University of Idaho - I Banner
A student works at a computer

VandalStar

U of I's web-based retention and advising tool provides an efficient way to guide and support students on their road to graduation. Login to VandalStar.

Contact

University of Idaho

Physical Address:
E. J. Iddings Agricultural Science Laboratory, Rm 242
606 S Rayburn St

Mailing Address:
875 Perimeter Drive MS 2333
Moscow, ID 83844-2333

Directions

Fangming Xiao

Fangming Xiao

Professor

Office

Ag Biotech, Room 303

Phone

208-885-0120

Mailing Address

Department of Plant Sciences
University of Idaho
875 Perimeter Drive MS 2333
Moscow, ID 83844-2333

We use a combination of molecular biology, biochemistry and genetics to understand the molecular basis of 1) plant-pathogen/pest interactions, 2) plant response to abiotic stress, and 3) plant growth and senescence. The long-term goal of our research is to use the gained knowledge to develop crops with improved agricultural traits.

  1. Plant-pathogen/pest interactions. The Prf-mediated defense signaling in tomato: The NLR type Prf resistance protein controls defense signaling by manipulation of defense-related transcription factors in tomato. We seek to determine whether Prf, upon activated by the recognition of avirulent effectors AvrPto and AvrPtoB, interferes with the ubiquitination of transcription factors thereby stabilizing them and enhancing their transcriptional potentials. Molecular basis of nematode parasitism: investigate how the nematode effector RHA1B (a ubiquitin ligase) manipulates host physiology to establish the feeding site (syncytium) and identify its putative host targets, particularly susceptibility genes and generate resistance plants via loss of susceptibility using the CRISPR approach. Nematode-associated molecular pattern (NAMP)-mediated immune signaling and resistance: investigate the recognition of NAMP Ascarosides by host pattern recognition receptors (PRRs) and immune signal activation and transduction in Arabidopsis, potato and tomato.
  2. Plant response to abiotic stress. The mechanistic basis by which NAC transcription factors regulate responses to abiotic stress (cold, drought and high salinity) — what are the direct target genes of NAC transcription factors and how they are regulated, particularly via ubiquitination, in response to stress and how to manipulate them towards improved tolerance to abiotic stress.
  3. Plant growth and senescence. Investigate the role of a novel transcription factor BSD1 in vegetative growth and its regulation by SINA ubiquitin ligases — what are genes/signaling pathways mediated by this regulatory SINA-BSD1 module and how they contribute to growth and development in tomato?

