This is your university

RSS Feed Icon IBEST Recent News

Location

IBEST

Institute for Bioinformatics and Evolutionary Studies
Life Science South | Room 441
PO Box 443051
Moscow, Idaho 83843-3051
Phone: (208) 885-9076
Fax: (208) 885-5003
IBEST@uidaho.edu

IBEST Faculty

Larry Forney
Larry J. Forney, Ph.D.
Distinguished Professor
Director of IBEST
The research done in Dr. Larry Forney’s laboratory centers on the diversity and distribution of prokaryotes. Both field and laboratory studies are done to explore the temporal and spatial patterns of community diversity, as well as factors that influence the dynamics of inter- and intra-species competition. In addition research is done to understand how spatial structure and the resulting environmental gradients influence the tempo and trajectory of adaptive radiations in bacterial species and the maintenance of diversity. Most of these studies are highly interdisciplinary in nature, and done in collaboration with mathematicians, statisticians, computer scientists, geologists, environmental engineers, physicians, and clinical scientists.
» View Larry Forney's profile
Zaid Abdo
Zaid Abdo, Ph.D.
Associate Professor
Here are the areas I am interested in, listed in order of interest: Bioinformatics, Statistical Genetics, Bayesian Statistics, Mathematical Biology, Stochastic Processes & Optimization
» View Zaid Abdo's profile.
Celeste Brown
Celeste Brown, Ph.D.
Research Professor
Dr. Celeste Brown has two research areas, how gene regulation changes in response to selection, and the evolution of disordered proteins. The link between these two disparate areas is that often proteins involved in gene regulation are disordered. The gene regulation studies involve laboratory-based research and the disordered protein studies involve bioinformatics approaches.
» View Celeste Brown's Profile
Dr. James Foster
James A. Foster, Ph.D.
Professor
Dr. Foster’s current research is focused on characterizing evolutionarily permissible ecological structures in microbial ecosystems and on developing bioinformatics for very large sequence datasets. He continues to examine simulations of evolutionary processes to design complex artifacts and optimize functions. He works in close collaboration with biologists, statisticians, mathematicians, and computer scientists.
» View James Foster's profile
Gao
Frank Gao, Ph.D.
Professor
Research Interests: Interface of Probability Theory, Functional Analysis and Convex Geometry. In particular, small deviations of Gaussian processes; metric entropy of function spaces and operators; and intrinsic volumes of convex bodies.
» View Frank Gao's profile.
Dr. Luke Harmon
Luke J. Harmon, Ph.D.
Associate Professor
Our research investigates ecological and evolutionary aspects of adaptive radiations. Current projects span a wide range of taxa and time scales, including adaptive radiation in E. coli biofilms, evolution of island lizards in the Caribbean and Indian Ocean, and macroevolutionary dynamics of vertebrates. You will find more information about all of these projects on the research and publications pages.
» View Luke Harmon's Profile
Robert Heckendorn
Robert Heckendorn, Ph.D.
Associate Professor
Robert works with anything that evolves. His research has included bioinformatics work in phylogenetics, new methods of Markov Chain Monte Carlo sampling, and the simulation of the geneics of the onset of breast cancer. He is currently working on evolutionary approaches to agent based simulations of international conflict and the cooperative behavior of swarms of thousands of robots.
» View Robert Heckendorn's profile.
Paul Hohenlohe
Paul Hohenlohe, Ph.D.
Assistant Professor
Our research focuses on the genomic architecture of evolving populations, developing sophisticated theory and analytical tools to harness the power of modern DNA sequencing technology. We address basic questions of evolutionary biology as well as applications to conservation and cancer biology.
» View Paul Hohenlohe's profile
Dr. Patrick J. Hrdlicka
Patrick J. Hrdlicka, Ph.D.
Associate Professor
Renfrew 313W | 208-885-0108
Research: DNA biotechnology, nucleic acid based therapeutics/diagnostics, biological applications of nanomaterials, synthetic bioorganic chemistry including carbohydrates, nucleosides and oligonucleotides.
» View Patrick Hrdlicka's profile
Paul Joyce
Paul Joyce, Ph.D.
Dean of College of Science & Professor
My research focuses on developing and rigorously testing statistical methods and stochastic models to describe genetic phenomena. These include models and methods to: predict how viruses adapt; show the effect of antibiotic resistance genes encoded on plasmids; predict ancestral relationships among species; and to understand the ecological structure of bacterial communities in biofilms. This broad focus has lead to collaborations with researchers in phylogenetics, population genetics, theoretical ecology, mircobial ecology, experimental evolution, conservation genetics, and the list is growing.
» View Paul Joyce's profile.
Axel Krings
Axel Krings, Ph.D.
Professor
Research Areas: Fault tolerant systems, survivable systems, computer networks, critical infrastructure protection, scheduling theory
» View Axel Krings' profile
Steve Krone
Steve Krone, Ph.D.
Professor
Research interests: Stochastic Processes and Mathematical Biology; especially interacting particle systems, population genetics and evolutionary biology, coalescent theory, spatial models in (microbial) ecology and epidemiology, combining experimental and theoretical approaches, diffusion processes and differential equations.
» View Steve Krone's profile.
McGuire M
Mark McGuire, Ph.D.
Interim Department Head/ Professor

