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Abstract 

 
E-government and corporate servers will require higher performance and security as usage 
increases. Zero copy refers to a collection of techniques which reduce the number of copies of 
blocks of data in order to make data transfer more efficient. By avoiding redundant data copies, 
the consumption of memory and CPU resources are reduced, thereby improving performance of 
the server. To eliminate costly data copies between user space and kernel space or between two 
buffers in the kernel space, various schemes are used, such as memory remapping, shared 
buffers, and hardware support.  However, the advantages are sometimes overestimated and new 
security issues arise. This paper describes different approaches to implementing zero copy and 
evaluates these methods for their performance and security considerations, to help when 
evaluating these techniques for use in e-government applications. 
 
Keywords: Zero Copy, Network Security, Security/Performance Tradeoffs 

 
 
1. INTRODUCTION 
In addition to growth of corporate servers, there has been tremendous interest and growth in the 
support of e-government services. This includes remote access to public information, databases, 
forms, guidance, training materials as well as access to personal information such as treasury 
holdings, social security, income taxes, and government benefits. In addition, e-government also 
supports internal access to government documents, support of paperless offices and workflow 
improvement and communication support for critical services including first responders in 
emergencies. Cost-effective e-government solutions will require use of shared organizational 
servers, such as cloud servers, and high performing computers that can provide users with timely 
and secure access to information. Unfortunately, we have found that there is often a disconnect 
between marketed performance-improving solutions and security needs. This paper addresses 
one “performance-improving” technology with respect to security needs. We have found that 
some of the solutions that have been proposed and implemented will not work with security 
technologies, such as encryption. The understanding of the impact of performance-improving 
solutions on security is important when comparing vendors' performance benchmarks and claims 
when evaluating systems for purchase, and is important for developers to understand when 
making implementation decisions. 
 
Therefore, the intent of this paper is to bring to light an example of security concerns that we 
believe should be addressed in the development process and in security requirements such as 
those specified by US Federal Acquisition Regulation (FAR) Part 39.101 and OMB Circular A-130 
while supporting e-government efforts such as those specified in the “E-Government Act of 2002”. 
Similar regulations exist in other countries or in corporate policies. Corporations and governments 
in the market for servers should pay careful attention to performance benchmarks developed by 
vendors. 
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For example, the FAR Part 39.101 requires that agencies identify their requirements pursuant to: 
best management practices for energy-efficient management of servers and Federal data centers 
and shall include the appropriate information technology security policies and requirements. 
Energy-efficient management often translates into performance, since a data-center can use a 
lesser number higher performing servers to do the same work, and with less energy. As we 
discuss in this paper, we need to be aware of the tradeoff between some performance 
technologies and security technologies. We believe there is a need for the development of a set 
of benchmarks or at least checklists/configuration guides that enable the acquisition officers and 
developers to make the most appropriate choice of technologies given the security needs of the 
application environment. 
 
1.1 Performance and Security 
As demand for higher performance computers grew, CPU designs developed from single core to 
dual-core, quad-core or even hexa-core. However, a quad-core processor does not indicate that 
the performance of the overall system is four times the performance of a single core processor. 
The performance of the system is limited by many other factors, such as access to system 
memory. According to Brose [1], CPU processing power improves about 50% each year, while 
the memory only has an average 35% increment at the same amount of time

1
. Improvement in 

memory usage is increasingly a critical factor for system performance. This is especially 
important for network applications, such as severs, which transfer a lot of data, and cannot 
benefit from cache size increases. 
 
Servers used by industry and government are critical not only for their performance, but also their 
security. To make the government more transparent, web servers for the public are used to 
inform the public about new policies and the latest news from the government. What's more, the 
servers used among governmental employees must be secure enough to avoid leaking 
information and to prevent hacking. Therefore, severs used by government must ensure their 
efficiency and security. 
 
