place the number of your selection on the line in front of your choice)

1. Short-day plants
2. Long-day plants
3. Indeterminate

2. Are midsummer plants.
3. Can complete cycles over a range of light conditions.
1. Long days of light promote vegetative growth only.

Mix and Match:
(Place the number of your selection on the line in front of your choice)

1. Red and yellow bands of light
2. Green and blue bands of light
3. All bands of light

3. Promote normal plant growth.
2. Promote cellular stunting.
1. Promote cellular elongation.

Please continue . . .
Give **three examples** of biological plant growth modifiers:
(List on the following lines . . .) SEE TEACHER INFORMATION

Give **six examples** of environmental plant growth modifiers:
(List on the following lines . . .) SEE TEACHER INFORMATION

List **six examples** of best management practices (BMPs) in controlling disease, insects, weeds, and other pests:
(List on the following lines . . .) SEE TEACHER INFORMATION

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>3.</td>
<td>5.</td>
</tr>
<tr>
<td>2.</td>
<td>4.</td>
<td>6.</td>
</tr>
</tbody>
</table>

Describe the **three** forms of pinching and their purpose:
(Describe on the following lines . . .)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 1. **Disbudding** | Removal of lateral buds on stems.
Allows terminal flower to become larger. |
| 2. **Soft pinch** | Removal of terminal bud and up to ½ inch of stem.
Produces branching. |
| 3. **Hard pinch** | Removal of terminal bud and more than ½ inch of stem.
Reduces growth.
Takes a longer time for the plant to recover. |

Thank you! Please return the test sheets to your instructor.
Plant growth processes controlled by natural or synthetic growth regulators:

- Cell enlargement and division
- Cell differentiation
- Root and shoot growth
- Lateral bud development
- Fruit and leaf abscission
- Tropic movement
- Fruit set and enlargement
- Fruit ripening
- Dwarfism
- Flowering
- Dormancy
- Germination
- Senescence (plant aging)

Biological plant growth modifiers:

- Pruning
- Pinching
- Root pruning
- Girdling
- Staking
- Hormone application

Environmental plant growth modifiers:

- Temperature
- Light intensity
- Light duration
- Carbon dioxide and media fertilization
- Watering
- Pest management
- Spacing
- Digging up / cold storage
- Transplanting
Best management practices:

Fertilization for healthy plants / improved resistance.
(Well-fertilized plants provide more oxygen and consume carbon dioxide.)
Watering appropriately - neither over - nor under-watering.
Cultivar selection for the plant zone - disease and pest-free.
Avoid species prone to problems.
Proper placement to avoid host-pest problems
(e.g., cedar-apple rust, Cooley spruce gall-Douglas fir or blue spruce)
Media sterilization / pasteurizing
Composting
Cultivating and mowing to reduce weeds.
Using repellants, natural predators.
With proper permits, hunting / trapping.
Targeting pesticide and herbicide applications / proper licensing for use.
Unit Objectives

1. List factors to consider in selecting high quality seed.
2. Discuss conditions that exist when good seed is not selected.
3. List and describe the certifiable seed classes.
4. List information required on certifiable seed tags.
5. Discuss types and purposes of seed treatments.
6. Discuss procedures to follow in handling and storing seed.
7. Calculate the value of pure live seed.
8. Describe the general requirements for seed germination.
9. Classify germination requirements according to seed type.
10. List the materials from which flats can be made.
11. List the advantages and disadvantages of using flats for propagation.
12. List the advantages and disadvantages of starting seedlings inside flats.
13. Match terms and definitions associated with seeding in flats.
14. List the steps for seeding in flats.
15. Demonstrate different methods of seeding flats.
16. List the information that should appear on the label of a flat after it has been planted.
17. Describe the procedure to follow after seeds have germinated in a flat.
Factors to Consider in Selecting High Quality Seed

1. Are seeds grown locally? (freshness / viability enhanced)
2. Seeds should be tested and labeled according to state regulations required for:
 - Trueness of name (cultivar / species)
 - Origin (genetic purity)
 - Germination percentage (guaranteed)
 - Pure seed percentage of total ingredients (guaranteed)
 - Percentage of other ingredients (weeds/other crop seeds/inert materials)
3. Purchase seeds from a reliable dealer, ensuring:
 - Pure variety (genetic identity and purity)
 - Acceptable germination ability.
4. Hybrid varieties are favored for vigor, uniformity, and flowering.
5. Uniform heavyweight or primed seeds are the best selection.

Seed Quality

- Sorted by weight.
- Heavy seeds grow faster / produce more.
- More expensive but production is assured, recouping extra cost.

Primed / Enhanced Seeds

- Seeds soaked in potassium chloride or ethyl alcohol.
- Treatment induces growth.
- Radical growth is halted for storage.
- Seed growth is reinitiated upon planting. Allows better resistance to insects and disease.
- More uniform growth and harvest.

Good quality seed characteristics:
Genetically true to species or cultivar
Capable of high germination
Free from diseases and insects
Free from mixture with other crops, weeds, inert and extraneous materials.

Results of Poor Seed Selection
Immature seeds will not germinate.
Late harvest seeds have a poor rate of germination.
Seeds stored longer than one year lose their ability to germinate.

Certifiable Seed Classes

Breeder’s seed
Originate with the sponsoring plant breeder or institution.
Provides initial source of all certified classes.

Foundation seed / Select seed
Breeder’s seed progeny.
Maintains highest standard of genetic identity and purity.
Source of all other certified seed classes.
Can be used to produce additional foundation seed plants.

Registered seed
Foundation seed progeny (or within its own class, or above classes).
Produced within specified standards.
Certified for genetic identity and purity.

Certified seed
Progeny of registered seed (or within its own class, or above classes).
Produced in largest volume for growers.
Certified as satisfactory for genetic identity and purity.

Certifiable Seed Tag Identification Requirements

Certified blue tag
Registered purple tag or blue tag marked as “registered.”
Foundation white tag or blue tag marked as “foundation.”
Basic equivalent to foundation or registered.
Certified first generation blue tag.
Second generation reg tag.

References
Student Activity

- Investigating Seeds

Internet Resources

Germplasm / Cultivar Releases
http://www.usu.edu/~forage/germ.htm

Certified Seed
Guide A-131
Charles R. Glover, Extension Agronomist
http://rastro.nmsu.edu/cahe/redtops/_a/a-131.html

Know What is in a Bag of Seed
Guide A-216
C.R. Glover, Extension Agronomist
College of Agriculture and Home Economics
New Mexico State University
http://rastro.nmsu.edu/cahe/redtops/_a/a-216.html

Illinois Crop Improvement Association, Inc. (ICIA) Home Page
http://www.aces.uiuc.edu/~icia/

OKRA Certification Standards
http://aac.msstate.edu/Mafes/Aosca/Stand/08-ch-02.html

Transparency

- Seed Label Requirements
Seed Label Requirements

Lot Number:
(Names)

<table>
<thead>
<tr>
<th>Pure Seed</th>
<th>Variety</th>
<th>Kind</th>
<th>Germination</th>
<th>Origin (state)</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Name</td>
<td>% Name</td>
<td>%</td>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>

% Inert Matter
Must sell by: (date)

% Other Crop Seed
Test date: (date)

% Weed Seed
Net Weight: (lbs)

Noxious weed seed Identification per pound (listed out)

% Containing other crop seed by name

Seed Producer
Address
City/State/Zip

Notice to Consumer

TAG COLOR: Blue, red, or white
Student Activity: Investigating Seeds

Purpose
• Identify the components of seed label information.
• Discuss the importance of seed label information.
• Test at least one aspect of seed label information for accuracy by testing the percentage of germination.

Materials
• Seed packet
• Paper towels
• Small oven or heat lamp
• Notebook

Procedure
Keep a record of your test steps in your notebook.

This is one way to determine how many plants your packet of seeds may yield and other packets of the same: seed type / seed source / & date.

Seeds should be retested for percentage of germination after a period of time, due to the need for accuracy when figuring how many seeds may be needed to achieve a certain number of plants.

• Look at the information on the label of the seed packet.
• Locate the information under “percentage of germination.”
• Open the packet and place an even number of the seeds in a moist paper towel.
• Place the seeds within the towel in a small oven or under a heat lamp, keeping the seeds moist and at a temperature of 85°F for 7 to 10 days.
• At the end of that time, count the sprouted seeds and divide by 100. This will be the percent of germination.
• How many plants did you intend to grow? If you wanted to grow 50 plants, multiply the percentage germinated times 50. Subtract that number from 50. The result will be the number of additional seeds you need to plant.

Q&A
1. What was the germination percentage rate guaranteed on the packet of seeds?
2. Did your test results yield the same percentage of germination as the packet label guaranteed?
3. What was the difference in percentage rates?
4. What was the length of time between the packaging date and the date when you did your test?
5. Compare your test results with your classmates. On the average, did the percentage rate of germination go down as the length of time increased?
(Please answer on the following lines...)

Name:
5. Discuss Types and Purposes of Seed Treatments

6. Discuss Procedures to Follow in Handling and Storing Seed

7. Calculate the Value of Pure Live Seed

Treatments to overcome dormancy

Mechanical scarification
Process of breaking, scratching, or mechanically altering seed coats to make them permeable to water or gases.
Done by rubbing with sandpaper, cutting with a file, or cracking large seeds with a hammer.
Small seeds are scarified by turning them in disk scarifiers, i.e., drums with disks covered in abrasive paper.
If necessary, very large seeds (e.g., tree) are scarified in cement mixers filled with gravel and sand.
Seeds can be stored or planted.

Soaking in water
Placing seeds in hot water then removed immediately to soak in gradually cooling water for 12 to 24 hours.
Seeds should be planted. Storage is possible after treatment but the percentage of germination is reduced.

Acid scarification
Used to modify particularly hard or impermeable seed coats.
Seeds are soaked in sulfuric acid then washed for ten minutes in running water.
Seeds can be planted or dried and stored.

Moist-chilling stratification
Combines moistening the seeds with the chilling period some seeds need before germination.
Seeds are soaked for 12 to 24 hours then cold-storaged in temperatures from 35°F to 45°F in a medium that holds moisture (e.g., sand and peat moss mixed) for one to four months.
Seeds can be planted after separation from the storage medium.
Indoor germination of seeds should be allowed to take place at cooler temperatures.

Combination treatments
Mechanical, acid, or soaking combined with moist-chilling for impermeable seed coats with double embryo or complex dormancy needs. Moist-warm stratification can be interposed between seed coat treatment and moist-chilling to soften the seed coat in the fall for spring germination. Moist-warm treatment works by decomposition generated by hosting microorganisms. Treatment temperature should be no lower than 50°F. The range can be up to 86°F (day) and 68°F (night).

Timing plantings
Seeds requiring cold treatments are fall-planted. Seeds requiring warm then cool treatments are summer-planted. Ripe harvesting for planting is useful for some species that lose viability when too much time passes between harvesting and planting. Seeds coats are not allowed to dry before planting.

Dry storage
For freshly harvested seeds that need a period of dormancy. Dry in warm temperatures to assist germination (104°F for three days or 99°F for five days) for immediate planting.

Temperature control during germination
Alternation of daily temperatures to induce germination of freshly harvested seeds. Temperature combinations include: 59°F to 86°F, or 68°F to 86°F. Lower temperatures are held for 16 hours; higher temperatures are held for 8 hours. These temperature fluctuations simulate seasonal temperatures.

Chemical stimulants
Hormone treatments to stimulate germination: Cytokinins (overcomes high temperature dormancy). Ethylene. Potassium nitrate (stimulates freshly harvested dormant seeds). Thiourea (for seeds that do not germinate in high temperatures or darkness). Sodium hypochlorite (particularly used to stimulate germination of rice seed). The usual treatment is a 24-hour soaking in a water-based solution.

Light exposure
Light sensitivity disappears after dry storage for many seeds. Light exposure after dry storage encourages germination. Exposure should be for at least eight hours daily, at 75 to 125 foot-candles. Seeds coats should be softened and moist.

Treatments for disease control

Disinfectants
Eliminate organisms within seeds. Hot water (120°F to 135°F) for 15 to 30 minute soak. Seeds are then dried. Formaldehyde. Steam.
Disinfestants

Eliminate organisms on seed surfaces. Good for seeds grown in sterile media.
 Calcium hypochlorite
 Clorox

Seed protectants

Fungicides applied to seed coats to prevent invasion by soil fungi (“damping-off”).
Combinations of insecticides and fungicides are also used.
Applied before or after planting.

Handling and Storing Seed

Handling Seed

Mechanical harvesting (for seed that generally mature at the same time)
Hand picking (for seeds that mature at intervals)

Cleaning seed

Dry method:
 Cleaning machines clean seeds or . . .
 Dry fruits are gathered and spread to dry.
 Seed threshed from pods or capsules.
Wet method:
 Soaking in water for 8 to 24 hours with one teaspoon baking soda per quart.
 Fruit is washed to remove pulp.
 Seeds are spread to dry, then stored.

Storing

Cool, dry storage stored for next planting season at 40°F.
No storage - immediate planting.
Cool, moist storage fruit / tree-bearing edible seeds stored for next planting season at 40 to 90 percent relative humidity.

Value of Pure Live Seed

Seed purity

 Percentage of pure seed present in a seed lot.
 Identified species or cultivar.

Seed viability

 Percentage of seed that will germinate under standard conditions.

Pure live seed

 Percent purity multiplied by the percent viability.

Difference between laboratory pure live seed (the seed germination test) and field pure live seed content is the expected seedling mortality rate.
Indicates how much loss of viability occurred during storage.
Other problems may occur, such as planting too deep, or unfavorable conditions (too hot or too cold; drought).
Seed certification ensures genetic purity.

References

Student Activities and Labs

From *Bottle Biology*, Kendall / Hunt:
- **Film Can Germination** (p. 90)

From *Exploring with Wisconsin Fast Plants*, Kendall / Hunt:
- **Seed Maturation and Dispersal** (pp. 125-135)

From *The Growing Classroom: Garden-Based Science*, Addison-Wesley:
- **Seedy Character** (pp. 112-113)

Internet Resources

Seed Treatment Alberta Agriculture, Food, and Rural Development
http://www.agric.gov.ab.ca/pests/diseases/63000102.html

Seed Treatments for Disease Control North Dakota State University NDSU Extension Service
http://www.ext.nodak.edu/extpubs/plantsci/crps/pp447w.htm

Transparencies

- **Speeding Germination**
- **Pure Live Seed Formula**
Soak for a day in water. Add a teaspoon of baking soda.

Create an opening in the seed coat by nicking or rubbing with sandpaper.

Place seeds in a sealed plastic bag with damp peat moss or vermiculite. Store in the refrigerator over the winter. Plant in the spring.

Plant seeds protected in foil packets immediately. They are being protected from heat and humidity.

Keep seeds from light until you want them to germinate.
Pure Live Seed Formula

Seed Packet Information

\[\% \text{ Pure Seed Present} \times \% \text{ Germination Rate} = \% \text{ Pure Live Seed} \]
8. Describe the General Requirements for Seed Germination.

9. Classify Germination Requirements According to Seed Type.

General Requirements for Seed Germination

Three conditions required for germinations:
1. Seed must be viable
2. No physical or chemical barriers to germination
3. Environmental conditions must be right for germination.

 Environmental conditions:
 Moisture*, oxygen, correct temperature, and light or darkness (depending on the species)
 *Seed must have continuous supply of water in order for the seed to absorb moisture for coat softening and swell for coat to split and allow initial growth.

Germination Process

Three stages:

 Awakening or Activation
 Water is absorbed by the seed.
 Cell elongation and emergence of the radicle

 Digestion and translocation
 Water uptake continues, as well as respiration.
 Cell systems are activated.
 Protein-synthesis is taking place.
 Enzymes appear.
 Digested compounds are translocated to growing points.

 Cell division
 Cell division in separate growing points, followed by expansion of the seedling structures.
 Oxygen uptake continues.
 Storage tissue decreases.
 Cotyledons emerge.
 Radicle emerges.
Plumule (growth structure of shoot above cotyledons) is evident. Hypocotyl (below cotyledons) and epicotyl (above cotyledons), parts of the seedling stem, are evident.

Initial Seedling Growth

Epigeous germination
Hypocotyl elongates and raises the cotyledon above the ground.

Hypogeous germination
Lengthening of the hypocotyl allows the epicotyl to emerge, while the cotyledons remain below the ground.

Monocots and dicots
Differ in their germination patterns.
Monocots emerge with a first singular foliage leaf.
Dicots emerge with two first foliage leaves (cotyledon) followed by true leaves in epigeous germination; Or dicots emerge with true leaves appearing from a plumule while cotyledon remain below ground, enclosed in an endocarp (hypogeous germination).

Germination Requirements According to Seed Type

Seed types:
Dormant
Germination is prevented by internal mechanisms within the seed.
Physical and chemical barriers are present within the seed, genetically coding and timing the seed for the appropriate stage when metabolic reactions should begin.
Advantageous to the seed, in that the timing coincides with environmental conditions favorable to the seed.

Quiescent
Seed is capable of immediate germination in response to environmental factors.

Categories of Seed Dormancy

Group I Embryo is quiescent.
 A Hard seed coverings are impermeable to moisture.
 B Hard seed coverings are resistant to embryo expansion.
 C Seed coverings contain chemical inhibitors to prevent germination.

Group II Seeds have undeveloped embryos.

Group III Embryo is dormant.
 A Shallow dormancy inner seed coat regulates dormancy.
 Seeds are light and temperature sensitive.
 B Intermediate dormancy seed coat regulates dormancy.
 C Deep dormancy embryo regulates dormancy.

Group IV Combined / double dormancy dormancy is regulated by the seed coat and the embryo, and dormancy must be treated in sequence.
Environmental Factors

Hard seed covers
- Impermeability to water.
- Mechanically resistant seed coats.
- Chemical germination inhibitors.

Immature embryos undergo further growth after they are separated from the plant.

Active inner seed coats and endosperm respond to light, temperature, and gases; other chemicals.

Dormant embryos respond to moist-chilling, aeration, and time.
- Aeration maintains after-ripening progress. Oxygen deprivation can cause secondary dormancy.

References

Student Activities / Labs

From *Agricultural Science and Technology, Botany / Science of Plant Growth and Development, 512 F - Reproductive Plant Parts*:
- **Laboratory Exercise #4 - Development of Seed Parts into Young Plants**

From *Exploring with Wisconsin Fast Plants*, Kendall / Hunt:
- **Germination** (pp. 45-55)

From *The Growing Classroom: Garden-Based Science*, Addison-Wesley:
- **Seed Power** (p. 119)
- **Growing, Growing, Gone** (p. 123)

Internet Resources

Seeds and Seed Germination
http://149.152.32.5/Plants_Human/seedgerm.html
Teacher Information:
Seed Germination Experiment
http://149.152.32.5/Plants_Human/seedgermlab.html

From Seed Germination to Flowering, Light Controls Plant Development via the Pigment Phytochrome
http://journals.at-home.com/get_doc/562842/9540

Transparencies

From Agricultural Science and Technology, Botany / Science of Plant Growth and Development, 512 F - Reproductive Plant Parts:
• A Corn Grain and Its Parts
• A Bean Seed and Its Parts

From Agricultural Science and Technology, Botany / Science of Plant Growth and Development, 512 H - Reproductive Plant Growth:
• Stages in Germination and Emergence of Corn
• Stages in Germination and Emergence of a Bean Seed
10. List the Materials from which Flats Can Be Made

11. List the Advantages and Disadvantages of Using Flats for Propagation

12. List the Advantages and Disadvantages of Starting Seedlings Inside Flats

13. Match Terms and Definitions Associated with Seeding in Flats

14. List the Steps for Seeding in Flats

15. Demonstrate Different Methods of Seeding Flats

16. List the Information that Should Appear on the Label of a Flat After It Has Been Planted

17. Describe the Procedure to Follow After Seeds Have Germinated in a Flat

Flat Types

Rows

- Wooden boxes 14 ½ x 23 x 2 ¼ or 18 x 18 x 2 ¾ with drainage slots
- Plastic with drainage holes
- Styrofoam
- Individual celled
 Plastic or compressed peat with drainage holes

Flats should provide:

- Proper drainage
- Aeration
• Moisture retention
• Media must be in firm contact with seeds
• Temperature must be warm enough to encourage and support germination.

Media used should be correct pH and provide essential nutrients. Media should be sterile.

Advantages and Disadvantages of Using Flats of Propagation

Direct seeding:
- Seeds are sown where they will grow
- Seeds are subject to weather conditions for germination and growth
- Seeds need protective chemical treatment against insects and disease
- Economical process
- Used for vegetable crops, trees, and shrubs
- Soil needs preparation (worked and composted)
- Planting time must be exact.

Indirect seeding:
- Conditions for germination are controlled
- Media must be mixed and sterilized
- Nutrients must be added to planting media
- Seeds are sown into flats and allowed to develop to true leaf stage
- Seedlings are transplanted after true leaves develop
- Controlled conditions allow plants to harden off in preparation for transplanting
- Plants are more mature and can better withstand rigors of weather and other environmental factors.

Starting Seedlings Inside Flats
- Media should be sterilized.
- Mix combinations can contain peat moss, perlite and / or vermiculite, sand, or loam soil, at 1/3 proportions providing drainage, moisture retention, and aeration.
- Water-soluble fertilizer in low amounts must be added to sustain initial plant growth.
- Media should be moist at seed planting.

Steps for Seeding in Flats
- Sowing (three types):
 1. Tap seeds out gently from packet, sowing seeds in properly spaced rows (see packet directions).
 2. Individual celled flats can be sown with one or two seeds in each cell.
 3. Seeds can also be broadcast over the surface evenly, but row planting makes transplanting easier and reduces the chance of disease.

Covering:
- Cover seeds with a fine layer of peat moss, perlite, or fine sand.
- The covering should be about twice the size of the seed.
Follow package directions; some seeds should not be covered.

Label the Flat with:
Name
Variety
Date planted.
(Use a waterproof marking pen.)

Watering the Flat:
Aids in germination
Acts to dissolve and make available other nutrients in the media.
To water, set the flats in a tub of water to induce capillary action.
Capillary action wicks the water through the soil pore spaces, distributing it throughout the media.
Watering from the top of the flat may wash out or bury the seeds.
If you do water from overhead, misting is preferable.
Cover the flats with plastic or clear glass to retain moisture.

Locating the Flat:
Place in a semishaded area.
Seeds requiring darkness for germination are covered with newspaper.
Keep at a temperature of 65°F to 70°F by seating on a propagation mat (recommended), above a heating coil, or above hot water pipes.

Germinated Seeds:
Reduce the temperature to 55°F to 60°F to induce the hardening-off process.
Active growth can be slowed by reducing periods of watering.

References

Student Activities / Labs
From Bottle Biology, Kendall / Hunt:
• Gardening Systems (pp. 97-99)
• Film Can Wick Pots (p. 100)
• Bottle Base Reservoir (p. 101)
• TerrAqua Bottle (p. 102)
• **Bottle Cap Gardens** (p. 103)
• **Film Can Garden** (p. 104)
• **Grow Bucket** (pp. 105-106)

From *Exploring with Wisconsin Fast Plants*, Kendall / Hunt:
• **Plant Growth** (pp. 57-72)

From *The Growing Classroom: Garden-Based Science*, Addison-Wesley:
• **It’s Getting Stuffy in Here** (pp. 120-121)

Internet Resources

Get Growing Now: Starting Seeds Indoors by Sara Williams University of Saskatchewan Extension Division
http://www.ag.usask.ca/cofa/departments/hort/hortinfo/misc/seeds.html

&

Starting Seeds Indoors Part 2
http://www.ag.usask.ca/cofa/departments/hort/hortinfo/misc/seeds2.html

Transparencies

• **Labeling the Seed Flat**
• **Seeding the Flat**
Labeling the Seed Flat

The “common name” of the plant, including the variety.

The latin name (Genus species) of the plant.

The date planted.

Impatiens, Busy Lizzie
Impatiens wallerana
3 / 1 / 97

Use a waterproof marking pen.
Label immediately after planting.
Seeding the Flat

Sowing (three types):

1. Tapping out into properly spaced rows
2. Place one or two seeds in individual cells
3. Broadcast evenly over the surface.

Covering:
- Cover with a fine layer about twice the size of the seed
- Use peat moss, perlite, or fine sand.

Label immediately.

Water (two types):

1. Set in tub for capillary action.
2. Mist.

Locate:
- In a semishaded area or darkness (according to the species)
- On a propagation mat.
1. In order to ensure high quality seeds, seeds should be tested and labeled according to which required state regulations?

Multiple Choice

2. Another factor to consider when selecting high quality seed is

 a. the temperature at which the seed was germinated.
 b. whether the seed is uniform heavyweight or primed.
 c. if the seeds were grown locally.
 d. both b and c.

3. One characteristic of a good, quality seed is:

 a. it has been stored for over one year.
 b. it is free from diseases and insects.
 c. it has been harvested late in the year.
 d. it is mixed with other crops, weeds, inert and extraneous materials.

4. A Certified identification requires

 a. a blue tag.
 b. a purple or white tag marked as “certified.”
 c. a white tag marked as “certified.”
 d. no tag.

5. To eliminate organisms within seeds, first soak the seeds for 15 to 30 minutes in hot water, then after drying, soak the seeds in

 a. calcium hypochlorite.
 b. cold water.
 c. formaldehyde.
d. Clorox.
e.
6. A disinfestant is used to
 a. eliminate organisms on seed surfaces.
 b. determine the viability of the seed.
 c. destroy immature seeds.
 d. eliminate organisms within seeds.

7. The three stages of the germination process are
 a. translocation, photosynthesis, respiration
 b. activation, cell division, photosynthesis
 c. awakening/activation, digestion/translocation, cell division
 d. awakening/activation, digestion/translocation, protein-synthesis

8. A seed will germinate if the seed is viable, there are no physical and chemical barriers, and
 a. if the environmental conditions are right.
 b. if the seed is kept in an airtight container.
 c. if the soil is dried and treated.
 d. if the seed is kept from absorbing water.

9. Monocots
 a. are not a viable seed type.
 b. emerge with a first singular foliage leaf.
 c. emerge with two first foliage leaves.
 d. allow the epicotyl to emerge.

10. A quiescent seed
 a. lacks the epicotyl and true leaves.
 b. does not require light in order to germinate.
 c. only germinates at a temperature above 50°.
 d. is capable of immediate germination in response to environmental factors.

11. Active inner seed coats
 a. respond to light, temperature, and gases, as well as other chemicals.
 b. emerge with the radicle.
 c. contain the endocarp.
d. are not necessary in seed germination.

Matching

____ 12. Breeder’s seed
____ 13. Foundations seed / Select seed
____ 14. Registered seed
____ 15. Certified seed
____ 16. Seed Purity
____ 17. Seed viability
____ 18. Pure live seed

A. Foundation seed progeny
B. Provides initial source of all certified classes
C. Produced in largest volume for growers
D. Maintains highest standard of genetic identity and purity
E. Percent purity multiplied by the percent viability
F. Percentage of seed that will germinate under standard conditions
G. Percentage of pure seed present in a seed lot

19. List five treatments used in overcoming plant dormancy.

Match the seed dormancy category with the most likely description.

____ 20. Group I
____ 21. Group II
____ 22. Group III
____ 23. Group IV

24. Write the Pure Live Seed Formula.

A. seeds have underdeveloped embryos
B. dormancy is regulated by the seed coat and the embryo
C. embryo is quiescent
D. embryo is dormant
1. In order to ensure high quality seeds, seeds should be tested and labeled according to which required state regulations?
 Answers can include 4 of the 5 below:
 - Trueness of name
 - Origin
 - Germination percentage
 - Pure seed percentage of total ingredients
 - Percentage of other ingredients

2. Another factor to consider when selecting high quality seed is
 a. the temperature at which the seed was germinated.
 b. whether the seed is uniform heavyweight or primed.
 c. if the seeds were grown locally.
 d. **both b and c.**

3. One characteristic of a good, quality seed is:
 a. it has been stored for over one year.
 b. **it is free from diseases and insects.**
 c. it has been harvested late in the year.
 d. it is mixed with other crops, weeds, inert and extraneous materials.

4. A Certified identification requires
 a. **a blue tag.**
 b. a purple or white tag marked as “certified.”
 c. a white tag marked as “certified.”
 d. no tag.

5. To eliminate organisms within seeds, first soak the seeds for 15 to 30 minutes in hot water, then after drying, soak the seeds in
 a. calcium hypochlorite.
 b. cold water.
 c. **formaldehyde.**
 d. Clorox.

