Groundwater Policy in the Western U.S.

2001 University of Idaho Law Review Symposium

Denise D. Fort
UNM School of Law
fortde@law.unm.edu

Outline

- Groundwater Mining: What is the Policy?
- A global perspective
- New Mexico examples
 - City of Albuquerque
 - Navajo-Gallup
 - Eastern New Mexico
- Rescue Projects
- Governance

source: Center for Environmental Systems Research; found at http://www.worldwatercouncil.org

source: GWSP Digital Water Atlas (2008). Map 40: Climate Moisture Index (V1.0); http://atlas.gwsp.org. Water availability as function of climate

Blue Water Consumption on Cropland

source: GWSP Digital Water Atlas (2008). Map 64: Blue Water Consumption on Cropland (V1.0); http://atlas.gwsp.org.

Source: U.S. Geological Survey, 1984, National Water Summary 1983-Hydrologic events and issues: U.S. Geological Survey Water-Supply Paper 2250

NM Overview: Climate and Groundwater

- Climate: arid to semiarid
- Groundwater use:
 - 87% of drinking water
 - Irrigation (esp. alfalfa)
- No charge for use
- Statewide regulation

Average Annual Precipitation New Mexico

Period: 1961-1990

This map is a plot of 1961-1990 annual average precipitation contours from NOAA Cooperative stations and (where appropriate) USDA-NRCS SNOTEL stations. Christopher Daly used the PRISM model to generate the gridded estimates from which this map was derived; the modeled grid was approximately 4x4 km latitude/longitude, and was resampled to 2x2 km using a Gaussian filter. Mapping was performed by Jenny Weisburg. Funding was provided by USDA-NRCS National Water and Climate Center.

City of Albuquerque: Setting

- North-central NM
- Underlying Santa Fe Basin Aquifer
- Recharge:
 - Mountain runoff and infiltration
 - Rio Grande River and its tributaries

City of Albuquerque: History

- Pre-European contact: Indian Pueblos
 - Irrigation ditches used as early as A.D. 1000
- 1700s: Spanish settlements
 - Surface water reliance for irrigation and domestic uses
 - Ditches and possibly shallow wells
- WWII: Kirtland AFB and atomic weapons complex
 - Accelerated recent growth
 - Eight-fold population increase since WWII

City of Albuquerque: History

- Growth enabled by groundwater use
- 1875: 1st modern municipal well
- 1950s: several municipal wells went dry
 - Pumping continued on belief that aquifer size was equal to that of Lake Superior

City of Albuquerque: Early Groundwater Policy

- 1950s shrinking supply led to:
 - Federal approval to import surface water from another basin
 - Increased rates
 - State and Federal \$\$ for new diversion
- 1956 state administrative control:
 - "Declaration" of Rio Grande Basin groundwater
 - Groundwater and surface water believed to be directly linked; needed surface water for downstream compact obligations

City of Albuquerque: Recent Groundwater Policy

- 2001: New groundwater permits must be offset by acquiring/retiring surface water rights
- 2007: Groundwater remained only municipal drinking water source

City of Albuquerque: Solutions

- Conservation
 - 30% reductionbetween 1994 and2004
- Water imports
 - Interbasin transfer from ColoradoRiver
 - 1950s 1971
 construction
 - 2008 SJ-C water delivery began

map source: Albuquerque's Environmental Story: Educating for a Sustainable Community (2006). http://www.cabq.gov/aes/s5water.html

City of Albuquerque: Policy Gaps

- Is water delivery from another basin hundreds of miles away the best solution?
- Will the City of Albuquerque be able to manage population growth, climate change (increased drought), and endangered species protection?

Navajo-Gallup: Setting

- Western NM
- Southern portion of Navajo Reservation
- 23,000 Gallup residents
- 100,000 Navajo in surrounding areas

Navajo-Gallup: Water Use

- Gallup
 - 100% dependent on groundwater
 - Extremely limited recharge
 - Drastically declining water levels
 - Last 10 years: 200 ft
 - Since 1970s: 800 ft
 - 9 producing wells (down from 15)
- Navajo Reservation
 - 40% + households haul all their domestic water
 - 80% + poverty rate

Navajo-Gallup: Solutions

- 2009: Omnibus Public Lands Management Act
- Navajo-Gallup Water Supply Project
 - 260-mile pipeline
 - 24 pumping stations
 - 2 water treatment plants
 - \$864,000,000
 - 37,376 AF yearly transfer from San Juan River

JICARILLA APACHE INDIAN RESERVATION

map source: Water Matters! Navajo-Gallup Water Supply Project. http://uttoncenter.unm.edu/pdfs/WM_Navajo-Gallup_Project.pdf

Eastern New Mexico: Setting

- Overlies western edge of Ogallala Aquifer
- Clovis and Portales predict exhaustion of usable groundwater by 2040
- Clovis wells from 28 to 54 to maintain production in last 10 years

Eastern New Mexico: Solutions

- 2009: New groundwater permits closed for large users
- 2009: Omnibus Public Lands Management Act
- Eastern NM Rural System authorization
 - 180-mile pipeline
 - 75% Federal funding, up to \$327,000,000
 - 16,450 AF/year transfer from Ute Lake on Canadian River
 - Failed to address reduction of groundwater use by agriculture

Public Interest

- Water law needs to include public interest
 - Rights of individual users may come at the expense of public interest
 - Sustainability and long-term solutions much broader than interest of single permit holder
- Consequences of mining to future:
 - Higher costs for water, pumping, and treatment
 - Energy intensive solutions
 - Creation of ghost towns and abandonment of population centers
- "New water": uncertain, costly, short term

Policy Changes: Broader Approach

- Groundwater policy change is ultimately linked to:
 - Surface water use/policy
 - Population growth
 - Addressing climate change, carbon emissions
 - Economics (local, national, global)
 - Agricultural practices and what we eat
- Need expanded definitions
 - Think like ecologists in terms of systems and interconnectedness

Policy Changes: Sustainability

- When is depletion of non-renewable resource acceptable?
- Sustainable? Leaving next generations with less than we have.

Policy Changes: End Rescue Projects

- Rescue projects:
 - Relieve local and state decision-makers from mismanagement consequences
 - Remove conservation incentives, providing instead political rewards for keeping water costs low, encouraging new development, and creating jobs through infrastructure projects

Policy Changes: Better Governance

- Use lessons learned from surface water
 - Include multiple stakeholders
 - Regional water management
- Federal Aquifer Commission for interstate aquifers?
 - Regulation of drawdown rates
 - Water quality oversight
 - Fee setting
- More scientific data

Conclusions

- Future of West should not be built on mining of groundwater
- Find sustainable, long-term solutions: efficiency, conservation, agricultural forebearance
- Better governance in which community addresses
 - Purposes of use
 - Time period over which groundwater is used

Denise Fort Professor of Law