(208) 885-7683 | mmcguire@uidaho.edu
» View profile
Craig Miller
Craig Miller, Ph.D.
Research Assistant Professor
» crmiller@uidaho.edu
Gordon Murdoch
Gordon Murdoch, Ph.D.
Associate Professor

(208) 885-7370 | gmurdoch@uidaho.edu
» View profile
Dr. Barrie Robison
Barrie Robison, Ph.D.
Associate Professor
My general research interests lie at the interface between genomics, evolutionary biology, and fisheries biology. Specific areas of research emphasis in my lab include the genetic architecture of complex traits, the evolution of locally adaptive phenotypes, and genomic analysis of behavioral variation in fish. I employ two study systems to investigate these issues, the rainbow trout and the zebrafish.
View Barrie's profile
» brobison@uidaho.edu
Terry Soule
Terry Soule, Ph.D.
Professor
Research Areas: Evolutionary computation, biological modeling
» View Terry Soule's profile
Dr. Deborah Stenkamp
Deborah Stenkamp, Ph.D.
Professor
Stenkamp’s research interests center on the examination of cellular and molecular mechanisms of vertebrate retinal development and regeneration, with a specific focus on photoreceptor differentiation, using zebrafish as the primary experimental model.
» View Deborah Stenkamp's profile
Dr. Jack Sullivan
John "Jack" M. Sullivan, Ph.D.
Professor
Our understanding of the processes of nucleotide substitution (DNA sequence evolution) has been expanding greatly over the last 10 years. Furthermore, it has become apparent that ignoring such processes as heterogeneity of base composition, substitution pattern, and rate variation among nucleotide sites can compromise attempts to estimate phylogeny from DNA sequence data. Therefore, model-based analyses of DNA sequence data have become increasingly wide spread because such approaches afford the investigator the opportunity to account for such processes explicitly.
» View Jack Sullivan's Profile
David Tank
David C. Tank
Assistant Professor & Director, Stillinger Herbarium
I am a plant systematist and am broadly interested in the investigation of the patterns and processes that shape plant biodiversity. In general, my research is focused on the use of molecular methods to reconstruct phylogenetic relationships in plants and the application of phylogenetic methods to understand plant evolution. The evolutionary causes and consequences of processes such as hybridization, polyploidy, pollination biology, biogeography, rapid diversification, and niche evolution can only be understood in light of a robust phylogenetic hypothesis, and these hypotheses are a necessary component of modern taxonomic treatments and classification systems. Research in my lab is directed at multiple levels of plant phylogeny and current projects range from comparative phylogeography of the Pacific Northwest inland rainforest communities, to the study of species boundaries and diversification among very closely related species, to patterns of diversification among some of the major lineages comprising the plant tree of life.
» View David Tank's faculty profile
Eva Top
Eva Top, Ph.D.
Professor
Director of BCB
My research is currently focused on the evolution and ecology of plasmids that transfer to and replicate in a broad range of bacteria. Plasmids are mobile genetic elements found in most bacteria. Because they readily transfer between different types of bacteria under natural conditions, they play an important role in rapid bacterial adaptation to changing environments. A good example is the current epidemic of multiple antibiotic resistance in human pathogens, which is largely due to the spread of multi-drug resistance plasmids. Although plasmid-mediated gene transfer is now recognized as a key mechanism in the alarming rise of antibiotic resistance, little is known about their host range, their ability to invade bacterial populations in the absence of selection, and their genetic diversity. We are addressing these questions using various Proteobacteria and plasmids as model systems.
» View Eva Top's Profile
Holly Whichman
Holly A. Wichman, Ph.D.
University Distinguished Professor
The Wichman Lab studies viruses and their subcellular relatives, transposable elements. These two lines of research are united by a molecular approach and a strong evolutionary context. L1 elements have been active in mammals for over 150 million years and make up about 20% of the genome. Most of the copies in the genome are ancient molecular fossils, so it is a challenge to sift through all of the old copies to find those that have been recently active.
View Holly's profile
» hwichman@uidaho.edu
Christopher Williams
Christopher Williams, Ph.D.
Department Chair and Professor
Affiliate Professor of Bioinformatics and Computational Biology
My research interests are on problems in statistical genetics, biostatistics, and statistical methods applied to issues in natural resources. One of the topics that I work on is the analysis of human twin data. Another area of interest is the estimation of disease prevalence from various types of data, such as in groups of fish that are collected and have their tissue pooled to test for disease status.
» View Chris Williams' profile
Marty Ytreberg
F. Marty Ytreberg, Ph.D.
Associate Professor
Developing computational methods for proteins and using these approaches to understand the underlying biophysical mechanisms that define protein structure, function and evolution.
» View Marty Ytreberg's profile