6. A disinfectant is used to
 a. **eliminate organisms on seed surfaces.**
 b. determine the viability of the seed.
 c. destroy immature seeds.
 d. eliminate organisms within seeds.
7. The three stages of the germination process are
 a. translocation, photosynthesis, respiration
 b. activation, cell division, photosynthesis
 c. awakening/activation, digestion/translocation, cell division
 d. awakening/activation, digestion/translocation, protein-synthesis

8. A seed will germinate if the seed is viable, there are no physical and chemical barriers, and
 a. if the environmental conditions are right.
 b. if the seed is kept in an airtight container.
 c. if the soil is dried and treated.
 d. if the seed is kept from absorbing water.

9. Monocots
 a. are not a viable seed type.
 b. emerge with a first singular foliage leaf.
 c. emerge with two first foliage leaves.
 d. allow the epicotyl to emerge.

10. A quiescent seed
 a. lacks the epicotyl and true leaves.
 b. does not require light in order to germinate.
 c. only germinates at a temperature above 50°C.
 d. is capable of immediate germination in response to environmental factors.

11. Active inner seed coats
 a. respond to light, temperature, and gases, as well as other chemicals.
 b. emerge with the radicle.
 c. contain the endocarp.
 d. are not necessary in seed germination.

Matching

_ B _ 12. Breeder’s seed
 A. Foundation seed progeny
_ D _ 13. Foundations seed / Select seed
 B. Provides initial source of all certified classes
_ A _ 14. Registered seed
 C. Produced in largest volume for growers
_ C _ 15. Certified seed
 D. Maintains highest standard of genetic identity and purity
_ G _ 16. Seed Purity
 E. Percent purity multiplied by the percent viability
_ F _ 17. Seed viability
 F. Provides initial source of all certified classes
F. Percentage of seed that will germinate under standard conditions
G. Percentage of pure seed present in a seed lot
19. List five treatments used in overcoming plant dormancy.

 Answers can include:
 Mechanical scarification
 Soaking in water
 Acid scarification
 Moist-chilling stratification
 Combinations treatments
 Timing plantings
 Dry storage
 Temperature control during germination
 Chemical stimulants
 Light exposure

Match the seed dormancy category with the most likely description.

C 20. Group I
A 21. Group II
D 22. Group III
B 23. Group IV

A. seeds have underdeveloped embryos
B. dormancy is regulated by the seed coat and the embryo
C. embryo is quiescent
D. embryo is dormant

24. In the space provided, write the Pure Live Seed Formula.

\[
\text{% Pure Seed Present} \times \text{% Germination Rate} = \text{Pure Live Seed}
\]
Unit Objectives

1. Match terms and definitions associated with the care and transplanting of seedlings.

2. Describe how to care for young seedlings.

3. List the types of transplanting pots that are available.

4. List the factors to consider when choosing plant containers.

5. Describe the procedures to follow when transplanting seedlings.

6. List the steps of transplanting seedlings.

7. Demonstrate the hardening of seedlings.

8. Demonstrate the ability to properly transplant seedlings.
1. Match Terms and Definitions Associated with the Care and Transplanting of Seedlings

2. Describe How to Care for Young Seedlings

3. List the Types of Transplanting Pots that are Available

4. List the Factors to Consider when Choosing Plant Containers

5. Describe the Procedures to Follow when Transplanting Seedlings

6. List the Steps of Transplanting Seedlings

7. Demonstrate the Hardening of Seedlings

8. Demonstrate the Ability to Properly Transplant Seedlings

Care and transplanting of Seedlings

Transplant after the development of true leaves (beyond cotyledons).
Handle seedlings by their true leaves, not by the stems.
Use thumb and forefinger to hold.
Lift seedling out with a plant label, trowel, or fork.
Keep media on the seedling’s roots.
Use a dibble or forefinger to make a hole into the new media.
Insert seedlings into the hole, slightly deeper or at the same level they were in the seeding media.
Press the media gently around the roots to “nest” the seedling.
Water the seedlings at the media surface, gently around the roots.

About Containers
Peat pot
One per plant; later transplanted directly to the garden. Seedling remains in the pot.

Market packs
- Holds six to 12 plants.
- Sold as a pack.
- Plants can be separated from the pack and planted individually.

Jiffy 7 peat moss pellet
- Expandable peat moss (about seven times original size).
- Self-contained nutrient feeding.
- Seeds are planted into, feeding the seedling until transplanted to a permanent site.

Large seeds directly planted into peat pots.
- Peat pots are planted directly into the soil at transplant.

Choose containers according to:
- How the plants will be sold to the customer (market pack or individually)
- Sufficient plant growing space
- Ease of transplanting for the plant.

Hardening Seedlings
- Involves checking plant growth by reducing water and cooling growth condition air temperatures.
- The accumulation of carbohydrates makes the plant hardier.
- Gradually move the plants outside to their permanent location in steps.
- Move plants to a lath house or cold frame for five to seven days, depending on the species.
- Summer annuals, for example, only require two to three days.
- Water thoroughly / drain / before transplanting.
- Retain soil around the roots when transplanting.
- To aid in plant establishment, use a booster or starter fertilizer (at a light solution to prevent burn) before or after transplanting.

References

Student Activity

- The Hardy Boys and the Case of the Seedy WIlts
Internet Resources

NebGuide
Cooperative Extension
Institute of Agriculture and Natural Resources
University of Nebraska-Lincoln
Petunias
http://ianrwww.unl.edu/iaur/pubs/extnpubs/hort/93-1127.HTM

Starting Seeds Indoors: Part 4
Sara Williams
University of Saskatchewan
http://www.ag.usask.ca/cofa/departments/hort/hortinfo/misc/seeds4.html

Vegetable Transplants - Start Indoors Soon
Oregon State University
News and Communications Service
http://wwwagcom.ads.orst.edu/agcomwebfile/garden/vegetable/vegetabletransplantsstarti.html

Transparencies

- Container Types
- Mixing and Transplanting
- Transplanting from Pots
- Transplanting to Pots
Container Types

Criteria
- Economy
- Consumer appeal
- Ease of handling
- Disease-free
- Quality of plant growth

Types

<table>
<thead>
<tr>
<th>Types</th>
<th>Lining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic</td>
<td>Tar paper</td>
</tr>
<tr>
<td>clay</td>
<td>Burlap cloth</td>
</tr>
<tr>
<td>Wood fiber</td>
<td></td>
</tr>
<tr>
<td>Peat</td>
<td></td>
</tr>
<tr>
<td>Styrofoam</td>
<td></td>
</tr>
<tr>
<td>Wooden</td>
<td></td>
</tr>
<tr>
<td>Metal</td>
<td></td>
</tr>
<tr>
<td>Paper cell units (short propagation)</td>
<td></td>
</tr>
</tbody>
</table>
Mixing and Transplanting

Soil Ingredients

Soil Mixing

Pot Storage

Pots Filled

Water

Transplant

Label

Move to Lath House
Transplanting to Pots

Procedure at potting table:

Seedlings, media on left Pots on right

Cover drain hole with coarse material for good drainage

Hold transplant with left hand at true leaves

Fill pot to rim with potting media

Place seedling at planting depth

Gently press potting media around the plant

Label the flat/pot

Move plants to growing area.
Transplanting from Pots

Procedure at potting table:

Spread fingers of left hand around plant stem and over soil surface

Invert pot

Tap pot edge on table

Loosen and remove pot from root ball

Gently unwind any bound roots.
Student Activity: The Hardy Boys and the Case of the Seedy Wilts

Purpose
- Demonstrate the hardening of seedlings.
- Demonstrate the ability to properly transplant seedlings.
- Understand the requirements of plants from seedling to transplant to ensure hardy growth.

Materials
Seedlings to transplant
Six market pack flats in the six or 12 sized cells
Potting media
Plant Record Book
Notebook

Procedure
“This is the story of the Hardy Boys and the Case of the Seedy Wilts. It goes like this. One day, while cleaning up the potting shed, a greenhouse worker (we’ll dub him, “GW”) discovered a flat of seedlings that were badly wilted. The seedlings had been transplanted into the flat three days ago. Yet there they were, looking for all the world as though they would not make it another hour. What GW found even more interesting is that on the same bench next to the flat of the “Seedy Wilts” was another flat of seedlings planted at the same time that looked very hardy. GW dubbed this flat, “the Hardy Boys.” There they sat, side by side: the Seedy Wilts and the Hardy Boys. GW decided there was a mystery afoot! (or a-flat; whichever!). What circumstances made the differences evident between the two flats? Could the Seedy Wilts be saved? Were the Hardy Boys likely to go the same way as the Seedy Wilts, given time?

How can GW solve this mystery?”

Good detectives have to do some investigation. Answer the following questions, then proceed to the activity. You should be able to solve the Case of the Seedy Wilts by asking questions as well as answering them.

Q&A
(Answer the following questions in your notebook . . .)
1. A good detective retraces the steps of the incident. What is the first thing GW should check for in the flat of the Seedy Wilts?
2. What comparisons can GW make with the Hardy Boys flat?
3. What can GW do to check the planting program between the two flats?
5. What would you recommend GW do to prevent the same occurrence with the Hardy Boys flat?
6. What recommendations would you make for the Seedy Wilts flat?
7. Predict what will happen to the Hardy Boys flat if the seedlings were:
 A) Planted in the same media as the Seedy Wilts flat.
 B) Were exposed to the outdoors directly from the potting shed.
 C) Watered again in five days after being seated in the sunshine.
Conduct your own experiment to solve the mystery of the Hardy Boys and the Case of the Seedy Wilts:

Flats One & Two
- Mix two batches of soil for your planting media. Use sterilized media for one flat, and unsterilized media for a second flat, keeping the ingredients basically the same.
- Keep a record of each step in your planting process, including what ingredients you mix as a planting media, which flat has sterilized media, and which batch has unsterilized media.
- Fill one six-celled flat with sterilized media, and one with unsterilized media.
- Plant your seedlings according to the correct steps for transplanting:
 1. Make a hole in the media with a dibble or your forefinger.
 2. Hold the seedling by the true leaves, not the stem.
 3. Plant the seedling to a depth a little lower or the same as its germination tray height.
 4. Press the media around the roots.
 5. Gently water the seedlings at the surface level.

Flats Three and Four
- Mix two more batches of soil using sterilized media.
- Repeat the steps, filling and planting two more market packs.
- Place one flat in a lath house or cold frame, and one flat outside.

Flats Five and Six
- Mix two more batches of soil using sterilized media.
- Repeat the steps, filling and planting two more market packs.
- Place both flats in a lath house.
- Make sure one flat has consistently moist soil. Do not overwater.
- Allow the other flat to dry out.
- Record how many days it takes for the flat to dry out.
- Record the changes in the plants.
- Compare the two flats.
- Record what happens if you remoisten the soil in the flat that has been allowed to dry out.
- Repeat the procedure with the same flats one more time.
- Record what happens to the plants and compare the differences between the two flats.

Monitor all the flats daily. Keep a record of daily changes in your notebook, and the maintenance records for all six flats.

Compare your results to the Hardy Boys and the Case of the Seedy Wilts. *(Answer the following questions in your notebook . . .)*

1. Based on your results, what could have happened to the Seedy Wilts?
2. What might happen to the Hardy Boys?
3. Could GW have prevented the Seedy Wilts? How?
4. Under what circumstances could GW save the Seedy Wilts? . . . the Hardy Boys?
Ag 514 H - Care and Transplanting of Seedlings
Unit Test

True or false

____ 1. Seedlings should be planted after the development of true leaves.
____ 2. Seedlings should be handled by their stems.
____ 3. Media should be kept on the seedling’s roots.
____ 4. Seedlings should only be inserted a quarter of an inch below the surface of the new media.
____ 5. Do not water seedlings once they are placed in the new media to prevent premature root rot.

Matching

____ 6. Peat pot A. feeds the seedling until it is transplanted
____ 7. Market packs B. one pot per seedling
____ 8. Jiffy 7 peat moss pellet C. holds 6 to 12 plants

9. List the five criteria in choosing container types.

___ __
___ __

10. Determine the best possible sequence for the following transplanting (seedling to pot) procedures.

____ Hold transplant with the thumb and forefinger of your left hand at true leaves.
____ Gently press potting media around the plant and water at the media surface.
____ On a potting table, places seedlings and media on your left, and empty pots on your right.
____ Place seedling at planting depth.
____ Cover the drain with a coarse material for good drainage.
____ Fill the pot to the rim with potting media.
Multiple Choice

11. The accumulation of carbohydrates
 a. makes the plant more susceptible to disease.
 b. begins after the plant is a year old.
 c. makes the plant hardier.
 d. cannot occur in plants.

12. Hardening seedlings
 a. is a direct result of poor management.
 b. involves checking plant growth by reducing water and cooling growth condition air temperatures.
 c. is only feasible in summer annuals.
 d. requires continuous watering for 5 to 7 days.

13. Types of container material include
 a. Plastic
 b. Peat
 c. Wood fiber
 d. all of the above
Ag 514 H - Care and Transplanting of Seedlings
Unit Test
Answer Key

True or false

_ T __ 1. Seedlings should be planted after the development of true leaves.
_ F __ 2. Seedlings should be handled by their stems.
_ T __ 3. Media should be kept on the seedling’s roots.
_ F __ 4. Seedlings should only be inserted a quarter of an inch below the surface of the new media.
_ F __ 5. Do not water seedlings once they are placed in the new media to prevent premature root rot.

Matching

_ B __ 6. Peat pot
_ A __ 7. Market packs
_ C __ 8. Jiffy 7 peat moss pellet

A. feeds the seedling until it is transplanted
B. one pot per seedling
C. holds 6 to 12 plants

9. List the five criteria in choosing container types.

___ __
___ __

Answer:
Economy
Consumer appeal
Ease of handling
Disease-free
Quality of plant growth

10. Determine the best possible sequence for the following transplanting (seedling to pot) procedures.

_ 3 __ Hold transplant with the thumb and forefinger of your left hand at true leaves.
_ 6 __ Gently press potting media around the plant and water at the media surface.
_ 1 __ On a potting table, places seedlings and media on your left, and empty pots on your right.
_ 5 __ Place seedling at planting depth.
_ 2 __ Cover the drain with a coarse material for good drainage.
_ 4 __ Fill the pot to the rim with potting media.
11. The accumulation of carbohydrates

a. makes the plant more susceptible to disease.
b. begins after the plant is a year old.
c. makes the plant hardier.
d. cannot occur in plants.

12. Hardening seedlings

a. is a direct result of poor management.
b. involves checking plant growth by reducing water and cooling growth condition air temperatures.
c. is only feasible in summer annuals.
d. requires continuous watering for 5 to 7 days.

13. Types of container material include

a. Plastic
b. Peat
c. Wood fiber
d. all of the above
Unit Objectives

1. List five things plants need in order to grow.
2. Identify the most important requirement for plant growth and survival.
3. Identify the most important factor affecting the adaptation of plants to a particular region.
4. Identify a plant’s macroenvironment.
5. Identify a plant’s microenvironment.
6. Define the three areas of the plant environment.
7. Describe the components of the atmospheric environment.
8. Define four elements of weather.
9. State the effects of light, temperature, moisture, and wind on plants.
10. Discuss the factors which variate temperature.
11. Describe the components of the edaphic environment.
12. List the components of soil which influence plant growth.
13. Describe the influences of a soil’s media on the growth of plants.
15. Describe the negative and positive influences of the biotic environment on the growth of plants.
16. Indicate the components of the best strategy for plant culture.
17. List five elements of record-keeping in plant culture.
18. Relate plant culture record-keeping to the scientific method.

Information

1. List Five Things Plants Need in Order to Grow
2. Identify the Most Important Requirement for Plant Growth and Survival
3. Identify the Most Important Factor Affecting the Adaptation of Plants to a Particular Region
4. Identify a Plant’s Macroenvironment
5. Identify a Plant’s Microenvironment
6. Define the Three Areas of the Plant Environment
7. Describe the Components of the Atmospheric Environment
8. Define Four Elements of Weather
9. State the Effects of Light, Temperature, Moisture, and Wind on Plants
10. Discuss the Factors Which Variate Temperature
11. Describe the Components of the Edaphic Environment
12. List the Components of Soil Which Influence Plant Growth
Five Requirements for Plant Growth:

1. Sunlight
2. Temperature
3. Moisture
4. Air
5. Nutrients

Most Important Requirement for Plant Growth and Survival
= Water

Most Important Factor Affecting the Adaptation of Plants to a Region
= Temperature

Temperature varies with:
- Latitude
- Altitude
- Topography.

Temperature is created by heat energy, in the form of solar radiation.

Plant adaptation to cold temperatures is known as a plant’s hardness.
Tender plants cannot tolerate extremes in cold temperatures.

Evaporation
Water changes from a liquid to a gaseous state.

Surface temperature / variating factors
- **Heat transfer** from the surface as it warms from the morning sun to the atmosphere, as it cools at night.

Plant growth is greater at night, when temperatures cool.

Seasonal fluctuations in temperature influence growth by determining the optimum length of growing conditions for a plant species.

Higher altitudes and northern latitudes are associated with colder temperatures.

South- and south-western facing slopes receive more solar radiation.

The macroenvironment
- The atmosphere surrounding a plant.

The microenvironment
- The area at ground level immediately surrounding a plant.
- Microenvironments can be manipulated to support plant growth.

The Three Areas of the Plant Environment
- Atmospheric
- Edaphic
- Biotic

Atmospheric Environment
- Includes the macroenvironment of the plant.
- Can include simulated plant environment (e.g., greenhouse) or natural plant environment.
- Atmospheric conditions include:
 - Temperature
 - Moisture
 - Light
 - Wind.

Weather systems tend to be regionally consistent, and play a large role in plant adaptation.
- Pressure systems
- Temperature
- Topography (slope / face)
- Wind

Cycles of day and night effect plant growth, exhibited by comparing plant growth at different latitudes.
- Temperature is affected by latitudinal distance from the equator.
- How much light and the type of light a plant receives affects its growth cycle.

Angular rays of morning promote cellular elongation.
Perpendicular rays of midday promote cellular stunting.
- Plants receiving both types of rays exhibit normal growth.
- Direct sun causes compact growth.
- Shading creates longer, taller plants.
Water
Protoplasm in plant cells is primarily water.
Water uptake increases cell turgidity.
Water is essential to increase plant hardiness in hot weather.

Water vapor
Transpiration (absorption, transport, and release of water to the atmosphere) cools leaves.
Evapotranspiration (ET) is the rate of transpiration as affected by the rate of evaporation.
The ET rate is used because it is difficult to distinguish where water vapour is coming from - soil evaporation or plant transpiration.

Moisture availability to plants
Precipitation (rain and snow)
Water vapor (relative humidity)
Dew (condensation - when air temperature is warmer than surfaces)

Wind / air movement
Velocity is the key factor.
Breezes cool a plant in hot weather.
Storms can damage or destroy plants.

Edaphic Environment
Soil environment surrounding the plant.
Soil horizons
Soil particle structure
Soil organic matter
Water movement through the soil
Percolation (from surface into soil structure)
Capillary (wicking action upward)
Gravitational (downward flow)
Aeration
Air into and through soil
Upward and out of soil
Temperature
Soil warmth is essential for seed germination.
pH
Soil acidity or alkalinity creates conditions for plant adaptation and growth.
Salinity
Soil salinity (salt in the soil) creates conditions for plant adaptation and growth. Plants vary in their tolerability to saline conditions.
Biomass
Source of organic matter in soil.
Living (standing crop matter and living organisms).
Non-living (decomposing and decomposed (humus) vegetative and animal matter).
A healthy soil has a diverse biomass for its source.
Competition for water, space, and light is balanced between plants.
Competition between organisms is balanced within the soil, allowing plant roots to receive essential nitrogen.

Biotic and Abiotic Environment

Biotic: living components of the biosphere.
Abiotic: non-living (physical and chemical) components of the biosphere.

Biotic factor: the influence of organisms upon other organisms (i.e., shading, competition, symbiosis, commensalism, parasitism).
- Includes man’s influence on plant life by cultural practices, or by creating damaging conditions for plants.

Negative influences:
- **Soil compaction** compression of soil, reducing availability of water and air; limits root growth.
- **Wear** Loss of vegetation due to excess traffic through an area (i.e., a worn path through a lawn).
- Wasteful pesticide management
- Over-fertilization
- Wasteful irrigation practices.

Positive influences:
- Selection of adaptive plant species for use in the landscape.
- Limited cultural practices on plants (limited to the basics).

Best strategy is to incorporate best management practices in plant culture:
- Selective pruning
- Selective fertilization and irrigation
- Composting
- Mulching
- Soil aeration
- Integrated pest management
- Controlled impact zones (minimize compaction and wear).

Record-keeping in plant culture - a best management practice.

Successful record-keeping includes:
- Deciding what data needs to be recorded
- The most useful system of recording the data
- Easy access to the recorded information.

Crop records should include five basic elements of plant culture
In each batch:
1. Variety and propagation date (seeds or cuttings)
2. Number of seeds / cuttings sown
3. Number of transplants / date
4. Ready-for-plant date
5. Cultural procedures used for the particular plant variety, including containers used (germination, transplant, and sale containers, if different).

Records should correspond with container labels.

Good record keeping is essential to good science.
Recording allows the prediction of outcomes and the anticipation of possible problems (unexpected variables).
Good records lead to problem resolution based on facts (occurrences).
Facts are generalizable to similar situations, making their application useful to predict similar outcomes (increasing dependability of results).

References

Student Activities

From *Exploring with Wisconsin Fast Plants*, Kendall / Hunt:
- **Modifying the Atmosphere** (pp. 171-178)

From *The Growing Classroom*, Addison-Wesley:
- **The Station Creation** (pp. 289-291)
- **Keeping Track** (pp. 292-294)
- **I’m the Hottest** (pp. 298-300)
- **A Ravishing Radish Party** (pp. 301-304)
- **A Shoebox of Sunshine** (pp. 307-309)
- **A Journey to Different Lands** (pp. 312-314)
Internet Resources

2. Horticulture Environment
http://128.146.143.171/hvp/TMI/Hort210/HortScience/HortEnviron.html

Handout

● Record Keeping

Transparency

● Optimizing the Biotic Environment
Record Keeping

Records should correspond with container labels...

<table>
<thead>
<tr>
<th>Variety and Propagation Date</th>
<th>Number of Seeds / Cuttings Sown (Indicate seed or cutting)</th>
<th>Container Type</th>
<th>Number of Transplants & Date</th>
<th>Container Type</th>
<th>Ready-for-Plant Date</th>
<th>Container (if different)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Culture:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Optimizing the Biotic Environment

- Day / Night Cycle
- Air Temperature
- Controlling Disease
- Controlling Pests
- Feeding the Plant
- Maintaining Moisture and Oxygen Balance
- Soil Temperature
1. List the five requirements for plant growth.

__
__
__
__

2. The __________________ includes the living components of the biosphere while the
 ____________________ includes the non-living components.

Multiple Choice

3. The most important requirement for plant growth and survival is

 a. water.
 b. sunlight.
 c. the proper gestation of seeds.
 d. air.

4. The most important factor affecting the adaptation of plants to a region is

 a. soil biomass.
 b. temperature.
 c. the percentage of herbivores.
 d. variation in other plant species.

5. Water is essential to plant growth in that it

 a. increases the turgidity of a cell.
 b. transpires in order to cool leaves.
 c. is the primary component of plant cells.
 d. all of the above

6. Wind affects plant growth

 a. by ridding plants of potentially harmful insects.
 b. by clearing away dry soil.
 c. by cooling or damaging the plant.
d. in no significant way.

7. The edaphic environment is
 a. the uncultivated area surrounding a cultivated segment of land.
 b. the soil environment surrounding the plant.
 c. significant only to the flowering part of a plant.
 d. an environment not concerned with plant propagation.

8. The source of organic matter is soil is
 a. aeration.
 b. pH.
 c. water movement.
 d. biomass.

9. The influence of organisms upon other organisms is
 a. the biotic factor.
 b. the biotic environment.
 c. almost always negative.
 d. not a concern with plant growth.

10. One of the best management practices in plant culture is
 a. making sure the soil is compacted.
 b. using more than one fertilizer.
 c. good record keeping.
 d. avoiding the use of herbicides.

True or False

____ 11. A plant's ability to adapt to cold temperatures is known as the plant’s hardiness.
____ 12. Tender plants can tolerate cold temperature extremes.
____ 13. In evaporation, water changes from a solid to a liquid state.
____ 14. Plant growth is greater at night since the temperatures are cooler.
____ 15. Seasonal fluctuations in temperature do not affect plant growth.
____ 16. Higher altitudes and northern latitudes are associated with colder temperatures.
____ 17. South and south-western facing slopes receive more solar radiation.
Matching

18. The areas of the plant environment
19. Macroenvironment
20. Atmospheric Environment
21. Weather systems
22. Microenvironment

A. conditions include temperature, moisture, light, and wind
B. the atmosphere surrounding the plant
C. the area at ground level immediately surrounding the plant which can be manipulated to support plant growth
D. atmospheric, edaphic, and biotic
E. regionally consistent; includes pressure systems, temperature, topography, and wind.
23. Plants which receive both _____________ and _____________ exhibit normal growth.

24. What are some of the best management strategies to incorporate in order to impact plant positively? (List at least five).

__

__

__

__

__
1. List the five requirements for plant growth.

__ ___________________________________
__ ___________________________________
__ ___________________________________

Answers
Sunlight
Temperature
Moisture
Air
Nutrients

2. The __________________ includes the living components of the biosphere while the
______________________ includes the non-living components.

Answers: the biotic environment and the abiotic environment

Multiple Choice

3. The most important requirement for plant growth and survival is
 a. water.
 b. sunlight.
 c. the proper gestation of seeds.
 d. air.

4. The most important factor affecting the adaptation of plants to a region is
 a. soil biomass.
 b. temperature.
 c. the percentage of herbivores.
 d. variation in other plant species.

5. Water is essential to plant growth in that it
 a. increases the turgidity of a cell.
 b. transpires in order to cool leaves.
 c. is the primary component of plant cells.
6. Wind affects plant growth
 a. by ridding plants of potentially harmful insects.
 b. by clearing away dry soil.
 c. by cooling or damaging the plant.
 d. in no significant way.

7. The edaphic environment is
 a. the uncultivated area surrounding a cultivated segment of land.
 b. the soil environment surrounding the plant.
 c. significant only to the flowering part of a plant.
 d. an environment not concerned with plant propagation.

8. The source of organic matter is soil is
 a. aeration.
 b. pH.
 c. water movement.
 d. biomass.

9. The influence of organisms upon other organisms is
 a. the biotic factor.
 b. the biotic environment.
 c. almost always negative.
 d. not a concern with plant growth.

10. One of the best management practices in plant culture is
 a. making sure the soil is compacted.
 b. using more than one fertilizer.
 c. good record keeping.
 d. avoiding the use of herbicides.

True or False

11. A plant's ability to adapt to cold temperatures is known as the plant’s hardiness. **T**
12. Tender plants can tolerate cold temperature extremes. **F**
13. In evaporation, water changes from a solid to a liquid state. **F**
14. Plant growth is greater at night since the temperatures are cooler. **T**
15. Seasonal fluctuations in temperature do not affect plant growth. **F**
16. Higher altitudes and northern latitudes are associated with colder temperatures.
17. South and south-western facing slopes receive more solar radiation.

Matching

D 18. The areas of the plant environment
B 19. Macroenvironment
A 20. Atmospheric Environment
E 21. Weather systems
C 22. Microenvironment

A. conditions include temperature, moisture, light, and wind
B. the atmosphere surrounding the plant
C. the area at ground level immediately surrounding the plant which can be manipulated to support plant growth
D. atmospheric, edaphic, and biotic
E. regionally consistent; includes pressure systems, temperature, topography, and wind.
23. Plants which receive both _____________ and _____________ exhibit normal growth.
 Answer: angular rays and perpendicular rays

24. What are some of the best management strategies to incorporate in order to impact plant positively? (List at least five).

 __
 __
 __
 __
 __

 Answers can include:
 Selective pruning
 Selective fertilization and irrigation
 Composting
 Mulching
 Soil aeration
 Integrated pest management
 Controlled impact zones
Unit Objectives

1. Match terms and definitions relating to asexual plant propagation.
2. List the methods of asexual plant propagation.
3. List the reasons for using asexual plant propagation.
4. Select cuttings that require leaves.
5. Select cuttings that do not require leaves.
6. List the main types of propagating by layering.
7. List the requirements for layering.
8. Describe propagation by division.
9. List the methods of propagating by budding.
10. List the methods of grafting.
1. Match Terms and Definitions Relating to Asexual Plant Propagation

2. List the Methods of Asexual Plant Propagation

3. List the Reasons for Using Asexual Plant Propagation

4. Select Cuttings that Require Leaves

5. Select Cuttings that Do Not Require Leaves

6. List the Main Types of Propagating by Layering

7. List the Requirements for Layering

8. Describe Propagation by Division

9. List the Methods of Propagating by Budding

10. List the Methods of Grafting

Asexual plant propagation
Reproduction of new plants from the stem, leaf, or root of the parent plant.