Traditionally, in server environments, such as servers used in e-government, when sending data 
to a network, data is loaded from disk and transferred to a network card buffer. The whole 
procedure consumes a lot of CPU cycles and memory bandwidth, for data must be copied 
between application memory space and kernel memory space. However, most of these data 
copies are redundant and can be minimized by implementing zero copy techniques. Zero copy is 
a name used to refer to a variety of techniques which help reduce useless memory accesses, 
usually involving elimination of data copying. By implementing zero copy, less data copies are 
needed when data is transferred between buffers. This helps reduce the number of unnecessary 
memory accesses and CPU consumption, and therefore enhance overall system performance. 
 
1.2 Zero Copy for Performance 
In recent years, there have been a number of studies regarding zero copy and different kinds of 
zero copy techniques have been applied. Zero copy can be classified into two groups: (1) reduce 
data copies between devices (disk or network card) and kernel buffers, and (2) reduce data 
copies between kernel buffers and application buffers. 
 
Typically, data copies between devices and kernel buffers can be reduced by using DMA (Direct 
Memory Access). DMA allows special purpose hardware to read or write main memory without 
involving the CPU, which greatly reduces CPU consumption and also eliminates redundant data 
copies between device and kernel buffers.  
 
Zero copy can also reduce the number of copies between user memory space and kernel 
memory space. Several different approaches have been proposed to solve this problem, and they 
are all called zero copy. For example, memory mapping is used to map the user buffer to the 

                                                   
 
1
 This means that relative to CPU speeds, memory performance is cut in half every 7 years. 
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kernel buffer; in LyraNET, a modified sk_buff structure can be used to eliminate data copies; 

and buffers can be shared, so stored data can be referenced via pointers. In addition, some 
system calls in Linux support zero copy by reducing data copies such as the sendfile() and  

splice() system calls. Instead of copying data, descriptors are appended to buffers in sendfile. 

The system call splice() sets up a data transfer path between different buffers in kernel 
memory. 
 
However, in addition to performance benefits of zero copy techniques, it is important to 
understand the security implications of using those techniques. This is important for commercial 
servers as well as e-government systems. 
 
Zero copy helps reduce the number of data copies and context switches which improves the CPU 
performance. But it also causes some new problems that we have to understand. This paper 
focuses on analyzing different zero copy techniques which are used to reduce the data copies in 
TCP/IP transmission, which are being implemented in many commercial servers which could end 
up being used by government offices to gain better performance. 
 
The remainder of this paper evaluates the use of zero copy for performance in secure 
environments as is laid out as follows. The traditional data transfer approach and security issues 
are presented in Section 2 and zero copy techniques are described in Section 3. Problems 
caused by zero copy are examined in Section 4; this section also discusses security issues 
relating to zero copy techniques, which will help developers and acquisition offices in determining 
the appropriate use of this technology. 
 

2. BACKGROUND 
 
2.1 Traditional Data Transfer Method 
Traditionally, if a user/server application wants to send data to a network, the data is read from 
disk to kernel memory, then stored in a buffer allocated by the user application in user memory, 
then sent to the kernel buffer associated with the network stack, and finally sent to the network 
interface card (NIC) for transfer over the network. Although the whole procedure needs only two 
system calls -- read() and write(), from the view of kernel, it is quite inefficient, even if DMA 
is supported by hardware. The traditional data transfer method is shown in Figure 1. We will 
examine this approach step by step to illustrate the CPU copies

2
 and context switches. 

 
First, if the data is not cached in a kernel buffer, the kernel needs to load the data from disk to a 
kernel buffer. For this step, DMA is typically used, which allows this first copy to consume little 
CPU resources. However, extra effort is needed to manage the DMA copy. Then, the data needs 
to be transferred into the buffer allocated by the application in user memory. This step is 
completed by the read() call, which, is typically done by a CPU copy in a kernel function such 

as copyout() or copy_to_user() [1]. Also, the read() system call needs a context switch 

from user mode to kernel mode. After copying data to the application buffer, the read() system 

call returns, which causes another context switch from kernel mode to user mode. 
 