  • Huang L, Yuan Y, Lewis C, Kud J, Kuhl JC, Caplan A, Dandurand L-M, Zasada I, Xiao F* (2023). NILR1 perceives a nematode ascaroside triggering immune signaling and resistance. Current Biology. In press.
  • Lu H, Niu X, Fan Y, Yuan Y, Huang L, Zhao B, Liu Y, Xiao F* (2023) The extensin protein SAE1 plays a role in leaf senescence and is targeted by the ubiquitin ligase SlSINA4 in tomato. J Exp Bot. 2023 Jun 27:erad242. doi: 10.1093/jxb/erad242. Online ahead of print.PMID: 37368909
  • Lu H, Fan Y, Yuan Y, Niu X, Zhao B, Liu Y, Xiao F* (2023) Tomato SlSTK is involved in glucose response and regulated by the ubiquitin ligase SlSINA4. Plant Sci. 2023 Jun;331:111672. doi: 10.1016/j.plantsci.2023.111672. Epub 2023 Mar 13.PMID: 36921631
  • Niu X, Lu H, Fan Y, Wang W, Yuan Y, Hawkins M, Zhang J, Ye Z, Miao M, Liu Y, Xiao F* (2022) Manipulation of the transcription factor SlNAC1 for improved tolerance to abiotic stress in tomato. Plant Cell Environ. 2022 Dec;45(12):3537-3550. doi: 10.1111/pce.14437. Epub 2022 Sep 30
  • Kud J, Pillai SS, Raber G, Caplan A, Kuhl JC, Xiao F, Dandurand LM. (2022) Belowground Chemical Interactions: An Insight Into Host-Specific Behavior of Globodera spp. Hatched in Root Exudates From Potato and Its Wild Relative, Solanum sisymbriifolium. Front Plant Sci. 2022 Jan 12;12:802622. doi: 10.3389/fpls.2021.802622. eCollection 2021.
  • Solo N, Kud J, Dandurand LM, Caplan A, Kuhl JC, Xiao F. (2021) Characterization of Superoxide Dismutase from the Potato Cyst Nematode, Globodera pallida. Phytopathology. 2021 Nov 11:PHYTO01210021R. doi: 10.1094/PHYTO-01-21-0021-R.
  • Fan Y, Niu X, Huang L, Gross R, Lu H, Hawkins M, Yuan Y, Miao M, Liu Y, Xiao F* (2020). A novel BSD domain-containing transcription factor controlling vegetative growth, leaf senescence and fruit quality in tomato. J Exp Bot. 2020 Aug 26:eraa393. doi: 10.1093/jxb/eraa393.
  • Wixom AQ, Casavant NC, Sonnen TJ, Kuhl JC, Xiao F, Dandurand LM, Caplan AB (2020). Initial responses of the trap-crop, Solanum sisymbriifolium, to Globodera pallida invasions. Plant Genome. 2020 Jul;13(2):e20016. doi: 10.1002/tpg2.20016. Epub 2020 Apr 16.
  • Gross R, Zhang S, Wei L, Caplan A, Kuhl J, Dandurand L-M, Wang X, Xiao F* (2020). The Globodera pallida effector GpPDI1 is a functional thioredoxin and triggers defense-related cell death independent of its enzymatic activity. Phytopathology. 2020 Nov;110(11):1838-1844. doi: 10.1094/PHYTO-02-20-0038-R. Epub 2020 Sep 10.
  • Zhang S, Li C, Ren H, Zhao T, Li Q, Wang S, Zhang Y, Xiao F*, Wang X* (2020). BAK1 mediates light Intensity to phosphorylate and activate catalases to regulate plant growth and development. Int J Mol Sci. 2020 Feb 20;21(4). pii: E1437. doi: 10.3390/ijms21041437.
  • Kud J., Solo N, Caplan A, Kuhl JC, Dandurand L-M*, Xiao F* (2019). In situ hybridization of plant-parasitic nematode Globodera pallida juveniles to detect gene expression. Bio-protocol 9(18): e3372. DOI: 10.21769/BioProtoc.3372.
  • Kud J., Wang W, Yuan Y, Caplan A, Kuhl JC, Dandurand L-M*, Xiao F* (2019). Functional characterization of RING-type E3 ubiquitin ligases in vitro and in planta. J Vis Exp. (154), e60533, doi:10.3791/60533 (2019).
  • Diaz-Granados A, Sterken MG, Overmars H, Ariaans R, Holterman M, Pokhare SS, Yuan Y, Pomp R, Finkers-Tomczak A, Roosien J, Slootweg E, Elashry A, Grundler FMW, Xiao F, Goverse A, Smant G (2019). The effector GpRbp-1 of Globodera pallida targets a nuclear HECT E3 ubiquitin ligase to modulate gene expression in the host. Mol Plant Pathol. 2019 Nov 22. doi: 10.1111/mpp.12880.
  • Levy JG, Gross R, Mendoza Herrera MA, Tang X, Babilonia K, Shan L, Kuhl J, Dibble M, Xiao F, Tamborindeguy C (2019). Lso-HPE1, an effector of Candidatus Liberibacter solanacearum can repress plant immune response. Phytopathology. 2019 Nov 7. doi: 10.1094/PHYTO-07-19-0252-R.
  • Kooliyottil R, Dandurand LM, Kuhl JC, Caplan A, Xiao F, Mimee B, Lafond-Lapalme J (2019). Transcriptome analysis of Globodera pallida from the susceptible host Solanum tuberosum or the resistant plant Solanum sisymbriifolium. Sci Rep. 2019 Sep 13;9(1):13256. doi: 10.1038/s41598-019-49725-6.
  • Kud J, Wang W, Gross R, Fan Y, Huang L, Yuan Y, Gray A, Duarte A, Kuhl JC, Caplan A, Goverse A, Liu Y, Dandurand LM*, Xiao F* (2019). The potato cyst nematode effector RHA1B is a ubiquitin ligase and uses two distinct mechanisms to suppress plant immune signaling. PLoS Pathog. 2019 Apr 12;15(4):e1007720. doi: 10.1371/journal.ppat.1007720. eCollection 2019 Apr.

Contact

University of Idaho

Physical Address:
E. J. Iddings Agricultural Science Laboratory, Rm 242
606 S Rayburn St

Mailing Address:
875 Perimeter Drive MS 2333
Moscow, ID 83844-2333

Directions