Method of asexual plant propagation
Cuttings
- Stem
 - Softwood
 - Hardwood
 - Semi-hardwood
- Leaf
 - Leaf-bud
- Root
Placed in soil or soilless media.
Placed in test tubes containing nutrients in a liquid media.

Grafting
Budding
Layering
Separation
Division
Tissue Culture

Reasons for asexual plant propagation

Cloning
Reproduction by DNA replication retains all the genetic information of the parent plant.
Retains the unique characteristics of a plant.
Necessary to grow cultivars that do not produce viable seeds; i.e., bananas, figs, oranges, & grapes.
More economical for production of some species that do not reproduce well from seed.
Faster than slow-growth seedlings.
Used to avoid undesirable features of the juvenile stage; e.g., thorns.
Maintaining juvenile phase of a plant for cuttings in species where the juvenile plants root more readily than older plants.
Produce disease-free plants from parent plants (particular to tissue culture).

Cuttings that require leaves

Leaf cutting
- **Leaf blade**
- **Leaf blade with attached petiole**
 Used when plant material is scarce.
 Large numbers of new plants are needed.
 Commonly used to produce foliage houseplants.

Leaf-bud cutting
- **Leaf, petiole, and a short piece of stem that includes a lateral bud**
 Used when woody plant material is scarce.
 Large numbers of new plants are needed.
 Buds should be well-developed for use in a cutting.

Cuttings that do not require leaves

Root cutting
 From root pieces of young plants.

Grafting
Connecting two parts or plant parts together to grow as one plant.
Graft consists of scion and understock.
- **Scion** short piece of stem with two or more buds
- **Understock** (rootstock) lower portion which develops a root system.
Graft types:
- Whip-and-tongue
- Cleft
- Bark.

Budding
Single-band scion joined to an understock.

Budding types:
- T-budding
- Patch budding.

Layering
Roots are formed on a stem while attached to the parent plant.

Requirements for layering:
- Continuous moisture
- Good aeration
- Moderate temperatures in the rooting zone.

Layering types:
- Simple
- Air.

Separation
Vegetative reproductive parts which are separated from the parent plant and planted.

Separation types:
- Bulbs
- Corms.

Division
Parts of plants are cut or divided into sections that will grow into new plants.

Division types:
- Rhizomes
- Tubers
- Plant crowns.

Tissue culture
Also known as micropropagation.
Taking plant tissue or cells from a parent plant and growing them on or in a sterile, artificial medium to produce a plantlet with its own leaves, stems, and root system.

Tissue culture types:
- Callus
- Cell suspension
- Embryo
- Meristem
- Anther.

References

Student Activities

- **Check It Out!**

 From *Exploring with Wisconsin Fast Plants*, Kendall / Hunt:
 - **Design a Plant** (p. 242)

Internet Resources

3. Horticulture Technology
 http://128.146.143.171/hvp/TMI/Hort210/HortScience/HortTech.html

Asexual Propagation
 http://hammock.ifas.ufl.edu/txt/fairs/11660

Hort 100 University of Illinois at Urbana-Champaign
Modified Stems and Roots
 http://classes.aces.uiuc.edu/Hort100/contents.htm

T-Bud Grafting
 http://classes.aces.uiuc.edu/Hort100/tbud/index.htm

Asexual propagation of wild and mutant strains of Arabidopsis in liquid and solid media
A. Corcos & R. Lewis
Michigan State University

Plant Tissue Culture Information Exchange
 http://aggie-horticulture.tamu.edu/tisscult/tcintro.html

Horticulture 201 H Plant Propagation
 (See “Lecture Slides” & “Web Links”)
 http://aggie-horticulture.tamu.edu/syllabi/cnotes96a/201H/lecoutlines/lecture22.html

Transparencies

See the slide set from *Propagation*, Texas A&M University:
Propag.ppt (need PowerPoint Viewer 4.2 or better) or
Student Activity: Check It Out!

Purpose
- Understand the methods of asexual propagation.

Materials
- Notebook
- Hand-held tape recorder
- Camera (35mm / film for slides) or Videotape recorder

Procedure
Congratulations! You’re the reporter for a story on plant propagation procedures. You plan to focus on one procedure of asexual propagation for a horticultural / gardening magazine or for a local TV broadcast on gardening.

Every good reporter needs prepared questions. Think about what you want to know about the “how-to” of asexual propagation. Consider how a good story is written:

Ask the questions that will reveal the who, what, when, where, how and why for your story.

Prepare your questions and set up the interviews at a local greenhouse or at a local nursery.

Prepare for the interview! Remember your notebook, tape recorder, and camera (you may use a videotape recorder in substitute for the tape recorder and camera if you have that option). The tape recorder is to back up your handwritten notes. Always take handwritten notes!

Record the procedures for asexual propagation at a local nursery and greenhouse. Interview the person doing the procedure. Record their name, the date, and the location of the interview. Take pictures of the steps of the procedures. Be sure to record the steps in your notebook along with where you’re at on the film (you’ll be glad you did later!).

Write your story!
Present a slide presentation of the procedure.

Or

Write your story, and present your broadcast videotape of the story.
Teacher Notes:

Each student should present one procedure. Depending on class size and access to equipment, students may write a story on the same procedure, but divide it according to a videotape for TV broadcast, a paste-up or computer-generated layout of a magazine article, and a slide presentation.
1. The reproduction of new plants from the stem, leaf, or root of the parent plant is called ______________________________.

2. Identify the seven methods of asexual propagation.

 ______________________________ ______________________________
 ______________________________ ______________________________
 ______________________________ ______________________________
 ______________________________ ______________________________

3. List five reasons for asexual plant propagation.

4. When plant material is scarce, or large numbers of new plants are needed, use

 a. leaf cuttings with either a leaf blade or a leaf blade with attached petiole.
 b. a root cuttings.
 c. bulbs.
 d. none of the above.

5. In a leaf-bud cutting, buds should be

 a. carefully trimmed off the stem
 b. under-developed.
 c. well-developed.
6. Connecting two parts or plant parts together to grow as one plant is referred to as
 a. rooting cutting.
 b. grafting.
 c. budding.
 d. layering

7. Tissue culturing is known as
 a. cell suspension.
 b. patch budding.
 c. micropropagation.
 d. T-budding.

8. Rhizomes, tubers and plant crowns are types of
 a. division cutting.
 b. separation cutting.
 c. layering.
 d. budding.

Matching

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Root cutting</td>
<td></td>
<td></td>
<td>A. Graft types</td>
</tr>
<tr>
<td>10.</td>
<td>Scion</td>
<td></td>
<td></td>
<td>B. Cut from root pieces of young plants</td>
</tr>
<tr>
<td>11.</td>
<td>Understock (rootstock)</td>
<td></td>
<td></td>
<td>C. Vegetative reproductive parts which are separated from the parent plant and planted</td>
</tr>
<tr>
<td>12.</td>
<td>Whip-and-tongue, cleft, and bark</td>
<td></td>
<td></td>
<td>D. Parent plant tissue grown on or in a sterile, artificial medium to produce a plantlet</td>
</tr>
<tr>
<td>13.</td>
<td>Budding</td>
<td></td>
<td></td>
<td>E. Short piece of stem with two or more buds</td>
</tr>
<tr>
<td>14.</td>
<td>Layering</td>
<td></td>
<td></td>
<td>F. Plant parts cut or divided into sections that will grow into new plants</td>
</tr>
<tr>
<td>15.</td>
<td>Separation</td>
<td></td>
<td></td>
<td>G. Single-bud scion joined to an understock</td>
</tr>
<tr>
<td>16.</td>
<td>Division</td>
<td></td>
<td></td>
<td>H. Lower portion or grafted stem which develops a root system</td>
</tr>
<tr>
<td>17.</td>
<td>Tissue culture</td>
<td></td>
<td></td>
<td>I. Roots are formed on a stem while attached to the parent plant</td>
</tr>
</tbody>
</table>
Ag 514 J - Introduction to Asexual Plant Propagation

Unit Test

Answer Key

1. The reproduction of new plants from the stem, leaf, or root of the parent plant is called

 Answer: Asexual Reproduction

2. Identify the seven methods of asexual propagation.

 Answers:
 Cuttings
 Grafting
 Budding
 Layering
 Separation
 Division
 Tissue Culture

3. List five reasons for asexual plant propagation.

 Answers:
 Reproduction by DNA replication retains all the genetic information of the parent plant.
 Retains the unique characteristics of a plant.
 Necessary to grow cultivars that do not produce viable seeds.
 More economical for production of some species that do not produce well from seed.
 Faster than slow-growth seedlings.
 Used to avoid undesirable features of the juvenile stage.
 Maintaining juvenile plase of a plant for cuttings in species where the juvenile plants root more readily than older plants.
 Produce disease-free plants from parent plants (particular to tissue culture).

4. When plant material is scarce, or large numbers of new plants are needed, use

 a. leaf cuttings with either a leaf blade or a leaf blade with attached petiole.
 b. a root cuttings.
 c. bulbs.
 d. none of the above.

5. In a leaf-bud cutting, buds should be
a. carefully trimmed off the stem
b. under-developed.
c. well-developed.
d. along the same side of the short piece of stem.

6. Connecting two parts or plant parts together to grow as one plant is referred to as
 a. rooting cutting.
 b. **grafting**.
 c. budding.
 d. layering

7. Tissue culturing is known as
 a. cell suspension.
 b. patch budding.
 c. **micropropagation**.
 d. T-budding.

8. Rhizomes, tubers and plant crowns are types of
 a. **division cutting**.
 b. separation cutting.
 c. layering.
 d. budding.

Matching

B 9. Root cutting
E 10. Scion
H 11. Understock (rootstock)
A 12. Whip-and-tongue, cleft, bark
G 13. Budding
I 14. Layering
C 15. Separation
F 16. Division
D 17. Tissue culture

A. Graft types
B. Cut from root pieces of young plants
C. Vegetative reproductive parts which are separated from the parent plant and planted
D. Parent plant tissue grown on or in a sterile, artificial medium to produce a plantlet
E. Short piece of stem with two or more buds
F. Plant parts cut or divided into sections that will grow into new plants
G. Single-bud scion joined to an understock
H. Lower portion or grafted stem which develops a root system
I. Roots are formed on a stem while attached to the parent plant
Unit Objectives

1. Match terms and definitions associated with propagation by cuttings.

2. List treatments made to cuttings before placing them in rooting media.

3. List the basic kinds of plant wounding.

4. Explain the use of hormone treatment on cuttings.

5. Describe why storage and callusing are used with hardwood cuttings.

6. Demonstrate the ability to make various types of wounds on cuttings.

7. Demonstrate how to treat a cutting with hormone.

8. Describe how to store and calluse plant cuttings.

9. Demonstrate the propagation of a stem cutting.

10. Demonstrate a bud cutting.

11. Demonstrate a leaf cutting.

12. Demonstrate a root cutting.
1. Match terms and definitions associated with propagation by cuttings

2. List treatments made to cuttings before placing them in rooting media

3. List the basic kinds of plant wounding

4. Explain the use of hormone treatment on cuttings

5. Describe why storage and callusing are used with hardwood cuttings

6. Demonstrate the ability to make various types of wounds on cuttings

7. Demonstrate how to treat a cutting with hormone

8. Describe how to store and callus plant cuttings

9. Demonstrate the propagation of a stem cutting

10. Demonstrate a bud cutting

11. Demonstrate a leaf cutting

12. Demonstrate a root cutting

Cuttings
Leaves, pieces of stems, or roots used for plant propagation.
Softwood cuttings
Taken from new spring growth of herbaceous or woody plants.
Materials:
Cuttings are 3-5 inches in length, including 2 or 3 nodes.
Procedure:
Cut at 45 degree angle ¼ inch below a node.
Remove 1/3 of the lower leaves to reduce loss through transpiration.
Cut large leaves in half to reduce wilting.
Remove all flower buds.
Place in growing medium.

Hardwood cuttings
Taken during the dormant season of deciduous plants or evergreens.
Materials:
Cuttings are 6-8 inches in length, taken from 1-year-old wood.
Procedure:
Place in growing medium.
Over the winter cuttings form callus tissue (tissue that forms over the cutting wounds) at base of the cuttings.
In the spring, new roots sprout from the callused tissue.

Leaf cutting
Materials:
Leaf blade, or leaf blade with petiole (leaf stem)
Procedure:
Leaf blades are cut across primary veins, laid top surface up, and pinned to the surface of a growing medium.
New plants form at the each cut.
With petiole:
Leaf blade with petiole attached is inserted in the growing medium.
New roots and shoots emerge from the base of the petiole.
The original leaf is pinched off, and the new plant is replanted.

Leaf-bud cuttings
Materials:
Leaf with petiole attached to part of stem with a lateral bud
Procedure:
Treat stem with rooting hormone
Insert in a growing medium with the lateral bud just below the surface
A new plant will develop from the lateral bud.

Root cuttings
Materials:
Root pieces of young plants taken during late winter or early spring.
Procedure:
Dig roots up, clean, and treat with fungicide.
Cut root pieces 2 to 6 inches in length.
Place either:
- Horizontally 2 inches deep in growing medium or
- Vertically in growing medium, pointing the root end that was originally close to the crown of the plant pointing up.
(Hint: to indicate correct placement, cut root closest to the main stem with a straight cut.
Cut opposite to the main stem with a slant cut.)

Treatments
Rooting hormones are used to induce rooting from stem cuttings.
Fungicides are used to prevent root rot.
Hardwoods require a higher concentration of rooting hormone.
Not all herbaceous stems require rooting hormone (e.g., coleus; swedish ivy).
Maintain a mediate temperature range (about 70°F to 80°F).
Moisten the growing media.
Growing media used should be sterilized, hold moisture, provide aeration, and have good drainage.
Place cuttings in a plastic bag or on a misting bench to maintain humidity, preventing loss of water through transpiration.

Basal wounding
Stripping off the lower side of branches, making a vertical cut down each side of the cutting for 1 to 2 inches.
Promotes root production. Treat wound with rooting hormone, working directly into the wound.
Wounding allows:
- Increased water absorption
- Better absorption of a rooting hormone
- Better penetration of roots as they develop.

Hormone treatment:
- Increases the percentage of root-forming cuttings.
- Hastens the initiation of root formation.
- Increases the number of roots produced per cutting.
- Betters the quality of roots produced, particularly combined with wounding.
- Increases the uniformity of plants produced.

Storage and callusing hardwood cuttings
Hardwood cuttings are taken 6 to 8 weeks prior to planting.
During that time, they are treated with a rooting hormone, tied in a bundle, and stored.
Storage consists of:
- Bundling and placing cut ends in moist media (sawdust, sand, or other porous material).
 Cut ends will callus and begin to form new roots.
• Maintain a cool temperature of 50\(^\circ\) to 55\(^\circ\)F during callus formation.
• After callus formation, lower the temperature to lower than 40\(^\circ\)F but not below freezing (32\(^\circ\)F).

Lining out cuttings

Planting woody plant (hardwood) cuttings outside in rows in the spring.
Site should have good drainage and full sunlight.
Soil should be workable (ready to plant).
Rows are prepared as narrow trenches that allow only the top bud to be above ground level.
Spacing varies according to how long the plant remains lined out and the plant’s growth rate:
 One year - 6 inches apart / rows one foot apart.
 More than 1 year - 9 to 10 inches apart / rows 2 to 3 feet apart.
Soil surface is tamped down gently around the plants.
Soil is mulched around the plants to retain moisture and control weeds.
Watering should be as needed (do not let the soil dry out).
Cuttings will develop shoots and leaves first, and root by summer.

References

Student Activity

• Taking Root: Propagating from Cuttings

Internet Resources

Propagation of Landscape Plants Dewayne L. Ingram & Thomas H. Yeager
http://hammock.ifas.ufl.edu/txt/fairs/11658

Transparencies / Handouts

• Hardwood Cuttings
• Leaf, Leaf-Bud, & Root Cuttings
• Softwood and Semi-Hardwood Cuttings
Student Activity: Taking Root: Propagating from Cuttings

Purpose
• Demonstrate the ability to make plant cuttings and complete their propagation procedures.

Materials
Plant material
Rooting hormone
Planting media for leaf cuttings
Planting media for storage stem cuttings
Containers
Plastic bags / or access to misting bench

Plant Material / Procedural
Groups:
African Violet (leaf with petiole)
Rex Begonia or Sansevieria (leaf)
Maple (leaf-bud)
Chrysanthemum (softwood)
Juniper (hardwood)

Procedure
(In Two Parts)

Part One
• The class is divided according to procedural groups; i.e., types of cuttings taken.
• Within your plant group, follow the directions for completing the procedures for plant cuttings as instructed in your text, notes, and hand-outs.
• Each person will complete one entire procedure; however,
• You may work together as a group, helping each other with instructions on how to complete the procedure.
• Label your containers according to plant variety, date, and type of procedure; add your name.

Part Two
• Your group will instruct the other groups on how to accomplish your procedure.
• Each person within your group should choose a step or steps within your procedure to demonstrate to the rest of the class.
• Organize your demonstration according to the natural flow of the procedure.
• You may wish to demonstrate the procedure as a “poster session,” i.e., a demonstration to one group at a time in order to allow everyone to see the procedure and hear the instructions from close proximity.
Teacher Information
Assign the students to work in groups according to procedure type. This will allow them to instruct each other as well as learn the procedure. Each group will then instruct the other groups on the correct application of their particular procedure. Students within each group should divide the instruction of the procedure according to steps, so that each student participates in sharing the information.
Leaf, Leaf-Bud, & Root Cuttings

Containers with rooting media.

Leaf across primary veins.

Leaf to surface of growing medium, face up.

Leaf: leaf with petiole attached.

Plant with rooting hormone.

Plant in growing medium with lateral row surface.

Roots up, clean, treat with fungicide.

Cut pieces 2 to 6 inches in length.

Horizontally or vertically (end up) in growing medium.

All in plastic bag or under mist.
Hardwood Cuttings

Take wood from mature hardwood: current year’s growth.

Cut from ends of branches or from the base of the plant.

Cuts should be 6 to 8 inches in length.

Wound at cut vertically on both sides (about 1-2 inches).

Treat with hormone directly at wounding and base.

Tie in a bundle.

Store in rooting media at 50°F to 55°F for 4 weeks.

Lower to 40°F.

Line out plants in a sunny area when soil is workable.
Softwood and Semi-Hardwood Cuttings

Prepare the container with rooting media.

Take cuttings from new spring growth.

Cuttings should be 3-5 inches in length.

Cut at 45 degree angle 1/4 inch below node.

Remove lower leaves.
Cut large leaves in half.
Remove flower buds.

Apply rooting hormone directly to the cut (if required).

Insert the cutting into the rooting media.

Water the media.

Label the container.

Cover with plastic or place on a mist bench.
Ag 514 K - Propagation by Cuttings

Unit Test

Fill in the blank.

1. Leaves, pieces of stems, or roots used for plant propagation are called ____________________.

2. A cutting which utilizes the leaf blade or a leaf blade with a petiole is called a ___________ cutting.

3. The new plant develops from the _____________________ in leaf-bud cuttings.

4. __________________________ are used to induce rooting from stem cuttings.

5. __________________________ are take 6 to 8 weeks prior to planting.

Multiple Choice

6. In leaf cutting, leaf blades are cut across primary veins, laid top surface up, and then
 a. pinned to the surface of a growing medium.
 b. treated with a rooting hormone.
 c. cut at a 45° angle ¼ inch below a node.
 d. tied on a bundle and planted.

7. Once new roots and shoots emerge from the base of the petiole in a leaf cutting, the original leaf is
 a. treated with rooting hormone.
 b. grafted back on an adult plant.
 c. pinched off before the new plant is replanted.
 d. mulched into growing medium.

8. ____________ should be used in order to prevent root rot.
 a. Basal wounding
 b. Fungicides
 c. Callusing
 d. Misting benches

9. Basal wounding allows
 a. increased water absorption.
b. better absorption of a rooting hormone.
c. better penetration of roots as they develop.
d. all of the above.

10. Hormone treatment DOES NOT

a. increase the percentage of root-forming cuttings.
b. decrease the number of roots produced per cutting.
c. hasten the initiation of root formation.
d. better the quality of roots produced, particularly combined with wounding.

Place these Softwood and Hardwood cutting steps into their proper order.

Softwood and Semi-Hardwood Cuttings

- Insert the cutting into the rooting media.
- Cut in 3-5 inch lengths at a 45° angle (from new spring growth).
- Cover with plastic, or place on a misting bench.
- Prepare the container with rooting media.
- Label the container.
- Remove lower leaves, cut large leaves in half, and remove flower buds.
- Water the media.
- Apply rooting hormone directly to the cut (if required).

Hardwood Cuttings

- Line out plants in a sunny area when soil is workable.
- Cut in 6-8 inch lengths from the ends of mature hardwood branches (current year’s growth).
- After 4 weeks, lower temperature to 40°F.
- Sore in rooting media at 50° to 55°F for 4 weeks.
- Wound at cut vertically on both sides (about 1-2 inches).
- Tie in a bundle.
____ Treat with hormone directly at wounding and base.
Fill in the blank.

1. Leaves, pieces of stems, or roots used for plant propagation are called ____________________________
 Answer: cuttings

2. A cutting which utilizes the leaf blade or a leaf blade with a petiole is called a ___________ cutting.
 Answer: leaf

3. The new plant develops from the _____________________ in leaf-bud cuttings.
 Answer: lateral bud

4. ____________________________ are used to induce rooting from stem cuttings.
 Answer: rooting hormones

5. ____________________________ are take 6 to 8 weeks prior to planting.
 Answer: hardwood cuttings

Multiple Choice

6. In leaf cutting, leaf blades are cut across primary veins, laid top surface up, and then
 a. pinned to the surface of a growing medium.
 b. treated with a rooting hormone.
 c. cut at a 45° angle ¼ inch below a node.
 d. tied on a bundle and planted.

7. Once new roots and shoots emerge from the base of the petiole in a leaf cutting, the original leaf is
 a. treated with rooting hormone.
 b. grafted back on an adult plant.
 c. pinched off before the new plant is replanted.
 d. mulched into growing medium.

8. ___________ should be used in order to prevent root rot.
 a. Basal wounding
 b. Fungicides
 c. Callusing
 d. Misting benches
9. Basal wounding allows
 a. increased water absorption.
 b. better absorption of a rooting hormone.
 c. better penetration of roots as they develop.
 d. all of the above.

10. Hormone treatment DOES NOT
 a. increase the percentage of root-forming cuttings.
 b. decrease the number of roots produced per cutting.
 c. hasten the initiation of root formation.
 d. better the quality of roots produced, particularly combined with wounding.

Place these Softwood and Hardwood cutting steps into their proper order.

Softwood and Semi-Hardwood Cuttings

5. Insert the cutting into the rooting media.
2. Cut in 3-5 inch lengths at a 45° angle (from new spring growth).
8. Cover with plastic, or place on a misting bench.
1. Prepare the container with rooting media.
7. Label the container.
3. Remove lower leaves, cut large leaves in half, and remove flower buds.
6. Water the media.
4. Apply rooting hormone directly to the cut (if required).

Hardwood Cuttings

7. Line out plants in a sunny area when soil is workable.
1. Cut in 6-8 inch lengths from the ends of mature hardwood branches (current year’s growth).
6. After 4 weeks, lower temperature to 40°F.
5. Sow in rooting media at 50° to 55°F for 4 weeks.
2. Wound at cut vertically on both sides (about 1-2 inches).

4. Tie in a bundle.

3. Treat with hormone directly at wounding and base.
Unit Objectives

1. List the advantages and disadvantages of propagation by layering.

2. List the types of layering.

3. Identify the steps in transplanting layering plants.

4. Demonstrate how to propagate by tip, simple, and air layering.
1. List the Advantages and Disadvantages of Propagation by Layering

 Advantages of Layering
 - Ease and simplicity of process: the new plant receives water and nutrients from the parent plant, and the process of layering is very simple.
 - Great degree of success with layering as a rooting technique.
 - Larger new plants can be produced.
 - Many plants root naturally by layering.

 Disadvantages of Layering
 - Only a few plants can be produced from each parent plant.
 - Layering takes more time to complete the initial process and to produce plants.

2. List the Types of Layering

 Types of Layering
 - Tip (natural layering)
 - Simple
 - Air
 - Trench
 - Stool
 - Compound or serpentine

3. Identify the Steps in Transplanting Layering Plants

4. Demonstrate How to Propagate by Tip, Simple, and Air Layering

Tip

 Natural reproduction method by cane or trailing plants such as blackberries and black raspberries.

 Procedure:
 - Space plants 12 feet apart.
 - Cut plants down to 9 inches above the ground.
 - Pinch off 3 to 4 inches after a growth of about 18 to 30 inches.
Canes will begin to arch over.
Tips will assume a “rat-tail” appearance.
At that time, layer plants by placing tip in a hole with the shoot lying along the sloping side, with soil pressed firmly over it.
The tip will form roots and a vertical shoot.

Transplant:
When cutting the transplant from the parent plant, keep 6 to 8 inches of the original cane to serve as a handle to mark the plant, and to help remove the plant from the soil when you are ready to replant it.
Replant in the fall at the end of the season, or in early spring.

Simple
Use dormant, one-year-old shoots.
Layer in early spring or after current season’s growth is sufficient for layering (e.g. magnolia; rhododendron).

Procedure:
Bend the branch to the ground and cover the bend partially with soil or rooting medium. Insert the bent part of the branch 3 to 6 inches into the soil. Hold the bent section of the branch by placing a wooden peg over the branch (or a wire, or place a stone on top of the bent portion).
Additionally, you may twist the bend to loosen it, cut it, or notch it to induce rooting. Notching the highest portion of the upside bend helps to loosen inflexible branches. Leave the terminal end exposed as an upright shoot. Insert a vertical stake next to the exposed shoot to hold it upright. Remove in the fall or the following spring before growth starts. Summer layered plants should not be harvested until the following spring or the end of that growing season.

Transplant:
Pot in a peat-sand mixture and keep cool and humid, held in a cold frame or shaded greenhouse. Line out, reducing top to a size corresponding to the root system.

Air
Slitting stem of a plant at an upward angle, or girdling the stem to induce rooting. Wound is covered in rooting medium and kept moist. Use wood of previous season’s growth (spring), or late summer.

Procedure:
Girdle bark around stem 6 to 12 inches from the tip. Remove the bark completely from the stem, in a band about ½ to 1 inch wide. Scrape the exposed surface to remove the phloem and cambium, which retards wound healing. Apply rooting hormone. Pack wet sphagnum moss around the wound, completely covering the band. Squeeze the moss until dry. Snugly wrap the wound with the moss covering in polyethylene plastic film.
Secure both ends with electrician’s tape, tight enough to make a waterproof seal (the branch may require support).

Transplant:
Observe the root formation through the plastic film.
If the transplant is a deciduous plant, wait until the plant is dormant (wait until the leaves fall from the plant).
If evergreen, remove the plant when no new active growth is apparent.
Cut below the rooted area.
Place in a container with media appropriate to the plant, and place in a cool, humid area.
Allow additional root development before hardening off the plant.
Harden off by exposure to a drier atmosphere.

Trench
Parent plant is bent to the ground and buried in a trench.
Shoots form from dormant buds.
Soil is filled in around the new shoots as they develop, protecting them from sunlight.
Roots develop from the base of the new shoots.
After dormancy, plants are removed from the original plant.
Used on fruit trees difficult to propagate by other means.

Stool (or mound)
Cut the parent plant to the ground during dormancy.
Mound soil around new shoots emerging in the spring to encourage rooting.
The established shoots are cut free in the autumn or following spring, lined out and planted.

Compound (serpentine)
Similar to simple layering.
Stem is girdled at more than one point along its length, and buried at those points (the stem is alternately exposed and buried).
At least one bud should be exposed to develop a new shoot.
Roots develop from the buried sections.
At the end of the growing season, the branch is cut into new sections containing the new shoot and root portions.
This method makes it possible to develop several plants from one branch.