From the application buffer to the corresponding network stack in the kernel buffer the data needs 
to be transferred using a user-to-kernel copy function, such as copyin() or 

copy_from_user() [1]. This kernel buffer is not the same buffer used for the initial fetch from 
disk. It is a new buffer which is associated with the network stack. Data is packetized according to 
the Internet protocol in the network stack. For this step, the use of the write() system call 

generates a context switch from user mode to kernel mode. Finally, the prepared data are sent 
from the kernel buffer to the buffer on the network interface card, and then transferred over the 

                                                   
 
2
 We use the term CPU copy to refer to any time the CPU reads a memory cell and writes a result back out. 
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network. This fourth copy can be done using DMA. Although no CPU copy is needed, the 
returned write()system call forces another context switch from kernel back to user mode.  

 
 

FIGURE 1: Traditional Data Transfer 

 
2.2 Secure Communications 
For secure communication across the network, applications will encrypt data packets. Depending 
upon the security mechanism used, encryption could occur at a high level or low level of the 
network stack. Servers and secure network applications often use SSL (Secure Socket Layer) for 
secure communication. 
 
There are two aspects to SSL that can slow down system processing. The first is the negotiation 
of the encryption key and authentication. These processes typically use modular arithmetic over 
very large numbers and take a good amount of CPU time. There are hardware accelerators, such 
as SSL cards, that allow an application to offload this computation load. This set up of the 
encryption is beyond the scope of this paper. The second aspect is the actual encryption of the 
data. This requires applying an encryption algorithm to all of the data, reading the results from 
one buffer and writing them to another buffer (labeled security processing in Error! Reference 
source not found.). Even with CPU help, data copies are needed, for example in 2010 Intel 
introduced the AES instruction set extension to support fast encryption, and utilize 128-bit 
registers in the Intel architecture. These instructions require CPU access to the data and hence 
require a CPU copy. 
 
In addition to encrypted communication, some security system requires filtering or guarding by 
the application. Typically this occurs in a secure communications environment where messages 
are being transmitted between different security domains. The concepts of zero copy still work, 
but the source is often another network device and not a disk. Filtering also occurs when data 
retrieved from a database is filtered before release. In these situations, the application needs to 
read and review the information before making the decision whether to allow the information to go 
out (labeled security processing in Error! Reference source not found.). We also have to make 
sure that no unauthorized processes get access to the sensitive information. As we examine 
different zero copy techniques, we will have to see if they provide any performance enhancement 
in encryption or filtering secure environments. 
 

3. ZERO COPY TECHNIQUES 
There are at least four data copies and four context switches during the data transmission in the 
traditional data transfer approach. According to Huang et al [2], in addition to the costs of data 
copies, software interrupts consume a great portion of CPU usage, for interrupts are generated 
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for each packet. As we see, some of the data copies are redundant and some of the context 
switches between user mode and kernel mode can be eliminated by avoiding calling the read and 
write system calls separately. As a result, zero copy techniques are implemented to reduce the 
unnecessary data copies and improve the CPU performance. Many different schemes are used 
to help implement zero copy techniques, such as memory remapping, shared buffers, different 
system calls, and hardware support. 
 
3.1 Dynamic Remapping 
Dynamically remapping memory can eliminate the data copies between the application buffer and 
kernel buffer. As Error! Reference source not found. shows, firstly, data loaded from disk is 
stored in a kernel buffer by DMA copy. Then the pages of the application buffer are mapped to 
the kernel buffer, so that the data copy between kernel buffers and application buffers are 
omitted. 
 
According to Stancevic [3], to remap the memory, the Linux mmap()system call will be called 

instead of the read() system call. After data are copied to the kernel buffer by DMA copy, the 

system call write() causes the data to be copied from the kernel buffer to another socket buffer 

in kernel address space. This means that the original copies from kernel buffer to application 
buffer and following copies from application buffer to socket buffer are substituted by only one 
data copy directly from kernel buffer to socket buffer. Then data will be copied to the network card 
buffer by DMA. Dynamic remapping needs three CPU copies (two DMA copies and one CPU 
copy) and four context switches, since the system calls mmap() and write() are made during 

data transmission. 
 

 
 

FIGURE 2: Data copy using memory remapping. 

 
In an environment requiring encryption, unless the kernel supports an encrypt-while-copy 
operation, we must allow the user application to copy data from the kernel buffer to the socket 
buffer. In a filtering situation we must allow the user application to process the data.  
Therefore, unless we can link the application buffer to both the kernel buffer and the socket 
buffer, and have the security routine read from one to the other, we will get no savings using 
dynamic remapping. We also have to make sure that no other process can get access to the 
kernel buffer and bypass the security routine. 
 