References

Student Activity

- Starting Plants by Layering

Internet Resources

NebGuide
Propagating House Plants
http://ianrwww.unl.edu/IANR/PUBS/extnpubs/hort/g337.htm

Horticulture 201H Plant Propagation
http://aggie-horticulture.tamu.edu/syllabi/cnotes96a/201H/lecoutlines/lecture22.html

Table 1a. Propagation Methods for Landscape Plants
http://hammock.ifas.ufl.edu/txt/fairs/48087

Table 1b. Propagation Methods for Landscape Plants
http://hammock.ifas.ufl.edu/txt/fairs/48088

Layering
http://hammock.ifas.ufl.edu/txt/fairs/48084

H400 Layerage Lecture Images
http://www.cals.cornell.edu/dept/flori/hort400/layer.html

Transparencies / Hand-Outs

- Air Layering
- Simple Layering
- Tip Layering
Student Activity: Starting Plants by Layering

Purpose

- Demonstrate how to propagate by tip, simple, and air layering.

Materials

Plant material
Rooting media (appropriate to corresponding plant material)
Bedding containers (large, clear plastic square tubs about 7 to 10 inches deep).
Polyethylene plastic film wrap
Sphagnum moss
Electricians tape (waterproof)
Rooting hormone

Procedure

- Students will be divided into three groups according to tip, simple, and air layering.
- Each group will be assigned the demonstration of one method of layering.
- Each group participant will complete a layering propagation procedure.
- See hand-outs and notes on layering and follow the procedures.
- Each group will present the method of layering they completed to the other two groups in poster sessions.

A poster session consists of a display and talk, or display, demonstration, and talk on a subject that is presented to small numbers of people at a time who visit the poster display.

⇒ The group should work together in putting on their poster session: make individual assignments for creating the poster, the demonstration, and the presentations.
⇒ Individuals in the group are responsible for a group evaluation at the close of the group assignment.

Notes
Teacher Information

- You are the final evaluator for the student’s procedural work on layering and the group’s progress on completing and presenting their poster session.
- The students should evaluate each other’s participation in the poster session. The group evaluation is a way to measure group function and participation, and to assess the student’s view of their experience in learning by doing. See the form: “Group Evaluation” for use by the students.
The ability to work in groups is an important segment of real-world work experience. Please evaluate your participation and the participation of your fellow group members. Be honest and objective. Your instructor will discuss the evaluations with you.

<table>
<thead>
<tr>
<th>Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group name:</td>
</tr>
<tr>
<td>Group participants:</td>
</tr>
</tbody>
</table>

Please indicate your participation according to the following:

(Please check one)

- [] I completed the layering procedure.
- [] I did not quite finish the layering procedure.
- [] I got halfway through the layering procedure.
- [] I tried the layering procedure.
- [] I did not attempt the layering procedure.

(Please check one)

- [] I completed my assignment for the poster session.
- [] I almost completed my assignment for the poster session.
- [] I co-completed an assignment for the poster session.
- [] I was not given an assignment for the poster session.
- [] I did not participate in the poster session.

Please describe your assignment for the poster session:

__

__

__
Please assess your group’s participation according to the following:

(Please check all that apply)
- Our group had an organization meeting.
- Our group discussed the layering method assigned to our group.
- We offered and gave assistance when other group members requested it.
- Our group had a poster session planning meeting.
- We decided upon and received our poster session assignments at the planning meeting.
- Our group had follow-up meetings to prepare our poster session.
- Our group prepared a schedule with assignments for our poster session.

Our group divided the poster session according to the following activities:

__
__
__

Our group divided the poster session according to the following assignments:

__
__
__

On the following lines, please give your impression of the propagation by layering assignment.

__
__
__
__

On the following lines, please give your impression of the poster session assignment.

__
__
__
__
Air Layering

Slit stem of plant at an upward angle or girdle 1/2 to 1 inch wide, 6 to 12 inches from the tip removing the bark completely from the stem.

Scrape the exposed surface.

Apply rooting hormone.

Pack the wound in wet sphagnum moss, completely covering the wound surface.

Squeeze the moss until dry.

Snugly wrap the wound with clear plastic.

Tightly secure both ends with electrician making a waterproof seal.

Support branch, if necessary.

Transplant when root has formed and plant dormant.

Allow transplant to harden off.
Simple Layering

Use the “pencil-size” measure to select stem that can be bent to soil level.

Make a cut or girdle at point where stem will be inserted into the soil.

Apply rooting hormone to cut.

Insert cut/bent part of stem into the soil.

Secure bend with a peg and replace soil.

Twist remaining portion of stem to an upright position. Stake for support.

Secure by placing a brick or stone on top of the soil at bend.

Keep soil moist.

Rooting should be complete by the following spring.

Cut layer free of the parent plant and transplant, gradually hardening off the new plant.
Tip Layering

Cut parent plant down to 9 inches above the ground.

Pinch off 3 to 4 inches of growth after the plant has grown 18 to 30 inches.

Canes will begin to arch over.

Bend plant over and insert tip into soil.

Firmly press soil over the tip.

The tip will form roots and a vertical shoot.

Cut transplant from the parent plant, keeping the plant in the soil.

Keep 6 to 8 inches of the original cane to mark the plant.

Remove the plant from the soil for immediate replant in the fall or early spring.
Indicate whether the follow statements are either advantages (A) or disadvantages (D) of layering.

_____ 1. Larger new plants can be produced.
_____ 2. Only a few plants can be produced from each parent plant.
_____ 3. Layering takes more time.

Depending on how many advantages you identified in the first four questions, list the remaining advantages in no particular order. Use the space below.

List the 6 types of layering, and then match the technique with one of its defining characteristic listed below.

_____ 5. ___________________________ A. Uses dormant, one-year-old shoots.
_____ 6. ___________________________ B. The parent plant is bent to the ground and buried in a trench, and shoots develop from dormant buds.
_____ 7. ___________________________ C. The parent plant is cut to the ground during dormancy.
_____ 8. ___________________________ D. The stem is girdled at more than one point along its length, and buried at those points (the stem is alternately exposed and buried).
_____ 9. ___________________________ E. A natural reproduction method by cane or trailing plants such as blackberries and black raspberries.
_____ 10. ___________________________ F. The stem of a plant is slitted at an upward angle, covered in rooting medium, and kept moist.
Identify the following procedures using the 6 layering techniques you listed above. The first one as an example is done for you.

11. Pinch off 3 to 4 inches after a growth of about 18 to 30 inches.

12. Scrape the exposed surface to remove the phloem and cambium, which retards wound healing.

13. At the end of the growing season, the branch is cut into new sections containing the new shoot and root portions.

14. Bend the branch to the ground and cover the bend partially with soil or rooting medium.

15. After dormancy, plants are removed from the original plant.

16. Remove the bark completely from the stem, in a band about ½ to 1 inch wide.

17. Mound the soil around new shoots emerging in the spring to encourage rooting.
Indicate whether the follow statements are either advantages (A) or disadvantages (D) of layering.

A 1. Larger new plants can be produced.

D 2. Only a few plants can be produced from each parent plant.

D 3. Layering takes more time.

A 4. Many plants root naturally by layering.

Depending on how many advantages you identified in the first four questions, list the remaining advantages in no particular order. Use the space below.

Answers:
E Ease and simplicity of process: the new plant receives water and nutrients from the parent plant, and the process of layering is very simple.

D There is a great degree of success with layering as a rooting technique.

List the 6 types of layering, and then match the technique with one of its defining characteristic listed below.

A 5. ___________________________
B 6. ___________________________
C 7. ___________________________
D 8. ___________________________
E 9. ___________________________
F 10. ___________________________

A. Uses dormant, one-year-old shoots.
B. The parent plant is bent to the ground and buried in a trench, and shoots develop from dormant buds.
C. The parent plant is cut to the ground during dormancy.
D. The stem is girdled at more than one point along its length, and buried at those points (the stem is alternately exposed and buried).
E. A natural reproduction method by cane or trailing plants such as blackberries and black raspberries.
F. The stem of a plant is slitted at an upward angle, covered in rooting medium, and kept moist.

Answers (in no particular order):

E. Tip
A Simple
F Air
B Trench
C Stool (or mound)
D Compound (serpentine)
Identify the following procedures using the 6 layering techniques you listed above. The first one as an example is done for you.

11. Pinch off 3 to 4 inches after a growth of about 18 to 30 inches.
12. Scrape the exposed surface to remove the phloem and cambium, which retards wound healing.
13. At the end of the growing season, the branch is cut into new sections containing the new shoot and root portions.
14. Bend the branch to the ground and cover the bend partially with soil or rooting medium.
15. After dormancy, plants are removed from the original plant.
16. Remove the bark completely from the stem, in a band about ½ to 1 inch wide.
17. Mound the soil around new shoots emerging in the spring to encourage rooting.
Ag 514 M - Propagation by Separation and Division

Agricultural Science and Technology

Ag 514

Botany / Horticulture Plant Science

Unit Objectives

1. Describe the propagation method of plant separation.
2. Describe the separation process for bulbs.
3. Give four examples of bulbs which can be separated.
4. Describe the separation process for corms.
5. Give two examples of corms which can be separated.
6. Describe the propagation method of plant division.
7. Name the types of plants propagated by division.
8. List the steps in divisional propagation.
10. Describe the division process for rhizomes and tubers.
11. Give two examples of rhizomes and tubers which can be divided.
Separation

Natural structures produced by parent plants are removed and planted to become new plants.
Natural structures which can be separated are bulbs or corms.
Bulbs and corms are underground plant parts responsible for food storage and propagation of the plant.

Specialized nutrient-storing and propagative underground stem and root types:
1. Bulb and bulblet
2. Corm and cormel
3. Rhizome
4. Tuber
5. Tuberous roots.

True Bulbs
True bulbs are part of specialized underground stems which produce foliage leaves and bulb scales.
Bulbils are small bulbs that form in the axils of leaves, flowers, or stems of bulbous plants.
The bulb scales produce the small bulblets at their base which may be separated from the parent plant and planted.
The plants produced by the separated bulblets are termed offset bulbs.

Stages of bulblet growth:
- **Splits or slabs** first separated from the parent plant.
- **Round bulb** one-year-old slab or split capable of flowering the next season.
- **Double nose** second year growth which produces a second flower bud. Can therefore produce two flower stalks; hence, the name “double nose.”

Bulb outer scales
- **Laminate or tunicate**
 Tough, outer dry membraneous scales that protect them against drying or injury.
- **Nontunicate or scaly**
 Loosely scaled wet bulbs without a tough outer cover.

Separation process for bulbs
Parent bulbs are dug after the foliage has died back (the plant is in a dormant state) and new bulblets are separated from the parent plant.
Parent (established) bulbs are generally stored at 65°F to 68°F.
Plant bulbs at the appropriate time of year for the particular bulb.
Bulblets differ in growth time required before flowering (1 to 3 years).
- **Dry** bulblets should be washed and treated for rot, then stored at 55°F to 60°F.
- **Wet** bulblets (e.g., the lily) should be kept moist and stored in moist sphagnum moss, held at just below freezing for storage until planted.
Parent plants should be cut off when tops are brown to allow bulbs to store food and acquire size before harvesting.
Potted parent plants should be allowed to continue to grow for 6 to 8 months before inducing dormancy and harvesting bulblets.
Apply fertilizer after planting to encourage next year’s flowering and formation of new bulbs.

Bulbs which can be separated:
- Tulip
- Amaryllis
- Lilly
Daffodils
Narcissus
Hyacinth
Grape hyacinth
Allium

Corms
Short compact stem with nodes and internodes.
Dry covering prevents injury.
Used for plant food storage and reproduction.
New corms and cormels form from axillary bud of old corm.
New corms flower the following year.
Cormels flower in 2 to 3 years.

Separation process for corms
Plant corms from 2 to 3 inches deep.
Parent plant is allowed to die back after frost and the dug to harvest small corms and
cormels, or allowed to grow for three months after blooming before harvesting to allow
food storage and size development.
Small corms and cormels are separated from the parent plant, treated with fungicide, and
stored at 40°F.
Area should be well-ventilated and held at 80 percent humidity.
Plant in rows; fertilize.

Corms which can be separated:
Gladiolus
Crocus
Timothy

Perennial Division
Parts do not separate naturally from the parent plant.
Parts are cut into sections which grow into new plants.
Generally used for plants in crowded groupings.

Rhizomes
Thickened stem that grows partially or completely beneath the ground.
The eye serves as the growth bud, principally found at the tip, although other sections
may form along the rhizome side.

Tubers
Swollen underground stem with no basal plate.
Roots grow from all sides.
Tubers have multiple eyes (growth points) over the upper surface.

Tuberous roots
Actual roots, not stems, which store nutrients.
Roots grow in a cluster.
Swollen tuberous roots radiate out in a cluster from the stem.
Eyes, or growth buds, are not on the tuberous roots, but at the base of the stem.

Rhizomes which can be divided:
Zantedeschia or Calla
Iris

Tubers which can be divided:
Begonia
Potato

Tuberous roots which can be divided:
Dahlia

Other perennials which can be divided:
Shasta daisy
Daylilies
Peonies
Sweet potato

Steps in plant division:

Rhizomes
Dig plants up by lifting out of the ground with a spading fork or shovel.
Wash all soil from the plant.
Cut the rhizome into sections, including at least one eye (bud) in each section.
Cut the top of the plant back to balance the remaining root section.
Treat each section with fungicide, then plant.

Tubers
Each cut section must contain an eye.
Although no storage is required, cut sections should dry before planting.

Tuberous roots
Dig the plant in the fall after frost when the plant has gone dormant.
Wash soil from roots and allow to dry.
Store in sawdust, peat, or other materials at 40°F to 50°F.
Before planting in early spring, divide the plant root crown.
Each division should contain roots and part of the stem’s base with one or more buds.
Plant after last frost date.

Adventitious roots:
Tuberous root shoots from adventitious buds.
Pull off and plant as rooted shoots.

References

Student Activity

- Perennial Division - Making the Cut!

Internet Resources

Modified Stems and Roots
http://classes.aces.uiuc.edu/Hort100/contents.htm

Transparencies / Hand-Outs

- Bulbs and Corms
- Tubers, Tuberous Roots, and Rhizomes

From *Agricultural Science and Technology, Botany / Science of Plant Growth and Development, 512 E - Vegetative Plant Parts*:

- Below Ground Stem Modifications
Bulbs in Soil

Plant tulip bulbs in a shallow pan with a layer of gravel on the bottom, topped by potting soil. Place bulbs about 1/2 inch apart, with flat side facing out.
Student Activity: Perennial Division - Making the Cut!

Purpose
- Demonstrate propagation by division of perennials.

Materials
- **Suggestions:**
 - Shasta daisy
 - Peony
 - Sweet potato
 - Iris
 - Daylily
 - Calla
 - Begonia (tuberous)
 - Potato
 - Dahlia

 Wear work / gardening gloves
 Spading fork / shovel / knife
 Newspaper or tarp for work area
 Area for planting divisions, or containers with appropriate soil mix for the perennial type.
 If planting outdoors, allow for storing at appropriate temperatures if storage is necessary for the plant type (e.g., tuberous roots).
 Fungicide
 Fertilizer
 Water / watering can

Activity Information
Division is done when plants are dormant.
Fall is the best time for plants that bloom in spring or early summer.
Early spring is the best time for plants that bloom in later summer or autumn.
The exception: in cold zones, divide spring-blooming plants in early fall to allow root growth before the cold weather.

Procedure
- Each student should choose one plant each of a tuber, tuberous root, and rhizome type for division.
- Prune parent plant foliage back to 4 inches above the soil line.
- Remove dead leaves.
- Lift plant from soil.
- Gently rinse soil away from the roots, or swirl in a bucket of water.
- Follow dividing procedures for the particular below-ground stem type according to *Information, Steps in Plant Division.*
Container planting . . .

- Make sure soil mix is appropriate for the plant type (replant in same soil mix type as the parent plant).
- Treat divided stem area with fungicide.
- Fertilize if soil mix needs fertilization.
- Trim division above-ground foliage to 2 ½ inches.
- Set divisions at the same soil depth as parent plant, spread the roots, and water thoroughly.
- Fill in the empty container spaces around the parent plant with humus or compost, and smooth. Water the parent plant.

Follow-Up!

Track the health of your plants by maintaining good plant records. Maintain a watering and feeding schedule for your plants, and note any changes or adjustments made.

Follow-up Activity:

- Track the growth of your plants by taking measurements every class session for 4 weeks.
- At the end of that time period, create a graph showing the growth of your plants. Make a graph for each plant.
- Graphs may be generated by hand or computer.
- Present your graphs in a binder with a short paper discussing the plant types, division dates, maintenance records, and growth records. Include a biographical sketch of each plant’s living history as an introduction to the paper. Reference your sources.
Ag 514 M - Botany/Horticulture Plant Science
Unit Test

Multiple Choice

1. In the propagation method of plant separation, natural structures produced by parent plants
 a. are removed and planted to become new plants.
 b. cannot be used in propagation by separation.
 c. are only present in conifers.
 d. none of the above.

2. Natural structures which can be separated are
 a. leaves.
 b. stems.
 c. bulbs or corms.
 d. buds.

3. Bulbs and corms are
 a. useless for plant propagation purposes.
 b. the underground parts of a plant responsible for food storage and propagation of the plant.
 c. the above ground parts of a plant responsible for food storage and propagation of the plant.
 d. only used when the adult plant is no longer viable.

4. Small bulbs that form in the axils of leaves, flowers, or stems of bulbous plants are called
 a. laminates.
 b. bulbils.
 c. daffodils.
 d. tubers.

5. Splits or stabs are
 a. called round bulbs after one year of growth.
 b. are capable of flowering after one season of growth.
 c. first separated from the parent plant.
 d. all of the above.

6. The tough, outer dry membranous scales that protect bulbs from drying or injury are called
 a. laminate or tunicate.
 b. nontunicate or scaly.
 c. double nose.
 d. bulblets.

7. In the separation process, parent bulbs
a. are stored at 35° to 38°F.
b. are not widely used.
c. have no laminate.
d. are dug after the foliage has died back.

8. The dry covering on corms
 a. must be removed in order to assure plant survival.
 b. contains a complex protein webbing.
 c. prevents injury.
 d. is the new plant.

9. In cuttings tubers, each section must contain
 a. roots.
 b. an eye.
 c. part of the stem’s base.
 d. bulblet

10. Adventitious roots must be
 a. pulled off and planted as rooted shoots.
 b. discarded.
 c. stored at 75°F.
 d. treated with rooting hormone.

Put these separation and division steps in their correct order.

11. Bulbs
 ___ New bulbets are separated from the parent plant.
 ___ Apply fertilizer after planting to encourage next year’s flowering and formation of new bulbs.
 ___ Parent bulbs are dug after the foliage has died back (the plant is in a dormant state).
 ___ Parent (established) bulbs are stored at 65° to 68°F.

12. Corms
 ___ Small corms and cormels are separated from the parent plant, treated with fungicide, and stored at 40°F.
 ___ Plant in rows; fertilize.
 ___ Ventilate area well at 80% humidity.
 ___ Parent plant is allowed to die back or grow for three months.

13. Rhizomes
Cut the rhizome into sections, including at least one eye (bud) in each section.

Dig plants up by lifting out of the ground with a spading fork or shovel.

Cut the top of each plant back to balance the remaining root section.

Wash all soil from the plant.

Treat each section with fungicide, then plant.

14. **Tuberous roots**

Plant after last frost date.

Store in sawdust, peat, or other materials at 40° to 50°F.

Wash soil from roots and allow to dry.

Dig the plants up by lifting out of the ground with a spading fork or shovel.

Before planting in early spring, divide the plant root crown.

15. **Give four examples of bulbs which can be separated.**

__

__

16. **Give two examples of corms which can be separated.**

__

__

17. **Name the two rhizomes and the two tubers which can be divided.**

Rhizomes

__

__

Tubers

__

__
Multiple Choice

1. In the propagation method of plant separation, natural structures produced by parent plants
 a. are removed and planted to become new plants.
 b. cannot be used in propagation by separation.
 c. are only present in conifers.
 d. none of the above.

2. Natural structures which can be separated are
 a. leaves.
 b. stems.
 c. bulbs or corms.
 d. buds.

3. Bulbs and corms are
 a. useless for plant propagation purposes.
 b. the underground parts of a plant responsible for food storage and propagation of the plant.
 c. the above ground parts of a plant responsible for food storage and propagation of the plant.
 d. only used when the adult plant is no longer viable.

4. Small bulbs that form in the axils of leaves, flowers, or stems of bulbous plants are called
 a. laminates.
 b. bulbils.
 c. daffodils.
 d. tubers.

5. Splits or stabs are
 a. called round bulbs after one year of growth.
 b. are capable of flowering after one season of growth.
 c. first separated from the parent plant.
 d. all of the above.

6. The tough, outer dry membranous scales that protect bulbs from drying or injury are called
 a. laminate or tunicate.
 b. nontunicate or scaly.
 c. double nose.
 d. bulblets.

7. In the separation process, parent bulbs
a. are stored at 35° to 38°F.
b. are not widely used.
c. have no laminate.
d. are dug after the foliage has died back.

8. The dry covering on corms
 a. must be removed in order to assure plant survival.
 b. contains a complex protein webbing.
 c. prevents injury.
 d. is the new plant.

9. In cuttings tubers, each section must contain
 a. roots.
 b. an eye.
 c. part of the stem’s base.
 d. bulblet

10. Adventitious roots must be
 a. pulled off and planted as rooted shoots.
 b. discarded.
 c. stored at 75°F.
 d. treated with rooting hormone.

Put these separation and division steps in their correct order.

11. Bulbs
 __2__ New bulbets are separated from the parent plant.
 __4__ Apply fertilizer after planting to encourage next year’s flowering and formation of new bulbs.
 __1__ Parent bulbs are dug after the foliage has died back (the plant is in a dormant state).
 __3__ Parent (established) bulbs are stored at 65° to 68°F.

12. Corms
 __1__ Small corms and cormels are separated from the parent plant, treated with fungicide, and stored at 40°F.
 __4__ Plant in rows; fertilize.
 __3__ Ventilate area well at 80% humidity.
 __2__ Parent plant is allowed to die back or grow for three months.

13. Rhizomes
3. Cut the rhizome into sections, including at least one eye (bud) in each section.

1. Dig plants up by lifting out of the ground with a spading fork or shovel.

4. Cut the top of each plant back to balance the remaining root section.

2. Wash all soil from the plant.

5. Treat each section with fungicide, then plant.

14. Tuberous roots

5. Plant after last frost date.

3. Store in sawdust, peat, or other materials at 40° to 50°F.

2. Wash soil from roots and allow to dry.

1. Dig the plants up by lifting out of the ground with a spading fork or shovel.

4. Before planting in early spring, divide the plant root crown.

15. Give four examples of bulbs which can be separated.

______________________________________ __

______________________________________ __

Answers:
Tulip
Amaryllis
Lilly
Daffodils
Narcissus
Hyacinth
Grape hyacinth
Allium

16. Give two examples of corms which can be separated.

______________________________________ __

Answers:
Gladiolus
Crocus
Timothy

17. Name the two rhizomes and the two tubers which can be divided.

Rhizomes
Tubers

Answers:
Rhizomes - Zantedeschia or Calla
 Iris
Tubers - Begonia
 Potato
Agricultural Science and Technology

Ag 514

Botany / Horticulture Plant Science

Unit Objectives

1. Describe the process of propagation by tissue culture.
2. Discuss the advantages of using tissue culture for propagation.
3. List five tissue culture methods used in research and commercial propagation.
4. Classify the steps of developing plants in tissue culture.
5. Define “agar.”
6. Describe the use of agar in tissue culture.
7. Demonstrate a plant tissue culture.
8. List five plants commercially produced through tissue culture.
Tissue Culture (micropropagation / meristem culture)
Involves taking a small tissue sample, cell, or a group of cells from a parent plant and growing the sample in a sterilized media containing the nutrients the cells require. This method grows hundreds of new plants in a very short time.

Advantages of Tissue Culture
A large number of plants are produced from a very small amount of parent plant in a short period of time.
Allows propagation of virus-free plants.

Disadvantages of Tissue Culture
Parent plant can mutate and generations can become contaminated with the mutation before it is discovered.
Requires trained personnel and proper laboratory equipment.
Tissue Culture Methods Used in Research and Commercial Production:

Callus culture
Parenchyma (callus) tissue increases by continuous cell division, eventually growing large enough to be divided (subcultured) as explants to produce additional cultures, roots, and shoots. The plantlets produced are not yet the size of seedlings. Shoot tips can be used to produce callus used in this culture, or callus can be produced by single cell culture.

Single cell culture
Single cells are placed on top of a well-growing piece of callus tissue, separated by filter paper. These cells develop into small masses of callus tissue, nursed by materials absorbed through the filter paper from the underlying callus tissue.

Embryo culture
Developing plant embryos (embryoids), or endosperm (from germinating seeds) are used as starting points.

Single cell suspension culture
Cells and cell clumps are developed suspended in a rotated liquid medium and removed with a pipette to further develop in a petri dish or test tube in a liquid or agar medium.

Meristem culture
Tissue is derived from the parent plant’s meristem, which is generally virus free.

Anther culture
Cultures started from pollen.

Steps for Developing Plants in Tissue Culture:
- Sterilize all equipment used with one part bleach to 10 parts media.
- Mix growth-regulating chemicals and nutrients into the growing media.
- Place media in sterilized test tube or jar.
- Place plant tissue in media.
- Seal to keep out disease organisms and mold.
- As growth progresses, pull off sprouts in media when large enough to tweeze.
- Place tweezed off sprouts in another container with growing media to grow roots or shoots.
- Open or uncover rooting / sprouting container gradually over days for about one week to harden off roots / shoots.
- Plants may be transplanted as seedlings after hardening off period.

Agar
Sugar-based (complex polysaccharide) gel derived from seaweed which substitutes for photosynthetic-produced plant sugars. The agar gel or liquid is used in tissue culture as a sterile medium and a nutrient supply for developing plants. Supplemented with nutrients, it supplies plant cells with the food energy needed to asexually propagate.
Plants Commercially Produced Through Tissue Culture (i.e.):
- Orchids
- Ferns
- Chrysanthemums
- Maples
- Kiwi vine
- Venus Flytrap
- Blackberries
- Carrots
- Tobacco
- Endive
- Aspen
- Citrus

References

Student Lab

Culturing Plants from Embryonic Plant Tissue
by Roger Herbert and Domenic J. Thompson
1993 Woodrow Wilson Biology Institute

Internet Resources

Culturing Plants from Embryonic Plant Tissue (see Student Lab)

Cloning Plants by Tissue Culture
by Michael H. Renfroe James Madison University
http://www.jmu.edu/biology/biofrac/facfro/cloning/cloning.html

Poplar Tissue Culture National Centre for Biotechnology Education UK
Transparency

From *Poplar Tissue Culture* NCBE

- Poplar Tissue Culture
Ag 514 N - Propagation by Tissue Culture
Unit Test

Decide the proper order for these tissue culture propagation steps.

1. ____ Place tweezed off sprouts in another container with growing media to grow roots or shoots.
2. ____ Place media in sterilized test tube or jar.
3. ____ Seal container to keep out disease organisms and mold.
4. ____ Plants may be transplanted as seedling after hardening off period.
5. ____ Sterilize all equipment used with one part bleach to 10 parts media.
6. ____ Open or uncover rooting/sprouting container gradually over days for about one week.
7. ____ Mix growth-regulating chemicals and nutrients into the growing media.
8. ____ Place plant tissue in media.
9. ____ As growth progresses, pull off sprouts in media when large enough to tweeze.

Classify the following statements as advantages (A) or disadvantages (D) of tissue culture propagation.

10. ____ A large number of plants are produced from a very small amount of parent plant in a short period of time.
11. ____ Parent plant can mutate and pass that mutation on to the next generation.
12. ____ Requires trained personnel and proper laboratory equipment.
13. ____ Allows propagation of virus-free plants.

14. Name the five tissue culture methods used in research and commercial production.
 ____________________________________ ____________________________________
 ____________________________________ ____________________________________
 ____________________________________ ____________________________________
15. List five plants commercially produced through tissue cultures.

__________________________________ ____________________________________
__________________________________ ____________________________________

Multiple Choice

16. In a callus culture

a. developing plant embryos are used as starting points.
 b. parenchyma tissue increases by continuous cell division.
 c. sugar-based gels are not used.
 d. young plants have a higher mortality rate.

17. Cultures started from pollen are called

a. single cell cultures.
 b. not viable.
 c. anther culture.
 d. single cell suspension culture.

18. In an embryo culture, the sample includes developing plant embryos or

a. endosperm.
 b. agar.
 c. the meristem.
 d. pollen.

19. The agar gel or liquid is

a. derived from seaweed.
 b. used as a sterile medium and nutrient supply in tissue cultures.
 c. a supplier of food energy needed for asexual propagation in plants.
 d. all of the above.

20. Agar can also be described as a

a. complex polysaccharide gel.
 b. disaccharide solution.
 c. complex carbohydrate gel.
 d. fructose supersaturated solution.
Ag 514 N - Propagation by Tissue Culture
Unit Test

Answer Key

Decide the proper order for these tissue culture propagation steps.