3.2 Shared Buffer in Kernel Memory Space 
In INSTANCE-buffer [4], a memory area is shared in kernel space. As Error! Reference source 
not found. shows, there is a buf structure in the kernel buffer and buf.b_data is a pointer 
which points to the shared memory region which is in kernel memory space. Data fetched from 
disk are transferred to the shared memory area according to the b_data pointer. Furthermore, in 

the socket buffer, the m_data pointer in the mbuf structure points to the shared memory area. 
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Therefore, data are copied from the memory pointed by mbuf.m_data to the buffer on the 

network card. According to Halvorsen and Jorde et al [4], the INSTANCE-buffer scheme allocates 
the shared memory region and the structures (buf and mbuf) statically, which means the time 
cost for allocating memory and variables is reduced. 
 
In a secure environment, this technique will cause problems. To encrypt, we have to read the 
data from the source buffer and write it to a destination buffer. Even if we can encrypt in place, 
there will still need to be a read and write of data. A simple filter process will work as long as we 
can be sure that data is not sent out to the network card without the filter approving the message, 
but we cannot use a complex filter that modifies the data. In high-assurance systems this may not 
provide enough separation and isolation control. 
 

 
 

FIGURE 3: Shared buffer with structures. 

 
3.3 Shared Buffer Between User and Kernel 
In Linux, the sk_buff structure contains all the control information about individual network 

packets. Data sent to the network are copied to one or more sk_buff buffers. In LyraNET [5], 

the original sk_buff structure is modified to an enhanced copy elimination sk_buff structure, 

which eliminates the data copy by just passing the address of the data buffer. According to 
Chiang and Li [5], the modified sk_buff structure includes a new array with two elements, 

named dataseg, to record addresses for data without copying the data. 

 
LyraNET is focused on reducing the data copies from user buffer to kernel buffer and from kernel 
buffer to network card. Using the enhanced copy elimination sk_buff structure, information 

about the protocol headers is copied to the network card and then data can be retrieved correctly 
according to the pointers and the data length stored in the modified sk_buff. LyraNET also 

uses DMA to copy data from the socket buffer to network card (Figure 4). 
 
In a secure environment the security routine will have to copy data from the shared data region 
into a new region upon encryption. Filtering requires a CPU read of the data, but may not require 
a write. The system will have to ensure that the shared region is not available to the socket buffer 
until after it has been approved. 
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FIGURE 4: Shared user and kernel buffer 

 
3.4 Sendfile 
According to Stancevic [3], in Linux kernel version 2.1, the sendfile() system call was 
introduced to simplify the transmission of data over the network and between two local file 
descriptors. As Figure 5 shows, when calling the sendfile() system call, data are fetched from 

disk and copied into a kernel buffer by DMA copy. Then data are copied directly from the kernel 
buffer to the socket buffer. Once all data are copied into the socket buffer, the sendfile() 
system call will return to indicate the completion of data transfer from the kernel buffer to socket 
buffer. Then, data will be copied to the buffer on the network card and transferred to the network. 
 
The sendfile() method is much more efficient than the combination of read() and write() 

system calls [6]. Compared with the traditional data transmission method, it replaces the read() 

and write() system calls, which reduces the number of context switch from four to two. 

Compared with dynamic remapping, sendfile() reduces the costs for virtual memory 
management. However, it still needs three data copies (two DMA copies and one CPU copy) to 
finish the data transmission. 
 

This approach to zero copy bypasses the application completely, avoiding any application specific 
security routine or CPU processing of the data, making encryption and filtering impractical. 
 

 
 

FIGURE 5: Data transfer using sendfile. 
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3.5 Sendfile With DMA Scatter/Gather Copy 
The method that enhances the sendfile() system call with DMA scatter/gather copy can 

eliminate the CPU copy between kernel buffer and socket buffer found in the sendfile() 
method. Different from the DMA which maps each buffer one by one and then do the operation, 
DMA scatter/gather copy maps the whole list of buffers at once and transfer them in one DMA 
operation [7]. In this method, support from hardware is needed, for the network interface gathers 
data from various memory spaces (Figure 6). When calling sendfile(), data on disk are 
loaded into a kernel buffer using DMA transfer. Then, only the buffer descriptor is sent to the 
socket, instead of coping all of the data to the buffer. The descriptor contains information about 
the length of the data and where it is. Using this information, header and trailer of the data packet 
can be generated. Then by using the DMA scatter/gather operation, the network interface card 
can gather all the data from different memory locations and store the assembled packet in the 
network card buffer. 
 
Hardware which supports DMA scatter/gather copy eliminates the CPU copy between kernel 
buffer and socket buffer. It means that no CPU copies occur during the data transmission from 
disk to network card, which helps to increase the performance of the CPU. Only one system call, 
sendfile(), is made in this approach, so there are only two context switches. Additionally, 
since hardware supports the DMA scatter/gather operation, data in memory are not required to be 
stored in consecutive memory spaces. 
 
This approach to zero copy bypasses the application completely, avoiding any application specific 
security routine or CPU processing of the data, making encryption and filtering impractical. 
 

 
 

FIGURE 6: Sendfile and DMA scatter/gather copy. 

 
3.6 Splice 
According to the Linux man page [8], the Linux 2.6.17 kernel has a new system call, splice(). 
This call takes two file descriptors and an integer as parameters. It copies data, which size is 
specified by the integer, from one file descriptor to the other file descriptor using a pipe. By doing 
this, it does not need to copy data between kernel space and user space.   
 
When using this approach, data are copied from disk to kernel buffer first.  Then the splice() 
system call allows data to move between different buffers in kernel space without the copy to user 
space, for only file descriptors are transferred. In some zero copy implementations, splice()is 

called to move data from the kernel buffer to socket buffer which is also in kernel space. Then 
data are copied from the socket buffer to the network card buffer by DMA transfer. The system 
call splice eliminates the data copy between kernel buffer and socket buffer.  
 
Unlike the method sendfile() with DMA scatter/gather copy, splice() does not need 
support from hardware. In addition, two context switches are bypassed compared to the 



Jia Song & Jim Alves-Foss 

 

International Journal of Computer Science and Security (IJCSS), Volume (6) : Issue (4) : 2012 264 

traditional method, therefore only two context switches are needed. Instead of coping data to an 
application buffer, splice() works as a pipe between two kernel buffers to allow direct data 

transfer. However, there must be two file descriptors opened to both the input and output devices 
(Figure 7).  
 
Fall and Pasquale [9] indicated that, in the best case, the performance of using splice() is at 

1.8 times than the maximum throughput of the traditional data transfer method. This approach to 
zero copy bypasses the application completely, avoiding any application specific security routine, 
making encryption and filtering much more difficult. 
 

 
 

FIGURE 7: Data transmission using splice. 

 

4. POTENTIAL PROBLEMS AND SECURITY CONCERNS 
The implementation of zero copy technique helps to decrease overhead so as to release CPU 
cycles. Redundant data copies are reduced which saves more CPU and memory resources. 
However, the benefits of zero copy are sometimes overestimated, for the implementation of zero 
copy brings other new problems which may nullify the improvement of the system. For example, 
memory mapping needs costly virtual memory operations, the method of sendfile() with DMA 
scatter/gather copy needs support from hardware to gather data from various memory locations. 
In addition, zero copy techniques ignore or even introduce security concerns as well. 
 
4.1 Dynamic Remapping Problem 
Dynamic remapping uses mmap() instead of the read() system call, which reduce one copy 
during the data transmission. However, data might be modified by the user program while being 
prepared for transmission, this may cause security problems. 
  
This problem can be prevented by implementing the Copy-on-write (COW) technique. COW is a 
simple technique. When the pages of the application buffers are mapped into kernel space, these 
pages can be written by the user. After the mmap() system call returns, both application and 

socket buffers can then only read the kernel buffer. The user can then start writing to the kernel 
buffer when the write() system calls return, which means the required data are sent to socket 
buffers. COW is implemented when using page remapping. It helps to ensure that while data is 
transferring, write permission is controlled. So the content of the physical memory page cannot be 
changed. However, COW is a costly event which consumes more CPU resource than a simple 
CPU copy [10]. 
 