1. __7__ Place tweezed off sprouts in another container with growing media to grow roots or shoots.
2. __3__ Place media in sterilized test tube or jar.
3. __5__ Seal container to keep out disease organisms and mold.
4. __9__ Plants may be transplanted as seedling after hardening off period.
5. __1__ Sterilize all equipment used with one part bleach to 10 parts media.
6. __8__ Open or uncover rooting/sprouting container gradually over days for about one week.
7. __2__ Mix growth-regulating chemicals and nutrients into the growing media.
8. __4__ Place plant tissue in media.
9. __6__ As growth progresses, pull off sprouts in media when large enough to tweeze.

Classify the following statements as advantages (A) or disadvantages (D) of tissue culture propagation.

10. __A__ A large number of plants are produced from a very small amount of parent plant in a short period of time.
11. __D__ Parent plant can mutate and pass that mutation on to the next generation.
12. __D__ Requires trained personnel and proper laboratory equipment.
13. __A__ Allows propagation of virus-free plants.

14. Name the five tissue culture methods used in research and commercial production.
 Answers: Callus culture
 Single cell culture
 Embryo culture
 Single cell suspension culture
 Meristem culture
 Anther culture
15. List five plants commercially produced through tissue cultures.

Answers: Orchids
Kiwi vine
Ferns
Venus fly trap
Chrysanthemums
Blackberries
Maples
Carrots
Maples
Tobacco
Maples
Aspen
Maples
Citrus

Multiple Choice

16. In a callus culture

a. developing plant embryos are used as starting points.

b. parenchyma tissue increases by continuous cell division.

c. sugar-based gels are not used.

d. young plants have a higher mortality rate.

17. Cultures started from pollen are called

a. single cell cultures.

b. not viable.

c. **anther culture.**

d. single cell suspension culture.

18. In an embryo culture, the sample includes developing plant embryos or

a. **endosperm.**

b. agar.

c. the meristem.

d. pollen.

19. The agar gel or liquid is

a. derived from seaweed.

b. used as a sterile medium and nutrient supply in tissue cultures.

c. a supplier of food energy needed for asexual propagation in plants.

d. **all of the above.**

20. Agar can also be described as a

a. **complex polysaccharide gel.**

b. disaccharide solution.

c. complex carbohydrate gel.

d. fructose supersaturated solution.
Ag 514 O - Propagation by Budding

Agricultural Science and Technology

Ag 514

Botany / Horticulture Plant Science

Unit Objectives

1. Match terms and definitions associated with propagation by budding.

2. List the types of budding.

3. List the techniques used when propagating by budding.

4. List the precautions used with T-budding.

5. Describe patch budding and list the variations of patch budding.

6. Demonstrate the ability to T-bud and patch bud.
Propagation by Budding

Single bud attached to a small portion of bark or wood (budwood) is removed from one plant and joined with the understock of another plant (rootstock) to form a new plant.

Budwood
Small shoots or sticks of current season’s growth.
Only vegetative buds are used (leaf buds).

Rootstock
Developed from seed for one year or more.
In active growth for T-budding process.
Should be at least pencil-size for budding.
Must be species-related to budwood.

Types of Budding
T-Bud
Inverted T-bud
Patch Bud
Flute bud
Techniques in Propagation by Budding

- Select the rootstock and budwood.
- Plant seeds for rootstock in the fall.
- Determine the correct date for budding by:
 - Bud maturity
 - Active growth of rootstock.
- Cut the budwood on the day you perform the budding process.
- Label the budwood according to variety and date cut.
- Protect the budwood from drying by wrapping in waterproof paper or place in plastic bags.
- Perform the selected budding process onto the rootstock.
- Determine if the budding process has taken on the rootstock.
- Cut the rootstock above the budding soon after leafing has taken place the following spring.

T-budding

Precaution: the knife used in grafting and budding is very sharp. Be very cautious. Cut “away from yourself” (toward the object being cut, not toward you).

Normally a two-person job: one to make the cuts, and one to bind the bud to the rootstock.

Cutting the T:

- On the rootstock, make the cut 1 to 2 inches above the ground where the stem is smooth.
- Choose the north side of the stem to protect the new bud against direct sun.
- Make a 1-inch vertical cut (down) through the bark.
- Make a 1-inch horizontal cut (across) the tip of the vertical cut to form a T.
- Gently separate the bark from the wood with the tip of the knife, flaring out the vertical cut like a pocket.

Cutting the Bud:

- Choose a vegetative bud in the middle of the bud stick.
- Cut around the bud and leaf petiole in the form of a shield (the shape of the shield is reminiscent of an iron).
- Start the cut ½ inch below the bud, cutting just deep enough to include a small amount of wood.
- Cut under the bud and past it to ¼ inch above the bud.
- Make a vertical cut across the top of the first cut (above the bud) to release it from the stem.

Inserting the Bud:
Insert the bud into the T cut, pushing the narrow end of the bud shield down and underneath the flared T cut. The top of the shield should be underneath the horizontal cut.
Tie the bud in place with a rubber band tie, wrapping the tie around the stem and shield, but not over the bud or the leaf petiole.

Checking the Bud:
In three weeks, check to see if:
- The leaf petiole has fallen off
- The bud is plumped up.
If so, the T-bud has taken.

Completing the T-Bud Process:
The following spring, make a slant cut topping the rootstock off just above the bud.
Pinch off any suckers or shoots appearing below the bud.
Continue the pinching process, allowing only the bud to have new growth.
After one to two year’s growth, transplant the seedling to a permanent site.

Note: Inverted T-budding is used with success in rainy areas to prevent collection of water in the T-bud pocket.

Patch budding
Used especially on thick-barked plants.
Special **double-bladed knives** are used for patch budding in order to make exact-sized horizontal cuts in both the rootstock and the bud stick.
As in T-budding, these knives are sharp. Exercise caution.
Patch budding is done in late summer or early fall when the bark slips easily.
Diameter of the rootstock and bud stick should be the same - about 1 inch in diameter, although the rootstock may be larger (but the healing process takes longer in older stock).

Cutting the Rootstock:
Cut the stock tree with a double-bladed knife, making two parallel cuts with the double-bladed knife about 1 inch wide.
Make two horizontal cuts on either side to complete the patch.

Cutting the Patch:
Choose a vegetative bud in the middle of the bud stick, making two parallel cuts with the double-bladed knife about 1 inch wide.
Make two horizontal cuts on either side to complete the patch.
The bud patch must contain a trace of wood attached to the back side of the bud in order for the patch to take.
To prevent the core of wood from breaking off the back side of the bud, *slide* the patch gently to one side to remove it from the bud stick. Do not lift the patch off.

Inserting the Patch:
Insert the patch immediately onto the rootstock, fitting the surfaces snugly together.
If it is not a snug fit, pare the *rootstock* down until the bark edges meet evenly.
Wrap the patch to the rootstock firmly covering all four sides, exposing only the bud.

Checking the Patch:
- Tape is removed (or has deteriorated) after three weeks.
- Patch should be healed in place.
- Cut back the rootstock and follow the procedures as in T-budding to promote growth.
- Relocate the seedling when

Note: budding rubber strip wrapping is preferred because they expand with growth and deteriorate naturally without girdling the stock. Tape should be monitored and cut to loosen after 10 days to prevent girdling.

Variations of patch budding include:

Flute budding
- Patch cut from rootstock is almost complete in circumference except for a narrow strip, which helps keep the rootstock alive if the patch bud does not take.

Ring or annular budding
- Complete ring is taken from both the rootstock and the budding stick. They must match exactly, and the rootstock may die if the patch does not take.

I-budding
- Horizontal cuts are made with the double-bladed knife. One vertical cut is made from top to bottom between the cuts, forming an “I.” The patch is inserted between the two flared edges and bound to the rootstock.

Chip budding
- Can be used when rootstock is not in active growth.

Cutting the chip out:
- Cut is made in rootstock at a 45 degree angle, ¼ deep into the stem diameter.
- Starting 1 ½ inches above the first cut, a second cut is made downward into the stem at the same depth, meeting the first cut.
- The complete cut should form a u-shaped chip which can be lifted out of the rootstock.

Cutting the bud chip:
- Cut the bud from the bud stick in the same procedure, making the first cut just below the bud, and the second cut just above the bud. Both cuts should be 1 ½ inches apart, matching the chip shape formed in the rootstock.

Placing the bud chip:
- The bud chip is placed in the rootstock immediately, aligning the bud chip with the rootstock on at least one side (making sure the two surfaces meet snugly).
- Tie the chip in place with rubber bud tie. The bud should remain exposed.
- Follow the same procedures for growth as the T-bud and patch bud.
References

Student Activity

- Demo the T-Bud and Patch Bud

Internet Resources

Budding
Ray R. Rothenberger & Christopher J. Starbuck
Dept. of Horticulture University of Missouri-Columbia
http://etcs.ext.misouri.edu:70/publications/xplor/agguides/hort/g06972.html

Four-flap Grafting of Pecans
Guide H-634 PH6-400
Esteban Herrera, Extension Horticulturist
New Mexico State University
http://rastro.nmsu.edu/cahe/redtops/_h/h-634.html

Transparencies

T-bud Grafting
Slide set and instructions
University of Illinois at Urbana-Champaign
http://classes.aces.uiuc.edu/Hort100/tbud/index.htm
Student Activity: Demo the T-Bud and Patch Bud

Purpose
• Demonstrate the ability to T-bud and patch bud.

Materials
Bud sticks
Rootstock
Single-bladed and double-bladed knife
Newspaper or tarp to work on
Notebook

Procedure
• Each student should have one set of materials for each procedure.
• Use the instructions given with Information for this section regarding Techniques in Propagation by Budding, T-budding and Patch budding.
• Conduct each procedure per instructions.
• Record the date of each T-bud and patch bud completed.
• Record dates and conditions of each budding upon:
 ⇒ Checking if the budding has taken
 ⇒ Checking or loosening the tape.

Follow-up Activity: Do an Internet Search:
• On T-budding and patch budding procedures.
• Diagram your search procedure, starting with what search program you used, and key words entered.
• List at least six sources, including internet addresses.
• Pick three sources and write a review of each site.
• Use a questioning strategy for your review:
 ⇒ Did the site feature helpful graphics?
 ⇒ Were the procedures outlined step-by-step? If not, how?
 ⇒ Was the site helpful? Elaborate (determine several reasons, not just one).

Do an Internet Project:
• If you designed a teaching site on T-budding and patch budding for use over the internet, what elements would it include?
• Do a storyboard of your internet site design.
• Share your design in group.
• Each group should choose the best design and share it with the class.
• The class should decide which group design is the best.
• Use that design to create an internet teaching site on T-budding and patch budding authored by your class. Get feedback from site visitors!
• Make your site interactive! For instance, making the cut: right way / wrong way; fitting the bud to the rootstock: right way / wrong way.
Teacher Information for the Internet Project:

- Completion of this project depends upon your classroom access to computers and the software necessary to create a web site.
- An excellent site on the internet to get you started and keep you going: *The Global Schoolhouse* sponsored by the Microsoft Corporation
 http://www.gsh.org/default.htm
- See the article: *Collaboration in the Classroom and Over the Internet* by Yvonne Marie Andres at:
 http://www.gsn.org/gsn/articles/article.collaboration.html
Ag 514 O – Propagation by Budding
Unit Test

1. List the three types of budding.

__

__

__

2. Small shoots or sticks of current season’s growth are ____________________________.

3. In propagation by budding, the single bud attached to a small portion of bark or wood is joined with the _________________________ of another plant to form a new plant.

Multiple Choice

4. Seeds should be planted for rootstock in the

 a. spring.
 b. summer.
 c. fall.
 d. winter.

5. The correct date for budding is determined by

 a. bud maturity and active growth of rootstock.
 b. the FDA.
 c. average annual rainfall.
 d. the Farmer’s Almanac.

6. The budwood should be cut

 a. the day before you perform the budding process.
 b. the day you perform the budding process.
 c. the day after you perform the budding process.
 d. none of the above.

7. The budwood should be labeled

 a. according to variety.
 b. according to the date it was cut.
 c. according to the site where it was cut.
 d. both a and b.
8. The budwood should be protected from drying
 a. by wrapping it in waterproof paper or placing in plastic bags.
 b. only if the budwood is to be used immediately after cutting.
 c. if it is taken from an immature parent tree.
 d. in the summer months before planting.

9. The rootstock should be cut above the budding
 a. by specialized agricultural engineers.
 b. during the fall harvest.
 c. soon after leafing has taken place the following spring.
 d. once the budwood has been replaced.

10. In T-budding, the general procedure is as follows:
 a. Cut the bud; Cut the T; Check the bud in three months.
 b. Cut the T; Cut the bud; Check the bud in three weeks.
 c. Cut the rootstock; Cut the patch; Insert the patch; Check the patch in three weeks.
 d. Cut the patch; Insert the patch; Cut the rootstock; Check the patch in three weeks.

11. A variation of patch budding is
 a. I - budding.
 b. T - budding.
 c. Flute budding.
 d. both a and c.

12. Chip budding can be used when
 a. the rootstock is not in active growth.
 b. the rootstock is in active growth.
 c. when the budwood is not in active growth.
 d. when the budwood is in active growth.

13. Patch budding is done
 a. in the late fall and early winter when the ground has hardened.
 b. in late summer or early fall when the bark slips easily.
 c. in the late spring or early summer when the petioles have first formed.
 d. during the winter in a greenhouse.
14. Determine the proper order for these T-budding procedures.

___ Cut underneath the bud and paste it ¼ inch above the bud.
___ Make a 1 inch vertical cut (down) through the bark.
___ Gently separate the bark from the wood with the tip of the knife, flaring out the vertical cut like a pocket
___ Insert the bud into the T cut and tie the bud in place with a rubber band tie.
___ Make a vertical cut across the top of the first cut (above the bud) to release it from the stem.
___ Make a 1 inch vertical cut (down) through the bark.
___ Choose a vegetative bud in the middle of the bud stick.
___ Choosing the north side of the stem, make a cut 1 to 2 inches above the ground on the stem.
___ Cut around the bud and petiole, starting ½ inch below the bud.
___ Gently separate the bark from the wood.
___ Check the bud in three weeks to see that the leaf petiole has fallen off and the bud is plumbed up.

15. Determine the proper order for these patch budding procedures.

___ Choosing a vegetative bud in the middle of the bud stick, make two parallel cuts and two horizontal cuts, about 1 inch wide.
___ Cut back the rootstock and follow the procedures as in T-budding to promote growth.
___ Slide the patch gently to one side to remove it from the bud stick.
___ Cut the stock tree with two parallel cuts about 1 inch wide.
___ Insert the patch immediately onto the rootstock, fitting the surfaces snugly.
___ Make two horizontal cuts on either side to complete the patch.
___ Remove tape after three weeks.
Ag 514 O – Propagation by Budding
Unit Test
Answer Key

1. List the three types of budding.

Answers:
T-Bud
Patch Bud
Chip Bud

2. Small shoots or sticks of current season’s growth are ______________________________.

Answer:
Budwood

3. In propagation by budding, the single bud attached to a small portion of bark or wood is joined with the _________________________ of another plant to form a new plant.

Answer:
Rootstock

Multiple Choice

4. Seeds should be planted for rootstock in the
 a. spring.
 b. summer.
 c. **fall.**
 d. winter.

5. The correct date for budding is determined by
 a. **bud maturity and active growth of rootstock.**
 b. the FDA.
 c. average annual rainfall.
 d. the Farmer’s Almanac.

6. The budwood should be cut
 a. the day before you perform the budding process.
 b. **the day you perform the budding process.**
 c. the day after you perform the budding process.
 d. none of the above.
7. The budwood should be labeled
 a. according to variety.
 b. according to the date it was cut.
 c. according to the site where it was cut.
 d. **both a and b.**

8. The budwood should be protected from drying
 a. **by wrapping it in waterproof paper or placing in plastic bags.**
 b. only if the budwood is to be used immediately after cutting.
 c. if it is taken from an immature parent tree.
 d. in the summer months before planting.

9. The rootstock should be cut above the budding
 a. by specialized agricultural engineers.
 b. during the fall harvest.
 c. **soon after leafing has taken place the following spring.**
 d. once the budwood has been replaced.

10. In T-budding, the general procedure is as follows:
 a. Cut the bud; Cut the T; Check the bud in three months.
 b. **Cut the T; Cut the bud; Check the bud in three weeks.**
 c. Cut the rootstock; Cut the patch; Insert the patch; Check the patch in three weeks.
 d. Cut the patch; Insert the patch; Cut the rootstock; Check the patch in three weeks.

11. A variation of patch budding is
 a. I - budding.
 b. T - budding.
 c. Flute budding.
 d. **both a and c.**

12. Chip budding can be used when
 a. the rootstock is not in active growth.
 b. the rootstock is in active growth.
 c. when the budwood is not in active growth.
 d. when the budwood is in active growth.

13. Patch budding is done
 a. in the late fall and early winter when the ground has hardened.
 b. **in late summer or early fall when the bark slips easily.**
 c. in the late spring or early summer when the petioles have first formed.
d. during the winter in a greenhouse.

14. Determine the proper order for these T-budding procedures.

__7__ Cut underneath the bud and paste it ¼ inch above the bud.
__3__ Make a 1 inch vertical cut (down) through the bark.
__4__ Gently separate the bark from the wood with the tip of the knife, flaring out the vertical cut like a pocket
__9__ Insert the bud into the T cut and tie the bud in place with a rubber band tie.
__8__ Make a vertical cut across the top of the first cut (above the bud) to release it from the stem.
__2__ Make a 1 inch vertical cut (down) through the bark.
__5__ Choose a vegetative bud in the middle of the bud stick.
__1__ Choosing the north side of the stem, make a cut 1 to 2 inches above the ground on the stem.
__6__ Cut around the bud and petiole, starting ½ inch below the bud.
__4__ Gently separate the bark from the wood.
__10__ Check the bud in three weeks to see that the leaf petiole has fallen off and the bud is plumbed up.

15. Determine the proper order for these patch budding procedures.

__3__ Choosing a vegetative bud in the middle of the bud stick, make two parallel cuts and two horizontal cuts, about 1 inch wide.
__7__ Cut back the rootstock and follow the procedures as in T-budding to promote growth.
__4__ Slide the patch gently to one side to remove it from the bud stick.
__1__ Cut the stock tree with two parallel cuts about 1 inch wide.
__5__ Insert the patch immediately onto the rootstock, fitting the surfaces snugly.
__2__ Make two horizontal cuts on either side to complete the patch.
__6__ Remove tape after three weeks.
Unit Objectives

1. Match terms and definitions associated with propagation by grafting.
2. List the reasons for using grafting.
3. Discuss the limitations of using grafting.
4. List the sequence of making a union graft.
5. List the functions of the callus tissue.
6. List the types of grafting used when the diameter of the rootstock and scion are similar.
7. List the types of grafting used when the diameter of the rootstock is greater than the scion.
8. Describe the qualities of a grafting seal.
9. List the basic functions of grafting seals.
10. List the basic kinds of grafting wax.
11. Demonstrate the ability to perform the basic types of plant grafts.
1. Match Terms and Definitions Associated with Propagation by Grafting

2. List the Reasons for Using Grafting

3. Discuss the Limitations of Using Grafting

4. List the Sequence of Making a Union Graft

5. List the Functions of the Callus Tissue

6. List the Types of Grafting Used when the Diameter of the Rootstock and Scion are Similar

7. List the Types of Grafting Used when the Diameter of the Rootstock is Greater than the Scion

8. Describe the Qualities of a Grafting Seal

9. List the Basic Functions of Grafting Seals

10. List the Basic Kinds of Grafting Wax

11. Demonstrate the Ability to Perform the Basic Types of Plant Grafts

Grafting

Connecting two plants to grow as one by attaching the scion to the rootstock. The union of plant tissue allows movement of the sap back and forth from one portion of the plant to the other.
Scion
Shoot, or short piece of stem with two or more buds used as the top portion of the plant, grafted to the rootstock.

Rootstock
Scion is grafted onto the rootstock, the bottom half of the plant which provides the root system for the entire plant.

Reasons for grafting:
Increasing the number of a desirable species.
Increase the root strength and disease resistance of a plant.
Topwork a tree by grafting a different variety or many varieties to many limbs of a tree.
Propagate a plant asexually due to difficulty of propagation by other methods.
Cross-pollinate by grafting different varieties onto the same tree.

Limitations of grafting:
May reduce the vigor of the new plant.
May reduce the size of the new plant.
A complicated process which requires practice.
Grafting between species is only successful in some families, and may not be reciprocal (e.g., species used as rootstocks may not be successful in the reverse, used as scions).
Incompatibility may not be apparent until the development of abnormal growth patterns.

Successful grafts
- Scion and rootstock must be compatible (i.e., apple to apple).
- Both scion and rootstock should be at least one year old and disease free.
- Preferably both the scion and rootstock are dormant, but at least the scion should be dormant (which depends on the type of graft used).
- The scion and rootstock should be held in close contact for the graft to take place.
- The graft must be waterproofed with grafting wax.

Sequence of the graft union
 دمشق Fresh scion is brought into contact with rootstock tissue.
 دمشق Exposed layers of cells on both the scion and the rootstock produce parenchyma cells which intermingle, forming callus tissue.
 دمشق Cells within callus differentiate into new cambium cells.
 دمشق New cambium cells produce xylem and phloem, establishing a new vascular pathway between the scion and the rootstock.

Functions of callus tissue
Callus is the mass of parenchyma cells that develops from wounded plant tissues.
Callus occurs from both the scion and the rootstock.
When the parenchyma unite, it initiates mitosis, and allows the process of the successful graft union to take place.
Types of Grafts

Whip and Tongue (see below)

Cleft (see below)

Saw-Kerf or Notch

Three cuts are made into but not through the rootstock. These cuts are made to place the scions into the rootstock as in Cleft grafting.

Side

Scion is inserted into the side of the rootstock

Bark

Scion is inserted between the bark and wood of the stock, then nailed in place.

Splice

Scion and rootstock are cut at the same angle and spliced, or placed together cambium to cambium, and tied together as in the whip graft.

Approach

Two plants are grafted together, usually two container plants that can sit side-by-side until the union heals.

Inarching

The roots of an established tree are assisted by grafting a new rootstock plant by approach graft onto the trunk of the existing tree to provide a new root system.

Whip and Tongue Grafting

Useful for grafting small material equal in diameter (about ¼ to ½ inches).

The cuts in both the scion and rootstock form sections that fit together much like tongue and groove in woodworking.

Preparation

The scion should contain three buds.

The rootstock should be 4 to 8 inches long and the same diameter as the scion.

Procedure

Cut the scion off below a bud at a clean angle =

Cut the rootstock top off at a matching angle =

Make an insertion cut on the bottom of the scion about 1/3 of the way across the diameter of the scion, 1 ½ inches into the cut surface =

Make an insertion cut on the top of the rootstock about 2/3 of the way across the diameter of the rootstock, 1 ½ inches down into the cut surface =

Cuts made on both pieces should be exactly the same slope and length.

This creates a “tongue and groove” effect that should allow the scion and rootstock to be joined by inserting one into the other.

Waxing

After joining, the two pieces are tied together with rubber banding tie, then sealed with grafting wax to prevent drying.

Cleft Grafting

Used in joining small scion parts to large rootstocks.
Especially useful for grafting to the trunk of a small tree or in the scaffold branches of a larger tree.

Preparation
Species used should have straight-grained wood which will split evenly.
Stock branches, or budsticks used as scions should be 1 to 4 inches in diameter, from dormant, one year-old wood.
Best done in spring before active growth but after buds have begun to swell.
Collect the scion wood in early spring and use immediately, or hold under refrigeration until use.

Procedure
Saw off the rootstock straight across, leaving the surface level and smooth-grained.
Split the rootstock all the way across, using a saw or mallet and butcher knife.
Split down several inches with a clean cut.
Hold the split open by inserting a wedge.
Make two scions from a budsticks containing two or three buds, 3 to 4 inches long.
Cut the inserting ends of the scions into smooth wedge shapes for about 2 inches.
The budsticks used as scions are inserted right-side-up - cut the wedge at the basal end of the scion.
Important: you are trimming the scions to expose the cambium layer, in a shape that will match the notch made in the rootstock for insertion. The two cambium surfaces must make contact for a successful graft.
Place the scions into the rootstock, one on each side. Remove the wedge.
Set them in past the bark, assuring contact between the wedge sections and the cambium of the rootstock.
Buds should be above the surface, wedge-cut edges below.

Waxing
Cover the entire top surface with grafting wax.
Permit the wax to work into the notch.
Cover the sides of the rootstock to include the entire split.
Cover the cut, top surfaces of the scions, but do not cover over the entire scion or the buds.
Check the waxing after a few days to rewax any openings.
If both scions grow, the most vigorous is kept and the other removed after the first season of growth.

Grafting seals:
- Seal over the graft union to prevent moisture loss and death of the parenchyma cells which produce the callus and healing of the graft union.
- Prevent decay and wood rot.

A good grafting wax should:
- Adhere well to plant surfaces
• Resist moisture and wash-off
• Be pliable to allow for plant growth yet resist the effects of heat and cold.

Types of grafting wax:

Hot wax
- Must be preheated for application.
- Should be hot enough to flow but not bubble.
- Applied with a brush.

Hand wax
- Does not require heating.
- Sticky, soft and pliable, warms by hand application.
- Applied by pressing in and around the graft.

Cold wax
- Water soluble.
- Water within the compound evaporates a few days after the application.
- Effected by freezing temperatures - warm storage required.
- Will not withstand application during rainy weather. Conditions must be dry long enough for the wax to set up.

Hot wax application by brush and hand waxing are the most commonly used forms of grafting wax.
Grafting seals are may be covered initially with plastic bags and tied off to assist resistance to weathering.

References

Student Activity

• Demonstrating the Whip and Tongue and the Cleft Grafts

Internet Resources
Grafting Agricultural publication G06971 - Reviewed October 1, 1993
Ray R. Rothenberger and Christopher J. Starbuck
Department of Horticulture, University of Missouri-Columbia
http://etcs.ext.missouri.edu:70/publications/xplor/agguides/hort/g06971.html

Plant Propagation Cleft Grafting
http://aggie-horticulture.tamu.edu/propagation/cleftgrafting/cleftgrafting.html

Transparencies

- Whip and Tongue Graft
- Cleft Graf
Student activity: Demonstrating the Whip and Tongue and the Cleft Grafts

Purpose
Demonstrate the ability
to perform the basic types
of plant grafts.

Materials
Rootstock and scion wood
Propagation knife
Mallet
Wedge
Waterproof tie
Hand grafting wax
Plant labels / waterproof
marking pen

Procedure
Caution: cut away from
yourself or others when using cutting instruments.
Each student should follow the procedures as outlined in the Information sheet for this section
on Whip and Tongue Grafting and Cleft Grafting.
Each student should perform one whip and tongue graft and one cleft graft.
Label the plant according to variety of scion and rootstock, and date grafted.

Demonstration
Each student should choose one part of one of the grafting procedures to demonstrate to the class.
Prepare a hand-out for your section of the procedure with an illustration. Give your instructor
a copy of your hand-out.
Distribute the hand-outs before your demonstration.
Demonstrate your section of the procedure to the class.
Make certain everyone can view the procedure.
Open the floor to a question and answer / discussion period following the demonstration
of your section of the procedure.

Your Procedure

Teacher Note
A large class can be divided into groups, allowing each group member to demonstrate a portion
of the whip and tongue or cleft grafting procedures to the other members of the group.
Cleft Graft

1. Split the rootstock

2. Hold the split open with a wedge

3. From budstock

4. Create scion

5. Bru scion

6. Place the scions

and remove the wedge

6. Seal with...
Whip and Tongue Graft

1. Cut the scion

2. Seal the graft with wax

3. Join the scion and the rootstock

4. Wrap to retain moisture
Fill in the Blank

1. _________________ is connecting two plants to grow as one by attaching the scion to the rootstock.

2. The union of _________________ allows movement of the sap back and forth from one portion of the plant to the other.

3. A shoot or short piece of stem with two or more buds, which is used as the top portion of the plant, is the ________________.

4. The _________________ is the mass of parenchyma cells that develop from wounded plant tissues.

True or False

____ 5. Grafting increases the population of desirable species.

____ 6. Grafting does not reduce the vigor or size of a new plant.

____ 7. Grafting between species is possible with every plant family.

____ 8. Grafting incompatibility may not be immediately apparent.

____ 9. Grafting does not increase the root strength or the plant’s immunity to disease.

____ 10. Plants, which are difficult to propagate by other methods, can be asexually propagated through grafting.

Essay

11. What are the basic functions of grafting seals? List them including in your definition at least one quality of a good grafting seal and an example.

Matching
12. Bark
13. Hot Wax
14. Whip and Tongue
15. Side
16. Hand Wax
17. Cleft
18. Splice
19. Cold Wax
20. Inarching
21. Approach
22. Saw-Kerf or Notch

A. useful for grafting small material (¼ to ½ inches) equal in diameter
B. used in joining small scion parts to large rootstocks
C. three cuts are made into but not through the rootstock
D. scion is inserted into the side of the rootstock
E. scion is inserted between the bark and wood of the stock and nailed in place
F. scion and rootstock are cut at the same angle and placed together
G. two plants, usually side-by-side container plants, are grafted together
H. roots of an established tree are assisted by grafting a new rootstock
I. must be preheated for application and applied with a brush
J. sticky, soft and pliable; applied by pressing in and around graft
K. water within the compound evaporates a few days after application
Fill in the Blank

1. _______________ is connecting two plants to grow as one by attaching the scion to the rootstock.
 Answer: Grafting

2. The union of _______________ allows movement of the sap back and forth from one portion of the plant to the other.
 Answer: plant tissue

3. A shoot or short piece of stem with two or more buds, which is used as the top portion of the plant, is the _______________.
 Answer: scion

4. The _______________ is the mass of parenchyma cells that develop from wounded plant tissues.
 Answer: callus

True or False

__T__ 5. Grafting increases the population of desirable species.

__F__ 6. Grafting does not reduce the vigor or size of a new plant.

__F__ 7. Grafting between species is possible with every plant family.

__T__ 8. Grafting incompatibility may not be immediately apparent.

__F__ 9. Grafting does not increase the root strength or the plant’s immunity to disease.

__T__ 10. Plants, which are difficult to propagate by other methods, can be asexually propagated through grafting.

Essay

11. What are the basic functions of grafting seals? List them including in your definition at least one quality of a good grafting seal and an example.
Matching

__E__ 12. Bark

__I__ 13. Hot Wax

__A__ 14. Whip and Tongue

__D__ 15. Side

__J__ 16. Hand Wax

__B__ 17. Cleft

__F__ 18. Splice

__K__ 19. Cold Wax

__H__ 20. Inarching

__G__ 21. Approach

__C__ 22. Saw-Kerf or Notch

A. useful for grafting small material (¼ to ½ inches) equal in diameter
B. used in joining small scion parts to large rootstocks
C. three cuts are made into but not through the rootstock
D. scion is inserted into the side of the rootstock
E. scion is inserted between the bark and wood of the stock and nailed in place
F. scion and rootstock are cut at the same angle and placed together
G. two plants, usually side-by-side container plants, are grafted together
H. roots of an established tree are assisted by grafting a new rootstock
I. must be preheated for application and applied with a brush
J. sticky, soft and pliable; applied by pressing in and around graft
K. water within the compound evaporates a few days after application
Unit Objectives

1. Discuss the system of plant classification.
2. Identify the parts of simple and compound leaves.
3. Name the types of leaf arrangement, venation, and margins.
4. Identify the types of leaf attachment to stems.
5. Identify the parts of a stem.
6. Match stem modifications with their correct description.
7. Identify the parts of a perfect flower.
8. Identify the types of inflorescence.
9. Identify the common plants of economic impact to the horticulture industry of Idaho.
1. Discuss the System of Plant Classification

2. Identify the Parts of Simple and Compound Leaves

3. Name the Types of Leaf Arrangement, Venation, and Margins

4. Identify the Types of Leaf Attachment to Stems

5. Identify the Parts of a Stem

6. Match Stem Modifications with Their Correct Description

Also see Agricultural Science and Technology, Botany / Plant Growth and Development, Ag 512 F - Reproductive Plant Parts:

7. Identify the Parts of a Perfect Flower

The perfect flower
- Contains both stamens and pistils.

The imperfect flower
- Either stamens or pistils are missing.

The incomplete flower

8. Identify the Types of Inflorescence

9. Identify Common Plants of Economic Impact to the Horticulture Industry of Idaho
Lacking one or more of stamens, pistils, petals, or sepals.

The complete flower
Has stamens, pistils, petals, and sepals attached to a receptacle.

Inflorescence
Mode of development and arrangement of flowers on their axis.

Indeterminate
Sequential flowering from the lateral or basal buds to the central or uppermost buds.
Main stem continues to elongate indefinitely without being limited by terminal inflorescence.

Determinate
Sequential flowering from the central or uppermost bud outward to the lateral or basal bud.
Main stem ends in a florescence and stops growing.
Branches from the main stem grow in a similar manner.

Axis
Plant stem.

Apex
Uppermost part of the stem.

Pedicel
Emerging from the apex; supports the fruiting or spore-bearing part of the plant.

Peduncle
Single stalk bearing the flower or flower cluster.

Racemose
Growing in the form of a raceme.

Sessile
Flower is attached directly to the stem by the base (without peduncle).

Simple
A single carpel.

Compound
Having two or more flowers within a single flower head.

Types of inflorescence
Raceme

Simple inflorescence.
Flowers borne on short stalks of equal length, located at equal distances along an elongated axis, open in succession toward the apex.

Corymb

Flat-topped inflorescence
Stalks ascend at different levels on the main axis, reaching about the same height. Outer flowers open first; inflorescence is *indeterminate*.

Umbel

Pedicels seem to emerge from the same point at the apex to form a flat or rounded flower cluster.

Compound umbel
Having two or more umbels emerging from the apex.

Capitulum

A rounded or flattened cluster of sessile flowers.

Spike

Racemose elongated inflorescence. Flowers are sessile on the main axis.

Compound spike
Having more than one flower on a common axis, emerging from main axis. Flowers are sessile on their common axis.

Panicle

A pyramidal loosely branched compound flower cluster.

Cyme

A *determinate* inflorescence containing several flowers. The central flower opens first; subsequent flowers open from lateral buds.

Common plants of economic impact to horticulture in Idaho, including the floral, greenhouse, and nursery industries:

- Sweet cherries
- Apples
- Prunes and plums, fresh
- Grapes and wine production
- Vegetables; specialized, organic, hydroponic
- Fruits and nuts
- Christmas trees

References

4. Idaho Nursery Association
 N. Woodruff
 Idaho Falls, Idaho 83401
 INA-GROW or (208) 522-7307

Student Activity

- In Search of Inflorescence

Teacher Information / Optional Activity

- Idaho Certified Nurseryman Examination Plant Material Identification List
 (See Learning Objectives for possible writing activity)

Internet Resources

Micro-Unit 901: Classification Schemes
From *Scope, Sequence, and Coordination*
The National Science Teachers Association
http://www.gsh.org/nsta_scripts/mu_record.idc

Transparencies

- Inflorescence Types

From *Agricultural Science and Technology, Introduction to the Agricultural Plant Industry, 150 J - Crop and Weed Identification*:
- Types of Inflorescence
- Types of Inflorescence (continued)
Student Activity: In Search of Inflorescence

Purpose
• Identify the types of inflorescence.
• Understand the basic scheme for identifying plants.

Materials
• Field guide to wildflowers (i.e., Peterson’s; Golden)
• *Weeds of the West - Western Society of Weed Science*
• *Sunset Western Garden Book - Sunset Books*
• 35 mm camera
• At least one roll of 24 or 36 color print film, ASA 200 to 400
• Photo binder with plastic “see-through” sleeves
• Notebook

Procedure
• Find one example each of each type of inflorescence. You may use wildflowers, ornamental plants, or a combination of each as your examples.
• Use a field guide and/or the Sunset Western Garden Book to help you find plant types which meet the criteria for examples of each inflorescence.
• Document your finds with a color photograph of each.
• Make notes as your search progresses.
 ⇒ Describe the habitat where you found your flower type, and which guide you referenced to help you identify it. This includes a natural habitat or the conditions in which you found the ornamental plant.
 ⇒ Note the date and the time of day the photo was taken. You may also wish to note the film type you used and the conditions of the shoot; e.g., the weather, the lighting, etc.

Photo Notes
The camera can become an important research document. Take good shots!
• Compose your pictures. Be sure you get the important aspects of the plant that indicate what type of plant it is: leaves and their arrangement on the stem; flower-head types and their arrangement on the stem; number of petals, nectar guides, and depth of color.
• Screen out extraneous information. Get close enough to visually “crop” the picture down to just the information you want in the frame of the photo.
• Keep a steady hand! Rest your camera on a small tripod or anything that is immobile to take your shot.
• You may have to take more than one picture of the same flower to get all the information you need. Be sure to document each photograph in sequence in your notebook. Number each roll and note accordingly; e.g., roll #1 - photo #4 - name of wildflower - photo description.
• Use natural light, if possible. Unless your camera has a flash you can “bounce” to light the subject indirectly, your photo flash will “white out” some of the important plant aspects you are trying to photograph.
• Place your pictures and an explanation of each in your photo binder.
 ⇒ Your photos need the common and scientific name of the plant and the type of inflorescence it represents.
 ⇒ A brief explanation beside each plant picture(s) should come from your notebook notes: where you found the plant and the conditions of its habitat. If it was an ornamental, explain the type of environment the plant was placed in: light, humidity, etc.

Peer Review: your work will be reviewed by your classmates. See “Plant ID Evaluation” sheet. Your research will serve you well. You’ll have a permanent plant record for your reference and you can add records to your binder in the future.

Compose your shots!
Plant ID Project Evaluation

Binder # _____

Evaluator ____________________

Instructions

To the evaluator: On the line provided above, indicate which binder # you are evaluating with this sheet. Please use a field guide or other reference book to check the work you are evaluating.

1. Does the binder feature each type of inflorescence?
 - [] Yes
 - [] No
 (check one)

2. Does each photo caption include the common and scientific name of the plant?
 - [] Yes
 - [] No
 (check one)

3. Does each photo caption indicate the type of inflorescence the photo represents?
 - [] Yes
 - [] No
 (check one)

4. Are the captions correct?
 - [] Yes
 - [] No
 (check one)

 If not correct, what is wrong?
 (please indicate on the following lines . . .)

5. Does a habitat description accompany each photograph?
 - [] Yes
 - [] No
 (check one)

6. How complete was the work?
 - [] Complete
 - [] Incomplete
 (check one)

 If incomplete, please describe:

7. How would you rate this binder overall?
 - [] Excellent
 - [] Good
 - [] Average
 - [] Below Average
 - [] Poor
 (circle one)

Thank you for your comments!
Teacher Information

To the instructor: each binder should be numbered for the purposes of the evaluation. Do not allow students to attach a name to their binders until the evaluations are finished.

The evaluations are also meant to reinforce the knowledge of the evaluator. Please make sure the students use reference guides to help them evaluate the work of the other students.

For the sake of time management, reduce the number of evaluations done by each student to 1 to 3 binders.
Inflorescence Types

- Spike
- Compound
- Solitary
- Panicle
- Umbel
- Raceme
- Capitulum
Ag 514 Q – Plant Identification
Unit Test

1. The imperfect flower
2. Determinate
3. Umbel
4. Inflorescence
5. Apex
6. Capitulum
7. The perfect flower
8. The incomplete flower
9. Simple
10. Axis
11. Raceme
12. Compound
13. Peduncle
14. Compound umbel
15. Sessile
16. Compound spike
17. Cyme
18. The complete flower
19. Racemose
20. Spike
21. Indeterminate
22. Panicle

23. Pedicel

24. Corymb
 A. contains both stamens and pistils
 B. either stamens or pistils are missing
 C. lacking one or more of stamens, pistils, petals, or sepals
 D. has stamens, pistils, petals, and sepals attached to a receptacle
 E. mode of development and arrangement of flowers on their axis
 F. sequential flowering from the lateral or basal buds to the central or uppermost buds
 G. main stem ends in a florescence and stops growing
 H. plant stem
 I. uppermost part of the stem
 J. supports the fruiting or spore-bearing part of the plant
 K. single stalk bearing the flower or flower cluster
 L. growing in the form of a raceme
 M. flower is attached directly to the stem by the base
 N. a single carpel
 O. having two or more flowers within a single flower head
 P. flowers born on short stalks of equal length
 Q. flat-topped inflorescence
 R. pedicels seem to emerge from the same point at the apex forming a flat or rounded flower cluster
 S. having two or more umbels emerging from the apex
 T. a rounded or flattened cluster of sessile flowers
 U. flowers are sessile on the main axis
 V. flowers are sessile on their common axis
 W. a pyramidal loosely branched compound flower
 X. a determinate inflorescence containing several flowers

25. List five of the seven common plants of economic impact to horticulture in Idaho.
Ag 514 Q – Plant Identification
Unit Test
Answer Key

__B__ 1. The imperfect flower
__G__ 2. Determinate
__R__ 3. Umbel
__E__ 4. Inflorescence
__I__ 5. Apex
__T__ 6. Capitulum
__A__ 7. The perfect flower
__C__ 8. The incomplete flower
__N__ 9. Simple
__H__ 10. Axis
__P__ 11. Raceme
__O__ 12. Compound
__K__ 13. Peduncle
__S__ 14. Compound umbel
__M__ 15. Sessile
__V__ 16. Compound spike
__X__ 17. Cyme
__D__ 18. The complete flower
__L__ 19. Racemose
__U__ 20. Spike
__F__ 21. Indeterminate
22. Panicle

23. Pedicel

24. Corymb

Y. contains both stamens and pistils
Z. either stamens or pistils are missing
AA. lacking one or more of stamens, pistils, petals, or sepals
BB. has stamens, pistils, petals, and sepals attached to a receptacle
CC. mode of development and arrangement of flowers on their axis
DD. sequential flowering from the lateral or basal buds to the central or uppermost buds
EE. main stem ends in a florescence and stops growing
FF. plant stem
GG. uppermost part of the stem
HH. supports the fruiting or spore-bearing part of the plant
II. single stalk bearing the flower or flower cluster
JJ. growing in the form of a raceme
KK. flower is attached directly to the stem by the base
LL. a single carpel
MM. having two or more flowers within a single flower head
NN. flowers born on short stalks of equal length
OO. flat-topped inflorescence
PP. pedicels seem to emerge from the same point at the apex forming a flat or rounded flower cluster
QQ. having two or more umbels emerging from the apex
RR. a rounded or flattened cluster of sessile flowers
SS. flowers are sessile on the main axis
TT. flowers are sessile on their common axis
UU. a pyramidal loosely branched compound flower
VV. a determinate inflorescence containing several flowers

25. List five of the seven common plants of economic impact to horticulture in Idaho.

Answer:
Sweet Cherries
Apples
Prunes and plums, fresh
Grapes and wine production
Vegetables; specialized, organic, hydroponic
Fruits and nuts
Christmas Trees
Agricultural Science and Technology
Ag 514
Botany / Horticulture Plant Science

Unit Objectives

1. Identify the five major categories of plant pests.
2. Describe the relationship between plant pest and plant host.
3. Determine the indications of plant pest problems.
4. Describe the ramifications of plant damage on plant production and distribution.
5. Describe the types of plant damage inflicted by small animals.
6. Describe the types of plant damage inflicted by large animals.
7. Discuss the prevention and control of animal pests.
1. Identify the Five Major Categories of Plant Pests

2. Describe the Relationship Between Plant Pest and Plant Host

3. Determine the Indications of Plant Pest Problems

4. Describe the Ramifications of Plant Damage on Plant Production and Distribution

5. Describe the Types of Plant Damage Inflicted by Small Animals

6. Describe the Types of Plant Damage Inflicted by Large Animals

7. Discuss the Prevention and Control of Animal Pests

Five major categories of plant pests:

1. **Insects**
 - Animals with three distinct body parts
 - Three pairs of legs (six total)
 - No wings; one, or two pairs of wings

2. **Nematodes**
 - Appendageless, nonsegmented invertebrates.
 - Worm-like, largely transparent at 1/75 to 1/10 inches

3. **Weeds**
 - Plant growing out of place
 - Unwanted plant (invasive species)

4. **Diseases**
 - Fungi
 - Bacteria
 - Viruses

5. **Animals**
Small
Birds
Mice / rodents generally
Rabbits

Large
Deer
Bear
Farm animals

Pest
Anything that causes damage or loss to a plant.
Usually a living organism.

Pests effect plant damage by:
Affecting their reproduction capability
Destroying them.

Host
Provides a pest with food.

Indications of plant pest problems

Insects
Birds feeding on grubs and caterpillars.
Holes and lacey effect of leaf deterioration (only veinage is left) (chewing insects).
Twisted plant tips / rolled leaves (sucking insects).
Sap eminating from trunk / stems.

Nematode invasion
Roots have knots or bumps.
Certain weeds are present.
May mimic other problems (low fertility, frost damage, root-rot fungi, etc.)
Indicated best by nematode type count in soil (tested at a laboratory) = the nematode action threshold.

Weeds
Certain species of long-standing weeds evidence of unsuitable conditions.
Low moisture
Poor soil
Low nitrogen
Hosting nematodes

Diseases
Foliage damage
Root damage
Abnormal appearance
Weakened stems
Rolled leaves
Brown / yellow / red spots; depigmentation
Animals

Small
- Eaten foliage and stems
- Eaten fruit / vegetables and roots
- Gnaed bark
- Holes and mounds (soil surface damage)
- Equipment damage (trying to navigate fields with holes and mounds)
- Fire ants attack people and animals

Large
- Eaten twig tips and fruit
- Rubs (bark damage)
- Trampling (soil surface and plant damage)

Ramifications of plant damage on production and distribution:

Loss of income
- Production costs increase (re-planting)
- Quantity produced decreased (unable to re-plant)
 (fruit and vegetable production reduced)

Reduced quality

Control costs of:
- Insecticides
- Herbicides
- Fungicides.

Equipment and inventory costs:
- To re-plant
- To apply pesticides.

Labor costs

Prevention and control of animal pests:
- Fencing
- Screening / wrapping (seedlings and young saplings)
- Root collars
- Bulb screens
- Removing pest habitat.
- Trapping / removal
- Pesticides
- Repellants
- Providing more desirable habitat / food away from the growing area.
- Providing habitat / favorable conditions for natural predators.

Nematode Control
Nematodes are plant parasites which move from plant to plant in soil water, feeding on plant roots.
Some nematode types live in plant leaves.
Control measures to reduce nematode populations:
 Fumigants (by contact)
 Systemic (for leaf-feeding nematodes)
 Resistant varieties
 Crop rotation
 Leaving planting areas fallow in the summer.

References

Student Activities

- The Best Offense is a Good Defense

From Project WILD Activity Guide, Project WILD:
- “Oh Deer!” (pp. 146-149)
- “Birds of Prey” (pp. 150-151)

Internet Resources

Keeping Wildlife at a Safe Distance
http://cc.usu.edu/~rschmidt/welcome.html

University of California
Sustainable Agriculture Research and Education Program
http://www.sarep.ucdavis.edu/

Transparency

- Encouraging Wildlife Predators
Student Activity: The Best Offense Is a Good Defense

Purpose
- Discuss the prevention and control of animal pests.

Materials
- Notebook
- Presentation binder with plastic sleeves
- Other presentation materials as needed per Procedure

Discussion
Natural pest control is based on using the dynamics of a natural system to control populations of unwanted pests. This calls for manipulation of a predator/prey relationship. By understanding the limiting factors of both the predator and the prey, you can enhance an area for a predator by establishing or promoting the conservation of its habitat; limit an area to a pest by destroying its habitat (and risk limiting a beneficial animal’s habitat with it), or create conditions that foster biodiversity.

Nature reaches biodynamically balanced or steady states within ecosystems. These systems are considered healthy states because their populations fluctuate and recover, or are suitably replaced within the niche, maintaining a type of balance that fosters diversity within a system rather than the dominance of one form of life over another, which could ultimately deplete the diversity necessary to sustain the food web - the heart of an ecosystem. For instance, when a disruption of a food web occurs within a system, it creates a limiting factor for one or more members of a food chain within the web. If a food source disappears, the populations which survived on that source of food must either migrate to another source of food, suffer a population die-off due to lack of food, or discover a new source of food within the web.

Procedure
This activity involves finding a predator/prey relationship that will serve as an effective control for an animal pest (as opposed to a weed, insect, nematode, or disease pest). Use your notebook to log your research.

Each student should:
- Identify an animal pest and describe the type of damage it does to an agricultural plant or situation.
- Research the animal’s life history. What does the animal need to survive, including food, water, shelter, and space?
- How does the agricultural environment meet the animal’s needs?
- Research the limiting factors of the animal:
 - food resources
 - natural predators
 - population / territorial controls
 - habitat restrictions
• Research the limiting factors of the animal’s natural predator(s). Choose one predator as the most desirable for controlling the pest population and describe what the animal needs to survive, including food, water, shelter, and space.
• Identify the best methods for controlling the pest animal.
• Write the description of the control methods as if you were instructing a farmer or rancher.
• Write a paper on your pest control method which includes the instructions and any use of graphics which are helpful in supporting your points. Use your research to support your suggested methods of control.
• Do a presentation on your “best defense.” Create graphics to accompany your presentation. Post your graphics as a poster presentation, or create a slide presentation or computer-generated slide show. Create hand-outs on the important points of your presentation for your audience.
Encouraging Wildlife Predators: Natural Pest Control

Allow snags to stand. They serve as roosting and nesting sites for raptors (falcons, hawks, and owls) - natural predators of rodents.
Identify the five major categories of plant pests and give at least one example or a description for each.

1. __
2. __
3. __
4. __
5. __

Multiple Choice

6. A pest is anything that
 a. causes damage or loss to a plant.
 b. does not cause damage to a plant.
 c. is a living organism.
 d. is not a living organism.

7. Pests damage plants by
 a. affecting their reproductive capability.
 b. destroying them.
 c. both a and b.
 d. none of the above

8. An organism which provides a pest with food is called a
 a. weed.
 b. host.
 c. beneficial organism.
 d. nematode.

8. The ramifications of plant damage on production and distribution are
a. production cost increase, as well as reduced plant quality and quantity.
b. loss of income only.
c. production cost increase only.
d. reduced plant quality and quantity only.

9. Besides control costs and extra labor costs, plant damage by pests requires

a. additional costs to re-plant and apply pesticides, herbicides, or fungicides.
b. no additional cost.
c. additional equipment and inventory costs.
d. both a and c.

10. One way in which to reduce nematode populations is

a. root collars.
b. crop rotation.
c. fencing.
d. bulb screens.

List at least five measures taken in the prevention and control of animal pests.

11. ___

12. ___

13. ___

14. ___

Determine whether the plant damage described was inflicted by large animals, small animals, disease, weeds, nematodes, or insects.

15. Holes and mounds (soil surface damage) _____________________________

16. Twisted plant tips ___

17. Brown/yellow/red spots; depigmentation _____________________________

18. Trampling (soil surface and plant damage) ___________________________

19. Evidence of unsuitable conditions _________________________________
20. Roots have knots or bumps
Ag 514 R - Plant Pests and Their Control
Unit Test
Answer Key

Identify the five major categories of plant pests and give at least one example or a description for each.

1. __
2. __
3. __
4. __
5. __

Answer:
Insects: animals with three distinct body parts, three pairs of legs, with or without wings
Nematodes: appendageless, nonsegmented invertebrates; worm-like, largely transparent at 1/75 to 1/10 inches
Weeds: plant growing out of place; unwanted plant (invasive species)
Diseases: Fungi, bacteria, viruses
Animals: birds, rodents, rabbits, deer, bear, farm animals

Multiple Choice

6. A pest is anything that
 a. causes damage or loss to a plant.
 b. does not cause damage to a plant.
 c. is a living organism.
 d. is not a living organism.

7. Pests damage plants by
 a. affecting their reproductive capability.
 b. destroying them.
 c. both a and b.
 d. none of the above

8. An organism which provides a pest with food is called a
a. weed.
b. **host**.
c. beneficial organism.
d. nematode.

8. The ramifications of plant damage on production and distribution are
 a. **production cost increase, as well as reduced plant quality and quantity.**
 b. loss of income only.
 c. production cost increase only.
 d. reduced plant quality and quantity only.

9. Besides control costs and extra labor costs, plant damage by pests requires
 a. additional costs to re-plant and apply pesticides, herbicides, or fungicides.
 b. no additional cost.
 c. additional equipment and inventory costs.
 d. **both a and c.**

10. One way in which to reduce nematode populations is
 a. root collars.
 b. **crop rotation.**
 c. fencing.
 d. bulb screens.

List at least five measures taken in the prevention and control of animal pests.

11. __
12. __
13. __
14. __

Answers:
Fencing
Screening/wrapping (seedlings and young saplings)
Root collars
Bulb screens
Removing pest habitat
Trapping/removal
Pesticides
Repellents
Providing more desirable habitat/food away from the growing area
Providing habitat/favorable conditions for natural predators

Determine whether the plant damage described was inflicted by large animals, small animals, disease, weeds, nematodes, or insects.

15. Holes and mounds (soil surface damage) ___________________________________
 Answer: small animal

16. Twisted plant tips ___________________________________
 Answer: insects

17. Brown/yellow/red spots; depigmentation ___________________________________
 Answer: disease

18. Trampling (soil surface and plant damage) ___________________________________
 Answer: large animals

19. Evidence of unsuitable conditions ___________________________________
 Answer: weeds

20. Roots have knots or bumps ___________________________________
 Answer: nematodes
Unit Objectives

1. Discuss weed competition and crop plant loss caused by weeds.

2. Discuss how weeds spread.

3. List the basic methods of weed control.

4. Discuss methods of cultural, mechanical, chemical, and biological weed control.

5. Identify the factors of a weed control program.

6. Determine when to apply selective and non-selective herbicide compounds.

7. Determine when to apply preplanting, pre-emergence, and post-emergence weed control treatments.
1. Discuss Weed Competition and Crop Plant Loss Caused by Weeds

2. Discuss How Weeds Spread

3. List the Basic Methods of Weed Control

4. Discuss Methods of Cultural, Mechanical, Chemical, and Biological Weed Control

5. Identify the Factors of a Weed Control Program

6. Determine When to Apply Selective and Non-selective Herbicide Compounds

7. Determine When to Apply Preplanting, Pre-emergence, and Post-emergence Weed Control Treatments

Weed
Any plant growing where it is not wanted.
Invasive species.

Weed classifications
- Grassy monocots
- Broadleaf dicots
- Sedges
- Wild onion
- Wild garlic
- Moss
- Algae

Factors of a weed control program to consider:
1. **Weed stages of development**
 ⇒ Vegetative
 ⇒ Reproductive
 ⇒ Dormancy
 ⇒ Senescence

2. **Weed growth cycles:**
 ⇒ Annual
 ⇒ Biennial - growing vegetatively the first year and reproducing the second year.
 ⇒ Perennial - reseeding or vegetatively reproducing, as in creeping perennials.

3. **Weed germination season (fall or spring)**
4. **Accurate identification of the weed**
5. **Selecting control measures specific to the weed.**

Weed competition:
- Detracts from colors and textures of desired plants in an area.
- Reduces the number of desired plants in an area.
- Causes loss of vigor in plants by competing with desired plants for light, water, nutrients, and space.
- Invasive in natural areas, out-competing indigenous plants for light, water, nutrients, and space - sometimes changing or eradicating the ecosystem (i.e., cheat grass, brown knapweed, kudzu, garlic mustard).
- Serve as hosts to insects and diseases.
- May be hazardous to livestock.
- Can reduce the quality of milk, wool, or crops.
- Can create allergens.

Weeds indicate type of soil, pH, and amount of water availability to plants.

Weeds spread by:
- Prolifically producing seeds.
- Reproducing both sexually and asexually.
- Efficient seed dispersal:
 ⇒ Wind-borne (i.e., dandelion).
 ⇒ Seeds have hooks that catch on animal fur or clothing and “travel.”
 ⇒ Seeds can remain on farm machinery and travel from field to field.
 ⇒ Float on water (particularly a problem with canal irrigation).
 ⇒ Ingested by animals and remain viable after passing through the animal.
- Seeds remain dormant and viable over long periods of time.
- Rapid growth.

Some of the worst weeds were imported or established with good intent: kudzu, Johnsongrass, multiflora rose.

Methods of controlling weeds:
Cultural
- Maintaining clean equipment to prevent seed or rhizome spreading.
- Crop rotation - alternative plantings disrupt weed cycles.
- Mulch preserves moisture and blocks weed growth
 Examples:
 - Straw
 - Sawdust
 - Black plastic (almost total weed control).

Mechanical
- Pulling weeds
- Hoeing around crops
- Plowing between rows
- **Cultivators** destroy the maximum amount of weeds with minimum damage to crops.
 Disadvantages of cultivators:
 - Root damage
 - Expensive equipment to purchase, maintain, and operate
 - Erosion by wind and water
 - Moisture loss.