4.2  Pre-allocated Buffer Problem 
Some zero copy techniques use pre-allocated buffers to store data. By using pre-allocated buffer, 
the costly virtual memory operations are done only once. In addition, the pre-allocated buffer 
eliminates the exchange of the size of data between sender and receiver, but it causes another 
problem: the pre-allocated buffer space in receiver might be exhausted. If the receiver's pre-
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allocated buffers are exhausted, the receiver has to wait until some buffers are usable. According 
to Yamagiwa et al [11] even if there are a lot of pre-allocated buffers, the receiver still might be 
exhausted since these buffers cannot be paged out. 
 
4.3 Sendfile System Call Problem 
According to Brose [1], the sendfile() interface requires two file descriptors. The first one is a 
readable memory mappable file such as regular file or a block device. The second one can be a 
writable file or a network socket. The sendfile() system call can only transmit data which has 

specified length. The other disadvantage of the sendfile approach is that it is hard to implement 
sendfile() on the receivers' end, for network transfers are asynchronous and the 

sendfile() system call is not a standard system call among different Linux or UNIX systems. In 

some systems, sendfile() is routed to the transferto() system call, which makes the 
implementation of this approach more difficult. 
 
4.4 Sendfile With DMA Scatter/gather Copy Problem 
The method that uses sendfile() with DMA scatter/gather copy enhances the performance of 

the CPU by avoiding CPU copies. Since data can be copied from various memory areas to the 
network card buffer by DMA scatter/gather copy, which is supported by hardware, cache 
coherency is not required anymore. However, according to Brose [1], the source buffer may be a 
part of the page cache, which means it is available for the generic read functionality and may be 
accessed in traditional way as well. As long as the memory area can be accessed by the CPU, 
the cache consistency has to be maintained by flushing the caches before DMA transfers. 
 

5. CONCLUSION 
 
5.1 Zero-Copy Impacts 
Over the past decade we have seen tremendous growth in e-government services at the state 
and federal level. The OMB report “FY 2009 Report to Congress on the Implementation of The E-
Government Act of 2002” highlights federal agencies' efforts to implement e-government. These 
activities have included performance enhancing and cost saving consolidation of services into 
server farms and clouds, and increased availability of private and secure information. There are 
other reports that highlight similar efforts by the states. These reports indicate that there is a 
growth in the use and availability of e-government. 
 
Vendors developing solutions for data servers will use new technologies if they can increase 
performance, such as zero copy. Although the implementations of zero copy techniques help 
reducing the redundant data copies between the kernel memory space and user memory space, 
they also bring us new problems. Memory remapping approach needs virtual memory operations 
and COW which might nullify the improvement of the CPU performance. When using the pre-
allocated buffer or static buffer, size of the buffer becomes a problem. Because the buffer 
overflow attack and the condition that the buffers are exhausted need to be considered. 
 
 
 CPU 

copy 
DMA 
copy 

System 
call 

Context 
switches 

Advantages and disadvantages App-level 
security 

processing 

Traditional 
data 
transfer 

2 2 read 
write 

4 Redundant data copies consume 
many CPU cycles. 
2 system calls cause 4 context 
switches. 
Large consumption of memory 
bandwidth. 

Yes 

Memory 
remapping 

1 2 mmap 
write 

4 Needs costly virtual memory 
operations. 
Needs COW to be implemented 
which costs a lot.  

Yes 
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Shared 
buffer 
(INSTANCE
-buffer) 

0 2  0 Buffers need to be released after 
using. 
Pre-allocated buffer reduces the 
exchange of the data size, since 
the buffer size is fixed. 
Pre-allocated buffer needs less 
virtual memory operations, for the 
virtual memory operations only 
used when creating the buffer. 

Yes 

LyraNET 1 2 read 2 Need costly virtual memory 
operations. 
LyraNET still needs data copy from 
kernel buffer to application buffer. 

No 
 

Sendfile 1 2 sendfile 2 Reduces the costs for virtual 
memory management. 
Sendfile hard to implement due to 
asynchronous network transfers. 
Sendfile system call is not a 
standard system call among 
different Linux or UNIX systems. 

Yes 

Sendfile 
with DMA 
scatter/gath
er copy 

0 2 sendfile 2 Reduces the costs for virtual 
memory management. 
Needs hardware which supports 
DMA scatter/gather copy. 
Sendfile hard to implement due to 
asynchronous network transfers. 
Sendfile system call is not a 
standard system call among 
different Linux or UNIX systems. 

No 
 

Splice 0 2 splice 2 When using splice system call, 
there must has two file descriptors 
which opened to both the input and 
the output devices. 

No 
 

 

TABLE 1: Comparison of different zero copy techniques. 

 
Therefore, the implementation of zero copy techniques regard to network is limited by many 
factors. That is why zero copy techniques have not been widely adopted in the operating 
systems. Although these new techniques need more evaluation, zero copy is worth analyzing and 
implementing carefully for critical e-government services. Removing redundant CPU copies can 
improve the performance of servers, and this is especially useful for commercial and government 
servers which require high efficiency. The advantages and disadvantages of different zero copy 
techniques are compared in  
TABLE 1. Any zero-copy technique that bypasses the application will limit the ability to perform 
security processing. Therefore the sendfile() and splice() system calls are not 
recommended for use in applications that require security processing. The right most column 
indicates whether security processing can be used with each zero-copy technique, providing 
some performance improvement. 
 
5.2 Understanding the Implications 
To better understand the implications of security on performance improving solutions, we 
recommend that the acquisition officer evaluate the proposed solution using questions similar to 
the following list: 
 
1) Will the server need to provide encrypted communication? 

a) Can the encryption be performed at the connection-level by dedicated hardware, or will 
you need application-level processing? 
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b) Will the server need to provide multiple encryption services, supporting different 
algorithms and protocols? 

2) Will the service need to provide application-level security processing/filtering on the data 
being serviced? 
a) Will that processing be service specific (same processing for all users) or user-specific? 
b) Will the service require multiple filtering processes? 

3) Does the server need to support multiple concurrent services (such as cloud servers)? 
4) Does the proposed solution support the level of encryption and application processing 

required? 
 

The answers to these questions will help acquisition officers and developers better understand 
the expected use cases of the system and better evaluate the use of performance-improving 
technologies such as zero-copy. Any system that requires the examination or processing of the 
contents of the message, such as encryption, or filtering will require either a hardware solution, or 
application-level processing.  
 
A hardware solution, such as a cryptographic hardware module, allows the use of all of the zero-
copy techniques by passing the data packet directly to the cryptographic hardware. However, if 
the system supports multiple encryption services, a hardware solution may become impractical, 
thus forcing the system to rely on an application-level software solution. 
 
Any software-based solution that requires access to the full data packet, cannot utilize the zero-
copy features with a “no” in the final column of TABLE 1, Lyrannet, Sendfile with DMA 
scatter/gather copy and Splice. Other techniques will allow application level security processing. 
 

We believe that it would be beneficial to develop a set of benchmark scenarios that address 
encryption and filtering technologies at the connection and application level and the recommend 
that the vendors provide performance data with respect to these benchmarks. This can be done 
to help address a wide-variety of proposed performance-improving technologies, which may not 
work well for security-enabled environments, contrary to vendor’s claims. 
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Abstract 

 
E-government and corporate servers will require higher performance and security as usage 
increases. Zero copy refers to a collection of techniques which reduce the number of copies of 
blocks of data in order to make data transfer more efficient. By avoiding redundant data copies, 
the consumption of memory and CPU resources are reduced, thereby improving performance of 
the server. To eliminate costly data copies between user space and kernel space or between two 
buffers in the kernel space, various schemes are used, such as memory remapping, shared 
buffers, and hardware support.  However, the advantages are sometimes overestimated and new 
security issues arise. This paper describes different approaches to implementing zero copy and 
evaluates these methods for their performance and security considerations, to help when 
evaluating these techniques for use in e-government applications. 
 