Chemical
Herbicides can:
- Interfere with photosynthesis
- Inhibit amino acids and protein formation
- Block cell division
- Block carotenoid formation, disrupting photosynthesis
- Supply too much auxin to plant for uncontrolled growth; block tissues supplying food and water to plant.

Biological
Use of animals, insects, and disease organisms to control weed growth.
Animals
- **Goats** eat coarse plants to make room for forage grasses.
- **Geese** eat grass to make room for crop plants.
- **Fish** used in aquaculture to control aquatic weeds.

Insects
Species eating certain weeds but not crop plants (i.e., tansy ragwort eaten by cinnabar moth).

Disease organisms
Bacteria, fungi, and viruses which are specific pathogens to specific plants.
Advantage is they can be isolated to affect only the weed species.

Disadvantages to biological control:
- Slow results
- Expensive
- Potential that the controls may become pests.

Integrated Pest Management
The use of cultural, mechanical, herbicidal, and biological controls in combination for effective, efficient, environmentally sensitive pest control.

Application of selective and non-selective herbicides:

Selective herbicides
- Chemicals which kill select weeds, but not the crop.
 - E.g., 2,4-D
 - Apply to kill weeds interspersed with a crop.

Non-selective herbicides
- Chemicals which kill any plant to which they are applied.
 - Used where plant growth is undesirable, such as fence lines, driveways, sidewalks, and parking areas.
 - E.g., Roundup, Atrazine, Atratol
 - Low concentrations of some in the slightly toxic range can still be used to kill young weeds without damaging the crop.

Application of preplanting, preemergence and postemergence weed control treatments:

- **Preplanting**
 - Mixed into or sprayed onto soil or seed beds.

- **Preemergence**
 - Made before appearance of plant growth or after crop emerges, but before weeds appear.
 - Effective on germinating weed seeds.

- **Postemergence**
 - Selective herbicide used after crop has appeared.

Variables in herbicide application:

- **Correct herbicide selection for the weed**
 - Requires accurate identification of the weed to be controlled.

- **Proper herbicide types and application considerations for:**
 - The correct time of year to arrest germination, vegetative reproduction, or reseeding.
 - Plant maturity with direct application.
 - Amount of rainfall - too much can wash away the chemical.
 - Soil type and amount of organic matter in the growing media - application varies according to rate of percolation, holding by clay particles, and absorption by humus.
 - Even spreading of the herbicide.
 - Preplanting herbicide - must be flushed into the soil by water.
 - Postemergents - must be sprayed onto the plant or its roots for absorption by the plant.
 - Correct amounts over a specified area (water application of the treatment area as pre-test for proper tank mix amounts).

 Sprayers must be calibrated for proper application rate to avoid:
 - Too high a rate, which kills the crop as well as the weeds
 - Too low a rate, which has poor weed killing results.
References

Student Activity

- **Travelin’ Plants**

From *The Growing Classroom: Garden-Based Science*, Addison-Wesley:
- **“Adapt-a-Seed”** (p. 118)

From *Project WILD Activity Guide*, Project WILD:
- **“Who Fits Here?”** (pp. 160-161)

Internet Resources

Idaho Farm and Ranch Resource Center (Idaho One Plan)
http://www.idwr.state.id.us/oneplan/
Site Map
http://www.idwr.state.id.us/oneplan/sitemap.htm

WeedFacts
Joseph C. Neal & Andrew F. Senesac
Cornell Cooperative Extension
Cornell University
http://www.cals.cornell.edu/cals/dept/flori/wdfct

Revised Weed Management Guide Documents
Florida Cooperative Extension Service
University of Florida
FAIRS - Florida Agricultural Information Retrieval System
http://hammock.ifas.ufl.edu/rev_wg.html

Additional Resource

Idaho’s Noxious Weeds
Series No. SP9 @ $3
Agricultural Publications
University of Idaho
Transparency

- Indicator Weeds
Student Activity: Travelin’ Plants

Purpose
- Discuss how weeds spread.
- Identify common weeds for your area.
- Determine the growing conditions weeds indicate for the areas in which they are found.

Materials
Plant field guides for your area (Peterson’s “Rocky Mountain Wildflowers,” Golden Guide to Wildflowers, Weeds of the West, etc.)
Soil type key
Notebook
Plastic baggies
Labels
Permanent waterproof marker
Foam core display board

Procedure
Before gathering any wild plants, you must be certain you are in an area where gathering is permitted. Roadside and waste areas are usually not a problem, but when on private or public land (parks, etc.) you must seek permission to gather plants. Do not proceed without permission!

- With permission, gather five (5) examples of plants representative of weeds in your area.
- Gather one live specimen, one dried specimen (last year’s plant), if available, and an example of the plant’s seed type. Include a pod or fruiting body if representative.
- Place each plant specimen in a baggie and label it according to plant and site gathered.
- Take a small soil sample at the same site, place it in a baggie and label it according to the plant and site gathered.
- When labeling the baggies establish a KEY which will help you keep the specimens together; i.e., #1 - “live specimen / plant name;” #1 - “dried specimen / plant name;” #1 “plant seed;” #1 - soil sample for “plant name.”
- Record in your notebook:
 ⇒ Plant name
 ⇒ Plant seed type
 ⇒ Observations on plant seed dissemination, or your predictions, based on the seeds observed.
 ⇒ Where you found the plant.
 ⇒ Key # and corresponding baggie labels.
 ⇒ Soil types which corresponded with the plants gathered.
 ⇒ Indications for plant growth which you observed in the area at the time you gathered your plant specimens.
- Create a poster display of your examples using the foam core board. Hint: pin your baggies to the board, labeling the plants, soil, and the growing conditions they represent.
Write a summary paper of your research and include it with your display. Include an introductory abstract, the intent of your study, your prediction of what you would find, a description of your observations and findings, and interpret your results, directly relating them to: weeds found / soil indicating what growing conditions / seed dispersal type / how adaptations of seeds relate to soil type and accomplish dispersal.

References

Hitchcock and Cronquist, *Flora of the Pacific Northwest: An Illustrated Manual* (5 vols; advanced reference), University of Washington Press. (This is the reference for positive identification, if you need it. It is usually found in college / university libraries, but check your local library.)

Pacific Northwest Field Guides
http://chemwww.chem.washington.edu/native/fieldguides.html#Jump27
Indicator Weeds

<table>
<thead>
<tr>
<th>Compacted Areas</th>
<th>Knotweed</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Moisture Conditions</td>
<td>Sedges</td>
</tr>
<tr>
<td></td>
<td>Mosses</td>
</tr>
<tr>
<td></td>
<td>Rushes</td>
</tr>
<tr>
<td></td>
<td>Annual bluegrass</td>
</tr>
<tr>
<td>Low Moisture Conditions</td>
<td>Prostrate spurge</td>
</tr>
<tr>
<td></td>
<td>Poorjoe</td>
</tr>
<tr>
<td></td>
<td>Annual ilespedeza</td>
</tr>
<tr>
<td></td>
<td>Prostrate knotweed</td>
</tr>
<tr>
<td>Low pH</td>
<td>Red sorrel</td>
</tr>
<tr>
<td></td>
<td>Broomsedge</td>
</tr>
<tr>
<td>Low Nitrogen</td>
<td>Clovers</td>
</tr>
<tr>
<td></td>
<td>Legumes</td>
</tr>
<tr>
<td></td>
<td>Mosses</td>
</tr>
<tr>
<td>High Phosphorus</td>
<td>Annual bluegrass</td>
</tr>
<tr>
<td>High nitrogen</td>
<td>Common chickweed</td>
</tr>
<tr>
<td>Compacted Soils</td>
<td>Annual bluegrass</td>
</tr>
<tr>
<td></td>
<td>Goosegrass</td>
</tr>
<tr>
<td></td>
<td>Prostrate knotweed</td>
</tr>
<tr>
<td>Nematode Indicators</td>
<td>Florida pusley</td>
</tr>
<tr>
<td></td>
<td>Prostrate knotweed</td>
</tr>
</tbody>
</table>
Multiple Choice

1. Among other things, weed competition
 a. reduces the number of desired plants in the area.
 b. increases the number of desired plants in the area.
 c. adds to colors and textures of desired plants.
 d. causes increase of vigor in plants.

2. Weeds compete with indigenous plants
 a. in deserts and forests only.
 b. for light, water, nutrients, and space.
 c. for nutrients and space.
 d. for light and water.

3. Weeds serve as hosts to
 a. nematodes.
 b. insects.
 c. diseases.
 d. both b and c.

4. Weeds can reduce the quality of
 a. the soil.
 b. milk, wool, or crops.
 c. all of the above.
 d. none of the above.

5. Weeds indicate the type of soil, pH and
 a. amount of water availability to plants.
 b. the species of plant found in the area.
 c. the types of insects that can be identified.
 d. when harvesting should begin.
List the five methods in which weeds disperse their seeds.

6. __

7. __

8. __

9. __

10. __

11. **Name at least one other way in which weeds spread their seeds.**

 __

Matching

___ 12. Biological

___ 13. Postemergence

___ 14. Cultural

___ 15. Integrated Pest Management

___ 16. Preemergence

___ 17. Mechanical

___ 18. Selective herbicides

___ 19. Chemical

___ 20. Preplanting

___ 21. Non-selective herbicides

A. Maintaining clean equipment to prevent seed or rhizome spreading.

B. Pulling weeds, hoeing around crops, and plowing between rows.

C. Herbicides: may interfere with photosynthesis among other things

D. Use of animals, insects, and disease organisms to control weed growth.

E. The use of a combination of weed control methods.

F. Chemicals which kill weeds, but not the crop.

G. Chemicals which kill any plant to which they are applied.

H. Weed control treatment mixed into or sprayed onto soil or seed beds.

I. Treatment effective on germinating weed seeds.
J. Selective herbicide used after crop has appeared.
Multiple Choice

1. Among other things, weed competition
 a. reduces the number of desired plants in the area.
 b. increases the number of desired plants in the area.
 c. adds to colors and textures of desired plants.
 d. causes increase of vigor in plants.

2. Weeds compete with indigenous plants
 a. in deserts and forests only.
 b. for light, water, nutrients, and space.
 c. for nutrients and space.
 d. for light and water.

3. Weeds serve as hosts to
 a. nematodes.
 b. insects.
 c. diseases.
 d. both b and c.

4. Weeds can reduce the quality of
 a. the soil.
 b. milk, wool, or crops.
 c. all of the above.
 d. none of the above.

5. Weeds indicate the type of soil, pH and
 a. amount of water availability to plants.
 b. the species of plant found in the area.
 c. the types of insects that can be identified.
 d. when harvesting should begin.
List the five methods in which weeds disperse their seeds.

6. __
7. __
8. __
9. __
10. __

Answers:
wind-borne
seed hooks that attach to animal fur or clothing
can remain on farm machinery and travel from field to field
by float on water
ingested by and passed through animals

11. Name at least one other way in which weeds spread their seeds.

__

Answers: (one of the following)
prolifically producing seeds
reproducing both sexually and asexually
by remaining dormant and viable over long periods of time
rapid growth
Matching

__D__ 12. Biological

__J__ 13. Postemergence

__A__ 14. Cultural

__E__ 15. Integrated Pest Management

__I__ 16. Preemergence

__B__ 17. Mechanical

__F__ 18. Selective herbicides

__C__ 19. Chemical

__H__ 20. Preplanting

__G__ 21. Non-selective herbicides

A. Maintaining clean equipment to prevent seed or rhizome spreading.
B. Pulling weeds, hoeing around crops, and plowing between rows.
C. Herbicides: may interfere with photosynthesis among other things
D. Use of animals, insects, and disease organisms to control weed growth.
E. The use of a combination of weed control methods.
F. Chemicals which kill weeds, but not the crop.
G. Chemicals which kill any plant to which they are applied.
H. Weed control treatment mixed into or sprayed onto soil or seed beds.
I. Treatment effective on germinating weed seeds.
J. Selective herbicide used after crop has appeared.
Unit Objectives

1. List ways that insects cause losses in plants.
2. List the beneficial effects of insects.
3. Identify the three parts of an insect’s body.
4. Match the types of insect mouth parts with their feeding habits.
5. Identify the three types of life cycles for insects.
6. Diagnose the symptoms of insect damage to plants.
7. Describe the three classifications of insect control.
8. Identify the insects having an economic impact on the horticulture industry of Idaho.
10. Classify the phases of Integrated Pest Management.
13. Classify the six basic elements of an Integrated Pest Management program.
14. Select appropriate cultural / mechanical, biological, and chemical control practices for identified insect pests.
Insect Losses in Plants

Monetary loss
Averages $5 billion dollars annually.

Physical damage
Phytophagous - feed on plants
Feed on roots, stems, leaves
Fruit damage
Less saleable, particularly peaches, apples, pears, and grapes
Less desirable for consumers
Grain damage
During plant storage.

Insects can also cause damage by:

Spread of diseases from insect bites, affecting humans and other animals.
Parasitism in livestock egg of an insect deposited within livestock that weakens animals through loss of blood from the insect feeding as it grows, creating susceptibility to disease.

Beneficial Effects of Insects

Pollination
Bees
Butterflies
Moths
Other predatory insects which move from flower to flower searching for prey or hosts to lay their eggs; e.g., wasps, ants.

Predation on non-beneficial insects
Beneficial insects such as ichneumons, praying mantis, ladybird beetles (lady bugs), lacewings, and damsel flies are predators, with larvae eating only other insects which are plant eaters, and thus destructive to crops.

Predatory insects can destroy pest insects by:
- Ovipositing their eggs in adult insects or larvae (females using their ovipositors - their “stingers” to lay their eggs in the host insects).
- Eating adult insects or larvae.
- Eating insect eggs.

Three Parts of an Insect’s Body:

Head
Compound eyes
Sensory appendages or antennae
Mouth parts

Thorax
Three segments: three pairs of legs (six legs all together)
In some species: wings, attached to the last two segments of the thorax

Abdomen
Contains the insect’s digestive system.

Insect Mouth Parts
Insects are grouped by their mouth parts, relating to how they feed on plants or other animals.

Categories:
Rasping / sucking
Feed on cells scraped from the plant surface; e.g. thrips.

Piercing / sucking
Proboscis extension which pierces a hole into plant stems, sucking plant sap; e.g., scale insects and aphids.

Sponging
Absorb liquids with a sponge-like mouth extension; e.g., house flies.
Siphoning
Proboscis extension which enables the insect to suck up nectar, like a straw; e.g., moths and butterflies.

Chewing
Mandibles (jaws) that bite off plant parts and grind them as they chew, e.g., beetles and grasshoppers.

Chewing / lapping
Lap up liquids with long, hair-covered tongue-like projections which enable them to reach into flower nectar tubes and lap up nectar; e.g., bumblebees and honeybees.

Insect Life Cycles: Metamorphosis

Changes in an insect’s shape, structure, and habits between its embryonic and adult stages.

These changes take place over a series of molts, with each stage between each molt termed an “instar.”

Molts are the shedding of exoskeletons, because the exoskeleton is hard, and does not permit extended growth.

The number of molts needed is generally four to eight, but can be up to 20 in some species, until the larval insect reaches the final molt before becoming an adult (the penultimate molt).

Bristletail insects continue to molt after becoming an adult, which is rare.

Complete

Egg

Larva (feeding / non-sexual)

Pupa (non-feeding / non-sexual but actively undergoing metamorphosis from the larval stage [instar] to the adult form [imago] while within a chrysalis, cocoon, or puparium)

Adult (sexual / egg-laying / may or may not feed [many short-lived adult insects will not feed])

Incomplete (water-born insects)

Egg

Naiad e.g., mayfly, dragonfly, damselfly, or stonefly / water-born / living in water;

 or early nymph e.g., grasshopper or true bug / land-born (without wings) (feeding / non-sexual)

Late nymph (incompletely developed wings and genitalia / feeding / non-sexual / metamorphically changing to adult structure) (water-born insects are still in water until their final molt)

Adult (sexual / may or may not feed / living out of water)

Gradual or Simple

Egg

Nymph stages:

Gradual growth

Shedding exoskeleton to grow (non-sexual and feeding)
Adult (sexual / egg laying stage and may or may not feed)

Symptoms of Insect Damage to Plants

Chewing insects
Holes in leaves; missing pieces of bark; holes in bark with sap backfill; leaf and stem galls.

Sucking insects
Twisted plant tips; rolled leaves.

Classifications of Insect Control

Cultural/Mechanical
Planting insect resistant varieties.
Monitoring crops for pesticide use only when needed.
Pulling, mowing, mulching, and plowing to remove weeds and reduce havens for insects.

Biological
Using living organisms for pest control.
Encouraging birds, bats, toads, frogs, and pest insect predators.*
*Do not use insecticides when insect predators are the primary pest control method.
Introduction of diseases to insect populations; e.g., Bacillus thuringinensis.
Use of pheromones to attract male insects to traps.
Release of sterile males (females mate with them but no offspring are produced and eventually the insect pest population is greatly reduced or eradicated).

Chemical
Insecticides: dusts, granules, powders, and solutions.
Classified by how they penetrate the insect’s body:

Stomach poison
Used as a spray or dust.
Eaten by chewing insects:
Caterpillars, grasshoppers, and beetles.

Contact poison
Absorbed by any type of insect but commonly used on sucking insects.
Aphids, mites, leaf hoppers, scale, and whiteflies.
Oil sprays are the most common form.

Systemic poison
Applied to be taken into the plant that the pest insect feeds on, to poison the insect.
Food plants must not be harvested until the chemical has broken down.
Used on chewing or sucking insects.
Successful on insects underground or under leaves who avoid contact poisons.

Fumigant
Gas poisonous to insects are injected into the air in a greenhouse or at the soil level and covered to infuse the soil. (Fumigants should be used only in enclosed areas, away from people and other animals.)
Used to control soil-borne insects, who ingest it through their breathing pores.
Insects take in the gas through their respiratory systems.

Repellants
Drive insects away from the plant.
Plant repellants: mint, onion, garlic, chives, leeks, marigolds, nasturtiums, sage, horseradish.

Attractants
Pheromone bait traps lure the male insect to the trap, where they are unable to get out.
Successful on Japanese beetles and gypsy moths.
Poisonous bait traps kill the pests who eat the poison.
Successful on slugs, snails, cutworms, grasshoppers, and weevils.

⇒ Insecticide application requires the applicator to wear protective clothing and a mask.

Chemical Insecticide Types:

Inorganic
Of mineral origin, usually in the form of a stomach poison.

Organic
Derived from plants; used in the forms of stomach poisons or contact poisons.

Synthetic
Not found naturally; produced in laboratories.
Also toxic to human beings.

Three groups:

Chlorinated hydrocarbons
Long-lasting residual control; destructive to animals by build-up in the food chain.
E.g., DDT

Organophosphates
Break down quickly in the environment and do not build up in the food chain.
E.g., parathion: extremely toxic to humans and other animals.
E.g., malathion: relatively safe and effective.

Carbamates
Safer than organophosphates; break down quickly and leave no residue in the environment.
Sevin: slightly toxic to humans and other animals.
Chemical sterilants
Gamma radiation treatments to sterilize male insects for biological control.
Females will mate with sterile males but the resulting eggs will not be fertilized.

Insecticide Application Timing is extremely important!
Insects must be killed at a stage in their growth when they are actively feeding or mating.

References

Student Activity

• Insect-Watching

Student Lab

From Access Excellence Activities Exchange:

• Pesticides and Eggshell Thinning by David Tucker

Internet Resources

The Entomological Society of America
http://www.entsoc.org/ns3.htm

Pesticides and Eggshell Thinning
by David Tucker
Access Excellence Activities Exchange

Additional References:
Beneficial Organisms Associated with Pacific Northwest Crops
Cooperative Extension publication: PNW 343 @ $1
Agricultural Publications
University of Idaho
Moscow, ID 83844-2240
Pacific Northwest 1997 Insect Control Handbook
Cooperative Extension publication
Order from:
Publication Orders
Agricultural Communications
Oregon State University
Administrative Services A422
Corvallis, Oregon 97331-2119
(503) 737-2513

Transparencies

- Insect Classification (set of #3 transparencies)
- Beneficial Insects
Student Activity: Insect-Watching

Purpose
Discover various aspects of insects: habitat, feeding and mating habits, and identification of the insect within its life cycle.

Materials (recommended)

For insect identification:
- Hand lens
- If capture is necessary:
 - “Bug box” (available at most nature shops or museum stores)
 - Clear glass jar with mesh netting or several small holes in lid

For pond or streamside viewing:
- Underwater viewing box such as “Aquavue” or water-scope apparatus available at museum stores, nature shops, or by catalog (see your instructor for catalog information).
- You can also make a viewing box by doing the following:
 - Use a clear, hard plastic container and place the bottom surface in the water. It won’t magnify your viewing, but it will allow you to see under the water surface minus the ripples.

For observation records:
- Notebook

Procedure
- Choose four insects from four different orders for field observation.
- Keep a record of your observations in your notebook.
- Record the following observations:
 - Habitat where insect is seen
 - Feeding activities (food type and how they eat it)
 - General observations about ground, water, or flight movements / purpose of movement
 - Territorial and mating activities
 - Egg-laying activity
 - Life cycle stages seen
- Write a summary report on your observations. Use your notes as reference.
- Document your observations with photos when possible.
- Create a display of your insect observations. Include a graphic of the entire life cycle of your insects, and illustrate which stage or stages in which you found your insects.
- Be creative! How can you make your display interactive?

Display for a Day!
Put your displays up for viewing by the entire class or classes for at least a day. Include comment sheets with each display and allow viewers to comment on your work. An example is included with this activity.

10. Classify the Phases of Integrated Pest Management

12. List Six Examples of Best Management Practices in Horticulture

13. Classify the Six Basic Elements of an Integrated Pest Management Program

Integrated Pest Management

Combination pest management strategy
Uses best management practices in combination with chemical, cultural/mechanical, and biological controls to reduce pest damage with the least amount of disruption to the environment.

Why integrated pest management?
Single control measures do not work with consistency over long periods of time.
Pests develop resistance to the chemicals in pesticides.
IPM provides better protection to the environment, reducing the toxicity level input necessary to control pests.

Goals of IPM
Keep pest populations at a control level
The point at which plant losses are equal to the cost of control.
Maintain a balance
Strive for the least risk of destroying helpful organisms as well as harmless organisms.
IPM Methodology

A strategy of choice options according to the severity of the problem:

Do nothing, giving nature a chance to restore the balance of predator/prey relationships and population control.

Mechanical and cultural controls:

- **Plant washing**
 - Soaps or water sprays.

- **Repelling**
 - Use of barriers and traps; i.e., stem collars, diatomaceous earth, strategically placed buckets of soapy water, and dishes of beer.

- **Cover soil**
 - Row covers destroy weeds and pests.

- **Remove plant debris**
 - Serves as habitat.

- **Physically destroy pests**
 - Mechanical controls: plowing, cultivating, and hoeing.

- **Select plants**
 - Adapted to the climate zone and disease-resistant varieties.

- **Plant for control**
 - Adjust planting times to avoid prime emergence of pests to the more vulnerable young plant.

- **Maintain water and nutrient levels**
 - Increase plant hardiness.

- **Sterilize by heating the soil**
 - Use the hottest weather periods to heat the soil and reduce / eliminate soil dwelling pests. Till and remove weeds to allow the surface to heat; water the soil thoroughly, then cover with plastic mulch (sheets) for 4 to 6 weeks.

Biological controls:

- **Predatory insects**
 - I.e., wasps, ladybird beetles, lacewings, predator mites, and mantids.

- **Semio-chemicals**
 - Pheromones; hormones
 - **Pheromones** affect communication between insects.
 - Used to confuse, lure, or trap insects.

- **Parasitic nematodes**
 - Eat grubs, weevils, sod webworms, and carpenter worms.

- **Bacillus thuringiensis (BT):** bacteria applied as different strains and application strengths which kill caterpillars, mosquitoes, Colorado potato beetles, and the elm-leaf beetle.
Chemical controls:

Botanical insecticides
- Toxic to animals / birds / beneficial insects
- Non-toxic to animals
- Non-toxic to beneficial insects

Contact dusts
- Scrape / destroy pest exteriors; hazardous as inhalants to humans

Broad-spectrum insecticides
- Non-discriminatory toxicity to insects

Specific to insects
- Toxic with uptake in certain plants
- Non-toxic to animals

Specific to slugs and snails
- Toxic to animals

Systemics
- Toxic to sucking insects; toxic to humans with uptake in edible plants.

Smothering oils
- Smother insects and insect eggs.

Soaps
- Low toxicity to humans; injure some plants; safe on edible plants.

Sulfur dust
- Not advised for use at temperatures over 90°F.

Best Management Practices for Horticulture
Practices that combine scientific research with practical knowledge.
Optimization of yields, plant quality, and environmental integrity.

Management of:
Surface and subsurface water
Soil erosion
Irrigation
Pests

Methods:
- **Cultural / Mechanical**
- **Biological**
- **Chemical**
 - Selection
 - Use

Soil nutrient value
Fertilization
- **Timing**
- **Placement**
- **Controlled release**
Phases of Integrated Pest Management:
1. Predetermination
2. Evaluation
3. Implementation
4. Monitoring
5. Re-evaluation

Predetermine
Potential for pest problems
Threshold for pest damage
Pest identification
Best Management Practices to control pests

Evaluate
If damage threshold has been exceeded
Select a treatment option or combination of options

Implement
Control treatment(s)
BMPs

Monitor
Monitor pest levels after treatment(s)
Monitor for damage from controls used

Re-evaluation
Determine effectiveness of treatment(s)
Determine effectiveness of management strategies

Basic Elements of an Integrated Pest Management Program
1. System and pest control managers
2. Knowledge and information
3. Ecosystem management
4. Pest level management
5. Techniques for pest population controls
6. Pest control treatments (agents and materials)

References
Student Activity

- One-Two Pest Punch

Internet Resources

Idaho Farm and Ranch Resource Center (Idaho One Plan)
http://www.idwr.state.id.us/oneplan/
Site Map
http://www.idwr.state.id.us/oneplan/sitemap.htm

IPM Integrated Pest Management Florida
http://www.ifas.ufl.edu/~FAIRSWEB/IPM/IPMFL/ipmfl.htm

National IPM Network University of Florida
http://www.ifas.ufl.edu/~FAIRSWEB/IPM/index.htm

IPM Integrated Pest Management Cooperative State Research, Education, and Extension (CSREES)
http://www.reusda.gov/ipm/

UC Statewide Integrated Pest Management Project
http://axp.ipm.ucdavis.edu/default.html

UC Pest Management Guidelines
http://www.ipm.ucdavis.edu/PMG/selectnewpest.home.html

Additional Resources

Beneficial Organisms Associated with Pacific Northwest Crops
Series No. PNW 343
Agricultural Publications
University of Idaho
Moscow, ID 83843-2240
(208) 885-7982

Transparency

- Integrated Pest Management
Student Activity: One-Two Pest Punch

Purpose
- Select appropriate cultural / mechanical, biological, and chemical control practices for identified insect pests.

Materials
- Insect Field Guide (Peterson Field Guide series or other)
- Plant Field Guide or other guide to assist in ornamental or wild plant identification
- Notebook
- Small plastic bags (staple or twist-tie)
- Empty plant container for potting a field example
- Trowel for digging a field example

Procedure
Using your notebook to record:
- Identify four examples of insect damage.
- Collect evidence of the insect damage, placing in small plastic bags.*

For each:
- Identify the insects responsible for the damage.
- Determine the stage of the pest insect’s development.
- Describe the type and amount of damage done to the entire plant.

Following the procedures for decision-making in determining appropriate integrated pest management responses, indicate for each:
- Evaluate all possible control options and record them in your notebook for each pest-infested plant found. Include all possible cultural / mechanical, biological, and chemical responses.
- Choose one plant of the infestation examples found and dig it up, placing it in a pot with a plastic bag secured over the plant with a twist tie.* Poke pinholes in the plastic bag to assure the insects and the plant receive air.
- Bring in the plant the same or very next day with the other examples of infestations.
- For the potted plant, choose one method of control to try to rid the infested plant of the pest.
Record your methodology:
- Indicate the type of control used (cultural / mechanical, biological, or chemical) and the specific method.
- Indicate the type of plant, type of pest, amount of damage to the plant, and the date the control method was implemented.
- Predict the amount of time it will take to eradicate the pest with your method of control.

Record the results:
- Indicate the number of applications of the control method and the amount of time it took to eradicate the pest, or if the results were not successful.
- Report your results: make a poster display of your plant damage examples. Label your work. Include your potted plant on a table with your poster. Write an abstract summary of your research and make enough copies for classmates.

*Before collecting, always get permission from private or public landowners; nursery or greenhouse operations. It is illegal to collect plants from most public lands.
Insect Classification - #1

Orthoptera
- Grasshoppers, Katydids, Crickets, Mantids, Walkingsticks, and Cockroaches

Hemiptera
- Bugs

Lepidoptera
- Butterflies and Moths

Homoptera
- Aphids, Hoppers, Cicadas, Whiteflies, and Scale

Thysanoptera
- Thrips

Coleoptera
- Beetles
Protura
 Proturans

Thysanura
 Bristletails

Collembola
 Springtails

Ephemeroptera
 Mayflies

Odonata
 Dragonflies and Damselflies

Isoptera
 Termites

Plecoptera
 Stoneflies

Dermaptera
 Earwigs
Embioptera
 Webspinners
Zoraptera
 Zorapterans
Psocoptera
 Booklice and Barklice
Mallophaga
 Chewing lice
Anoplura
 Sucking lice
Neuroptera
 Fishflies, Snakeflies, Lacewings, A
Strepsiptera
 Twisted-winged parasites
Mecoptera
 Scorpionflies
Trichoptera
 Caddisflies
Diptera
 Flies
Siphonaptera
 Fleas
Hymenoptera
 Sawflies, Ichneumons, Chalcids, A
 Wasps, and Bees
Integrated Pest Management

First Control
Non-chemical
Hand-collecting
Pruning

Second Control
Biological
Natural diseases
Natural predators

Third Control
Chemical
Insecticides
Body contact
Swallowing
Miticides
Body contact
Biological or non-biological
Fungicides
Contact
Herbicides
Nonselective
Selective
Rodenticides
Swallowing
Nematocides
Fumigant
Molluscicides
Swallowing
Fill in the blank

1. Insects cause losses in plants through _________________________ and _______________________.

2. Insects can also cause damage by _________________________ and _______________________.

3. The beneficial effects of insects are _________________________ and _______________________.

4. Name the three parts of an insect’s body.
 a. _________________________
 b. _________________________
 c. _________________________

5. Identify the five phases of Integrated Pest Management.
 1. _________________________
 2. _________________________
 3. _________________________
 4. _________________________
 5. _________________________

6. Integrated Pest Management is

 __
8. What are the six basic elements of an Integrated Pest Management Program?

1. __
2. __
3. __
4. __
5. __
6. __

Matching
9. Attractants

10. Fumigant

11. Chewing/lapping

12. Organic

13. Sponging

14. Piercing/sucking

15. Organic

16. Botanical insecticides

17. Sucking insects

18. Predatory insects

19. Repellents

20. Repelling

A. Proboscis extension which pierces a hole into plant stems, sucking plant sap.

B. Absorb liquids with a sponge-like mouth extension

C. Lap up liquids with long, hair-covered tongue-like projections

D. Cause twisted plant tips and rolled leaves

E. Insects take in gas through their respiratory systems

F. Drive insects away from the plant

G. Male insect trapped with pheromone bait

H. Derived from plants; used in forms of stomach poisons or contact poisons

I. Use of barriers and traps

J. Wasps, ladybird beetles, lacewings, predator mires and mantids

K. Toxic to animals/birds/beneficial insects
Fill in the blank

1. Insects cause losses in plants through ______________________ and _________________.
 Answers: monetary loss and physical damage
2. Insects can also cause damage by ______________________ and _________________.
 Answers: spreading disease (through insect bites) and parasitism in livestock
3. The beneficial effects of insects are ______________________ and _________________.
 Answers: pollination and predation of non-beneficial insects
4. Name the three parts of an insect’s body.
 a. ______________________
 b. ______________________
 c. ______________________
 Answers: Head, Thorax, and Abdomen
5. Identify the five phases of Integrated Pest Management.
 1. ______________________
 2. ______________________
 3. ______________________
 4. ______________________
 5. ______________________
 Answers: Predetermination
 1. Evaluation
 3. Implementation
 4. Monitoring
 5. Re-evaluation
7. Integrated Pest Management is

Answer: A pest management strategy which uses the best management practices in combinations with chemical, cultural/mechanical, and biological controls to reduce pest damage with the least amount of disruption to the environment.

8. What are the six basic elements of an Integrated Pest Management Program?

1. __________________________

2. __________________________

3. __________________________

4. __________________________

5. __________________________

6. __________________________

Answers:
1. System and pest control managers
2. Knowledge and information
3. Ecosystem management
4. Pest Level management
5. Techniques for pest population controls
6. Pest control treatments
Matching

__G__ 9. Attractants

__E__ 10. Fumigant

__C__ 11. Chewing/lapping

__H__ 12. Organic

__B__ 13. Sponging

__A__ 14. Piercing/sucking

__H__ 15. Organic

__K__ 16. Botanical insecticides

__D__ 17. Sucking insects

__J__ 18. Predatory insects

__F__ 19. Repellents

__I__ 20. Repelling

A. Proboscis extension which pierces a hole into plant stems, sucking plant sap.
B. Absorb liquids with a sponge-like mouth extension
C. Lap up liquids with long, hair-covered tongue-like projections
D. Cause twisted plant tips and rolled leaves
E. Insects take in gas through their respiratory systems
F. Drive insects away from the plant
G. Male insect trapped with pheromone bait
H. Derived from plants; used in forms of stomach poisons or contact poisons
I. Use of barriers and traps
J. Wasps, ladybird beetles, lacewings, predator mires and mantids
K. Toxic to animals/birds/beneficial insects
Unit Objectives

1. Describe the life cycles of plant diseases.

2. Describe the ways and means diseases are spread.

3. Describe growing conditions and cultural practices favorable to common diseases.

4. Diagnose the symptoms of common plant diseases.

5. Describe preventative measures for disease.

6. Describe cultural and chemical control measures for diseases.

7. Identify by name, symptom, and causal agent the diseases that have an economic impact on Idaho crops.
1. Describe the Life Cycles of Plant Diseases

2. Describe the Ways and Means Diseases are Spread

3. Describe Growing Conditions and Cultural Practices Favorable to Common Diseases

4. Diagnose the Symptoms of Common Plant Diseases

5. Describe Preventative Measures for Diseases

6. Describe Cultural and Chemical Control Measures for Diseases

7. Identify by Name, Symptom, and Causal Agent the Diseases that Have an Economic Impact on Idaho Crops

Plant Disease Types

Environmental / Abiotic
- Nutrient deficiencies or oversupply of nutrients
- Damaged plant parts
- Chemical burns
- Pollution, inhibiting oxygenation and photosynthesis
- Weather
- Genetic mutations or irregularities

Parasitic / Biotic

Bacteria; e.g.,
- Fireblight
- Fruit rot

Viruses; e.g.,
- Cucumber mosaic
- Citrus tristeza
- Tomato ring spot
Fungi; e.g.,
Spotting or rotting
Mildew
Rusts
Smuts

Soil fungi and bacteria cause seed decay, blights, root rots, wilt and damping-off of seedlings.

Three factors which must be present for disease occurrence:
1. Susceptible host plant
2. Causal agent; e.g., fungi
3. Favorable environment; e.g., days of warm, rainy weather.

Three methods of control:
1. Increasing host plant’s resistance
2. Altering the host plant’s environment; e.g., mixing sand with soil to increase drainage.
3. Keeping the disease-producing organism from the host plant; e.g., destroy the fungal growth area.

Organisms that cause diseases

Fungi
One-celled, filamentous (hyphae), spore-bearing organisms
Causal agent for plant mildew, rusts, smuts; i.e., fruit rot, Dutch Elm disease
Spread by water, wind, insects, and other contact.
Beneficial and non-beneficial

Bacteria
One-celled organisms with a primitive nucleus
Pathogens enter plants through stomata, flower parts, cuts, or breaks in the plant.
Insects may transmit disease organisms.

Viruses
Do not have organized nuclei.
Rely on strands of host cell’s nucleic acid to replicate; therefore, cause disease by using up cell material needed to live and function.
Become a part of the host cell by interacting with the host cell’s DNA.
May rupture cells during viral reproduction.

Plant Disease Life Cycles and Movement

Fungi
Spores land on leaves or other plant surfaces.
Spores send hyphae (tubes) into the leaf or plant, weaving throughout the plant tissue to extract nutrients.
As nutrients are lost to the plant, the leaf wilts and plant cells die.
Hyphae send out spore-bearing branches from the plant to the outside.
Spores are carried by the wind to begin the cycle again on another host plant.
Bacteria
As pathogens, invade plant surface to feed on cells. Some secrete toxins to destroy cells.
Attack different plant systems; e.g., root, leaves, flowers, stems.

Roots
- Plant cannot take in water or other nutrients

Leaves
- Impair photosynthesis; plant cannot manufacture food

Flowers
- Plant cannot reproduce or fruit

Stems
- Water and nutrients cannot translocate throughout the plant.

Bacteria travel by contact, and continue to move, breed, and feed from one plant to another unless they are completely destroyed on site.

Viruses
Viruses spread by contact.
As pathogens, use up material in a cell host to live and reproduce.
Breeding causes cell rupture where bacteria may invade the plant.
Secondary infection from feeding bacteria causes death.
Virus life cycle depends upon reproduction.
Virus cycle of reproduction must be stopped in order to arrest the progress of the virus.
Only plant resistance and non-contact with other diseased plants can stop a virus.

Symptoms of Plant Diseases:
- Wilt
- Rotting plant parts
- Brown spots on leaves, fruits (plus softness at brown areas), or other plant parts
- Appearance of powdery white substances
- Discolored or multicolored appearance for lack of chlorophyll
- Stunted growth
- Leaf buds, floral parts, or fruit not developing or falling off
- Twisted stems or leaves
- Hallucinogenic if ingested; e.g., ergot infestation of wheat.
- Floral parts are weakly colored.

Plant Disease Natural Defense Systems
1. Pubescent hairs on plant surfaces which capture pathogens above the surface of the plant.
2. Waxy cuticle coverings which prevent penetration by pathogens or fungi.
3. Plant stomata closure at night.
5. Manufacture of chemicals toxic to pathogens in response to invasion:
 - Inhibit growth of fungi
 - Destroy bacteria.
Plant Disease Prevention

Cultural practices
- Removal of plant debris to prevent fungal growth.
- Removing weeds that can harbor disease.
- Preventing injury to plants from cultivation practices. Injuries allow pathogens to enter plant systems.
- Watering during daylight hours to allow soil to dry.
- Non-disruption of wet plant surfaces to prevent carriage of water-droplet borne diseases.

Plant breeding for resistance
- Developing plants resistant or immune to diseases.
- Develop breeds of plants which secrete pathogen-destroying toxins.

Chemical applications

Fungicides
- Destroy disease organisms before plant invasion.
- Cure plants before pathogens can build up.

Bactericides
- Control, e.g.,
 - Powdery mildew
 - Potato wilt
 - Verticillium wilt

Biological controls
- Strains of fungi used to combat other soil-borne plant diseases.
- Controlling, e.g.,
 - Powdery mildew
 - Potato wilt
 - Verticillium wilt

References

Student Activity

- Plant “ER”
Internet Resources

New, Emerging, and Re-emerging Plant Diseases in the United States
Department of Plant Pathology and the Plant Disease and Insect Clinic of North Carolina State University
http://www.ces.ncsu.edu/depts/ent/clinic/Emerging/intro.htm

Biocontrol of Plant Diseases Laboratory
USDS Agricultural Research Service
http://www.ars-grin.gov/ars/Beltsville/barc/psi/bpdl/bpdl.html
See especially “Background Information on Plant Diseases and Biocontrol: FAQ”

Idaho Plant Disease Reporter
http://www.uidaho.edu/ag/plantdisease/

An Online Guide: 1996 Plant Disease Control
Oregon State University Department of Botany and Plant Pathology
http://www.orst.edu/dept/botany/epp/guide/index.html

Transparency

* The Primary Offense
Student Activity: Plant “ER”

Purpose
- Identify plant diseases by name, symptom, and causal agent, particularly those having an economic impact on the Idaho horticulture industry.

Materials
- From your county Cooperative Extension agent, obtain the list of Extension publications on plant diseases, also available from Agricultural Publications (see below).
- Notebook (recommended)

Procedure
From the publications list, choose and obtain one plant disease publication. Based on the information found in the publication, research the impact of the disease on local growers:
- Formulate a guiding question for your research.
- Generate an hypothesis about what you expect your research to reveal.
- Interview local growers about the effects of the plant disease on their industry.
- Identify the significance of your findings (did your results meet your expectations; e.g., your hypothesis? . . . or did you find information you did not expect to find?)
- Classify your results.
- Communicate your findings in a paper on your research. Begin with a brief abstract. Be sure to describe each individual grower’s situation with the plant disease.
- Give a presentation to the class on your research and results. Accompany your presentation with helpful tables or charts to explain your results. Include a hand-out on points you wish your audience to remember.

Reference
Agricultural Publications
University of Idaho
Moscow, Idaho 83844-2240
(208) 885-7982
The Primary Offense

Viruses

Virus Indexing
Plants are exposed to special susceptible "indicator varieties" to uncover the presence of specific viruses in plant symptoms appear, the tested plant is free of the virus.

Bacteria

Proper Sanitation
Selection of Disease-Free Plants
Culture Indexing
Cuttings from mother plants determined if disease-free by removing sections of tissue and placing in sterile nutrient media, then watched for bacterial or fungal growth.

Fungi

Preventive Soil Drenches of Compatible Fungicides
Environmental Control of Humidity
Immediate Removal of Infected Plants
Place the stages of the Fungi life cycle in their correct order.

____1. Hyphae send out spore-bearing branches from the pant to the outside.

____2. Spores send hyphae into leaf or plant surfaces.

____3. Spores land on leaves or other plant surfaces.

____4. Spores are carried by the wind to begin the cycle again on another host plant.

____5. The leaf wilts and plant cells die.

Fill in the blank

6. Bacteria and viruses spread through ________________________.

List three of the five cultural practices which prevent plant disease.

7. ________________________________

8. ________________________________

9. ________________________________

List at least six symptoms of plant disease.

10. ________________________________

11. ________________________________

12. ________________________________

13. ________________________________

14. ________________________________

15. ________________________________
Matching

____ 16. Bactericides and fungicides A. Nutrient deficiencies or oversupply of nutrients.
____ 17. Abiotic B. Plant disease type
____ 18. Plant breeding for resistance C. Developing plants resistant or immune to disease.
____ 19. Biological controls D. Chemical applications
____ 20. Biotic E. Strains of fungi used to combat other soil-borne plant diseases.
 F. Virus life cycle
 G. Plant cannot take in water or other nutrients.
 H. Causal agent for plant mildew.
Place the stages of the Fungi life cycle in their correct order.

__4__1. Hyphae send out spore-bearing branches from the plant to the outside.

__2__2. Spores send hyphae into leaf or plant surfaces.

__1__3. Spores land on leaves or other plant surfaces.

__5__4. Spores are carried by the wind to begin the cycle again on another host plant.

__3__5. The leaf wilts and plant cells die.

Fill in the blank

6. Bacteria and viruses spread through ______________.
 Answer: contact

List three of the five cultural practices which prevent plant disease.

7. __

8. __

9. __

Answers: removal of plant debris to prevent fungal growth
removing weeds that can harbor disease
preventing injury to plants from cultivation practices
watering during daylight hours to allow soil to dry
non-disruption of wet plant surfaces to prevent carriage of water-droplet borne
diseases

List at least six symptoms of plant disease.

10. __

11. __
12. __
13. __
14. __
15. __

Answers: wilt
rotting plant parts
brown spots on leaves, fruits, or other plant parts
appearance of powdery white substances
discolored or multicolored appearance for lack or chlorophyll
stunted growth
leaf buds, floral parts, or fruit not developing or falling off
twisted stems or leaves
hallucinogenic if ingested
floral parts are weakly colored

Matching
__D__ 16. Bactericides and fungicides

__A__ 17. Abiotic

__C__ 18. Plant breeding for resistance

__E__ 19. Biological controls

__B__ 20. Biotic

A. Nutrient deficiencies or oversupply of nutrients.
B. Plant disease type
C. Developing plants resistant or immune to disease.
D. Chemical applications
E. Strains of fungi used to combat other soil-borne plant diseases.
F. Virus life cycle
G. Plant cannot take in water or other nutrients.
H. Causal agent for plant mildew.
AG. 514 Botany / Horticulture Plant Science

V. Scientific Method Term Project

Goal. Understand how soil is composed of physical and living entities which undergo change and maintain constancy through the interaction of energy and matter.

Performance Objectives. All students will . . .

- Relate the concept of “rate of change” to composting by comparing and contrasting the average rate of decomposition in the natural environment to decomposition in a compost pile.
- Identify the components of soil formation.
- Identify the breakdown rate of different materials appropriate for composting.
- Identify bacteria which aid in decomposition.
- Identify the micro- and macro climatic factors which impact the soil cycle.

Progress Indicators. All students will:

- Measure different rates of heat in an active compost pile, identifying when the three main types of decomposition-aiding bacteria are active.
- Measure the rate of decomposition of selected materials over a period of five days.
- Measure different rates of heat in a selected soil plot, identifying when the three main types of decomposition-aiding bacteria are active.
- Measure the rate of decomposition in the soil plot over a period of five days.
- Record results using a computer spreadsheet program.
- Present findings in the form of graphs indicating the results of recording the heat / bacteria rates of activity and the rates of decomposition between the compost pile and the soil site.
- Document the scientific methods of the study:
 - **State the Problem.** Write a statement describing a problem which might be resolved in researching soil decomposition and composting. The problem may be written as a question.
 - **Gather Information.** Research information on composting, soil composition, bacteria and decomposition, as well as the climatic factors which effect the soil plots studied.
 - **Form an Hypothesis.** Generate an educated guess or idea of the study results.
 - **Collect Data through Experimentation.** Compare the observations of the compost pile with the observations of the soil test plot.

◊ Materials needed:
⇒ 2 liter plastic bottle, clean. See “Bottle Basics” and “Decomposition Column” in *Bottle Biology* (Kendall / Hunt).
⇒ Candy thermometer to test soil bacteria heat and air temperature.
⇒ At least three different materials for one compost pile:
 * Pine needles
 * Grass clippings
 * Weeds
 * Woody materials
 * Wood ashes (exceptions: coal or barbeque charcoal)
 * Paper
 * Kitchen waste (exceptions: meat, dairy or high fats)

◊ At each measure, include record of:

⇒ Ambient temperature - room and outdoor.
⇒ Climate - temperature, wind, precipitation, and sun/cloud ratio.

Notes: Compost pile should not be exposed to an outdoor climate.
Soil plots should be sited in undisturbed areas.

♦ **Analyze Data and Form a Conclusion.** Determine if the results agree with the hypothesis.

♦ **Report Results.** Record the results with a spreadsheet program. Generate graphs comparing the results between the compost pile and the soil study site. Include all variables studied, recording the heat produced, bacteria rates of activity and the rates of decomposition between the compost pile and the soil site. Write a paper documenting the studies and the results.

♦ **Propose a Theory.** Explain the results based on the problem statement and the hypothesis generated. The theory should explain why or how the results occurred.

♦ **Or . . . Identify Variables for Further Research.** Propose studies with introduced variables; i.e. worms to the compost pile, comparing the rate of decomposition to the soil study site, or variables discovered during the course of the research.

References:

AGRICULTURAL SCIENCE AND TECHNOLOGY CURRICULUM

SCIENTIFIC METHOD MATRIX

AG. 514 BOTANY / HORTICULTURE PLANT SCIENCE

Idaho K-12 Science Content Guide and Framework

<table>
<thead>
<tr>
<th>Key - □</th>
<th>Standard I. Habits of the Mind</th>
<th>Standard II. Science Themes</th>
<th>Standard III. Nature of Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section / Activity</td>
<td>Goal A. Science Processes</td>
<td>Goal B. Values</td>
<td>Goal A. Change and Constancy</td>
</tr>
<tr>
<td>List the Reasons for Variation in Types of Soil</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Splash</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exploring Soil</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Root It Out</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examining Roots and Stems</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Root Growth</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select Plants Tolerant to Various pH Ranges</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acids and Bases: Make Your Own pH Indicator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fermentation: Making Kimchee in Soda Bottles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charting Your Course</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Potting Soil and Media

- List the Reasons for Variation in Types of Soil
- Splash
- Exploring Soil
- Root It Out
- Examining Roots and Stems
- Root Growth
- Select Plants Tolerant to Various pH Ranges
- Acids and Bases: Make Your Own pH Indicator
- Fermentation: Making Kimchee in Soda Bottles
- Charting Your Course
<table>
<thead>
<tr>
<th>Key - □</th>
<th>Standard I. Habits of the Mind</th>
<th>Standard II. Science Themes</th>
<th>Standard III. Nature of Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section / Activity</td>
<td>Goal A. Science Processes</td>
<td>Goal B. Values</td>
<td>Goal A. Change and Constancy</td>
</tr>
<tr>
<td>Cooking with Soils: Experiment with Plant Nutrition</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>List Several Soil Mixes Identifying Media Data for Each Soil Mix</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identify the Correct Fertilizers to Add for Various Soil Mixes</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salt Effects on Plants</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Describe the Importance of Sterilizing a Potting Mix</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sterilize a Potting Mix</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Properly Mix Potting Soil</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Fertility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Nutrient Model</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read the Labels</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interpreting a Soil Survey Map</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key - □</td>
<td>Standard I. Habits of the Mind</td>
<td>Standard II. Science Themes</td>
<td>Standard III. Nature of Science</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------</td>
<td>-----------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Section / Activity</td>
<td>Goal A. Science Processes</td>
<td>Goal B. Values</td>
<td>Goal A. Change and Constancy</td>
</tr>
<tr>
<td>Soil Fertility Assignment Sheets #1 through #5</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Soil Fertility

Organic Matter and Fertilizers

<table>
<thead>
<tr>
<th>Activity</th>
<th>Standard I. Habits of the Mind</th>
<th>Standard II. Science Themes</th>
<th>Standard III. Nature of Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Writing the Researcher</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Living in the Soil</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Soil Meditations</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Travelers</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Matchmaker</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decomposition Column</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rot Race: A Decomposition Experiment</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>What Is All that Rot?</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>What’s to Worry?</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Splash</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A Day at the Races</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If I were a Schefflera . . .</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water, Water Everywhere</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Film Can Mysteries: How Dense is Dirt?</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key - □</td>
<td>Standard I. Habits of the Mind</td>
<td>Standard II. Science Themes</td>
<td>Standard III. Nature of Science</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Section / Activity</td>
<td>Goal A. Science Processes</td>
<td>Goal B. Values</td>
<td>Goal A. Change and Constancy</td>
</tr>
<tr>
<td>Using the Textural Triangle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Determine Soil Textural Class by Mechanical Analysis</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Determine Soil Textural Class by Feel</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studying Soil Samples</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Origin and Meaning of Color in Soil</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>What Good is Compost?</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worm Composting: Never Underestimate the Power of a Worm</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Organic Matter and Fertilizers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Growth Regulators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Sweeter the Rose</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Taking Root / Taking Off?</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>The Amazing Technicolor Test</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Tropisms</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>The Hypocotyl Hypothesis</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>The Crucifer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross</td>
<td>Key - □</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Section / Activity</td>
<td>Standard I. Habits of the Mind</td>
<td>Standard II. Science Themes</td>
<td>Standard III. Nature of Science</td>
</tr>
<tr>
<td></td>
<td>Goal A. Science Processes</td>
<td>Goal B. Values</td>
<td>Goal A. Change and Constancy</td>
</tr>
<tr>
<td>Investigating Seeds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Film Can Germination</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seed Maturation and Dispersal</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Seedy Character</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Development of Seed Parts into Young Plants</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Germination</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seed Power</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growing, Growing, Gone</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gardening Systems</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Film Can Wick Pots</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottle Base Reservoir</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TerrAqua Bottle</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottle Cap Gardens</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Film Can Garden</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grow Bucket</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Growth</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>It’s Getting Stuffy in Here</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key - □</td>
<td>Standard I. Habits of the Mind</td>
<td>Standard II. Science Themes</td>
<td>Standard III. Nature of Science</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------</td>
<td>-----------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Section / Activity</td>
<td>Goal A. Science Processes</td>
<td>Goal B. Values</td>
<td>Goal A. Change and Constancy</td>
</tr>
<tr>
<td>Care and Transplanting of Seedlings</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Environmental Factors of Plant Production</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modifying the Atmosphere</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>The Station Creation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keeping Track</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I'm the Hottest</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>A Ravishing Radish Party</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A Shoebox of Sunshine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A Journey to Different Lands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Asexual Propagation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check It Out!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design a Plant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propagation and Cuttings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taking Root: Propagating from Cuttings</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Propagation by Layering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting Plants by Layering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propagation by Separation and Division</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perennial Division - Making the Cut!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key - □</td>
<td>Standard I. Habits of the Mind</td>
<td>Standard II. Science Themes</td>
<td>Standard III. Nature of Science</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------</td>
<td>-----------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Section / Activity</td>
<td>Goal A. Science Processes</td>
<td>Goal B. Values</td>
<td>Goal A. Change and Constancy</td>
</tr>
<tr>
<td>Culturing Plants from Embryonic Plant Tissue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propagation by Budding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demo the T-Bud and Patch Bud</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propagation by Grafting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demonstrating the Whip and Tongue and the Cleft Grafts</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Plant Identification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In Search of Inflorescence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identify a Selection of Plants; Write a Basic Description</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Pests and Their Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Best Offense is a Good Defense</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oh Deer!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birds of Prey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weeds and Their Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travelin’ Plants</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adapt-a-Seed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Who Fits Here?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key - □</td>
<td>Standard I. Habits of the Mind</td>
<td>Standard II. Science Themes</td>
<td>Standard III. Nature of Science</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Section / Activity</td>
<td></td>
<td>Goal A. Change and Constancy</td>
<td>Goal C. Models, Scale, and Structure</td>
</tr>
<tr>
<td>Insect-Watching</td>
<td>Goal A. Science Processes</td>
<td>Goal B. Systems and Interactions</td>
<td>Goal A. Science and Technology in Society</td>
</tr>
<tr>
<td>Pesticides and Eggshell Thinning</td>
<td>Goal B. Values</td>
<td>Goal B. Systems and Interactions</td>
<td>Goal B. History and Cultural Perspective</td>
</tr>
<tr>
<td>One-Two Pest Punch</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beneficial and Non-Beneficial Insects

Insect-Watching	4
Pesticides and Eggshell Thinning	4
One-Two Pest Punch	4

Plant Disease Identification and Control

| Plant “ER” | |
| | 4 |
Agricultural Science and Technology

Ag 514

Botany / Horticulture Plant Science

Additional Resources

Supplies

Carolina Science and Math
(800) 334-5551
Carolina Biological Supply Company
2700 York Road
Burlington, NC 27215
USA

Educational Products
Life, Earth, & Environmental Sciences
Forestry Suppliers, Inc.
P.O. Box 8397
Jackson, MS 39284-8397
(800) 647-5368
(800) 543-4203 (fax)

Nature Watch
9811 Owensmouth Avenue #2
Chatsworth, CA 91311
(800) 228-5816
(800) 228-5814 (fax)
E-mail: Nature wat@aol.com

References

The Concise Oxford Dictionary of Botany
Michael Allaby, Ed.
Oxford University Press
Walton Street, Oxford, UK
The Dictionary of Ecology and Environmental Science
Henry W. Art, Gen. Ed.
Henry Holt and Company
New York, New York, USA

Merriam-Webster’s Collegiate Dictionary
Merriam-Webster, Incorporated
Springfield, Massachusetts, USA

Activities

The Microcosmos Curriculum Guide to Exploring Microbial Space
Boston University
and
Garden of Microbial Delights: A Practical Guide to the Subvisible World
Dorion Sagan and Lynn Margulis
from
Kendall / Hunt Publishing Company
4050 Westmark Drive
P.O. Box 1840
Dubuque, IA 52004-1840

Investigating Plants: Hands-On, Low-Cost Laboratory Exercises in Plant Science
and
Learning Biology with Plant Pathology
from
National Association of Biology Teachers
11250 Roger Bacon Drive #19
Reston, Virginia 20190-5202
(800) 406-0775
(703) 435-5582 (fax)

Media Catalogs

AAVIM
AgriScience Catalog
Books/Videos/Computer Software/CD-Rom
220 Smithonia Road
Winterville, GA 30683
(800) 228-4689
(706) 742-7005 (fax)
Newer Editions of Texts Referenced

Recommended Texts

Additional Internet Resources

General Technique Sheets
National Science Teachers Association
http://www.gsh.org/nsta_scripts/SSC_Techs.idc?MU_ID=901
(See Technique Sheets: “Graphing Experimental Data,” “How to Construct a Line Graph,” and “How to Construct a Bar Graph” included with the introduction of this unit.)