Keywords: Zero Copy, Network Security, Security/Performance Tradeoffs 

 
 
1. INTRODUCTION 
In addition to growth of corporate servers, there has been tremendous interest and growth in the 
support of e-government services. This includes remote access to public information, databases, 
forms, guidance, training materials as well as access to personal information such as treasury 
holdings, social security, income taxes, and government benefits. In addition, e-government also 
supports internal access to government documents, support of paperless offices and workflow 
improvement and communication support for critical services including first responders in 
emergencies. Cost-effective e-government solutions will require use of shared organizational 
servers, such as cloud servers, and high performing computers that can provide users with timely 
and secure access to information. Unfortunately, we have found that there is often a disconnect 
between marketed performance-improving solutions and security needs. This paper addresses 
one “performance-improving” technology with respect to security needs. We have found that 
some of the solutions that have been proposed and implemented will not work with security 
technologies, such as encryption. The understanding of the impact of performance-improving 
solutions on security is important when comparing vendors' performance benchmarks and claims 
when evaluating systems for purchase, and is important for developers to understand when 
making implementation decisions. 
 
Therefore, the intent of this paper is to bring to light an example of security concerns that we 
believe should be addressed in the development process and in security requirements such as 
those specified by US Federal Acquisition Regulation (FAR) Part 39.101 and OMB Circular A-130 
while supporting e-government efforts such as those specified in the “E-Government Act of 2002”. 
Similar regulations exist in other countries or in corporate policies. Corporations and governments 
in the market for servers should pay careful attention to performance benchmarks developed by 
vendors. 
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For example, the FAR Part 39.101 requires that agencies identify their requirements pursuant to: 
best management practices for energy-efficient management of servers and Federal data centers 
and shall include the appropriate information technology security policies and requirements. 
Energy-efficient management often translates into performance, since a data-center can use a 
lesser number higher performing servers to do the same work, and with less energy. As we 
discuss in this paper, we need to be aware of the tradeoff between some performance 
technologies and security technologies. We believe there is a need for the development of a set 
of benchmarks or at least checklists/configuration guides that enable the acquisition officers and 
developers to make the most appropriate choice of technologies given the security needs of the 
application environment. 
 
1.1 Performance and Security 
As demand for higher performance computers grew, CPU designs developed from single core to 
dual-core, quad-core or even hexa-core. However, a quad-core processor does not indicate that 
the performance of the overall system is four times the performance of a single core processor. 
The performance of the system is limited by many other factors, such as access to system 
memory. According to Brose [1], CPU processing power improves about 50% each year, while 
the memory only has an average 35% increment at the same amount of time

1
. Improvement in 

memory usage is increasingly a critical factor for system performance. This is especially 
important for network applications, such as severs, which transfer a lot of data, and cannot 
benefit from cache size increases. 
 
Servers used by industry and government are critical not only for their performance, but also their 
security. To make the government more transparent, web servers for the public are used to 
inform the public about new policies and the latest news from the government. What's more, the 
servers used among governmental employees must be secure enough to avoid leaking 
information and to prevent hacking. Therefore, severs used by government must ensure their 
efficiency and security. 
 
Traditionally, in server environments, such as servers used in e-government, when sending data 
to a network, data is loaded from disk and transferred to a network card buffer. The whole 
procedure consumes a lot of CPU cycles and memory bandwidth, for data must be copied 
between application memory space and kernel memory space. However, most of these data 
copies are redundant and can be minimized by implementing zero copy techniques. Zero copy is 
a name used to refer to a variety of techniques which help reduce useless memory accesses, 
usually involving elimination of data copying. By implementing zero copy, less data copies are 
needed when data is transferred between buffers. This helps reduce the number of unnecessary 
memory accesses and CPU consumption, and therefore enhance overall system performance. 
 
1.2 Zero Copy for Performance 
In recent years, there have been a number of studies regarding zero copy and different kinds of 
zero copy techniques have been applied. Zero copy can be classified into two groups: (1) reduce 
data copies between devices (disk or network card) and kernel buffers, and (2) reduce data 
copies between kernel buffers and application buffers. 
 
Typically, data copies between devices and kernel buffers can be reduced by using DMA (Direct 
Memory Access). DMA allows special purpose hardware to read or write main memory without 
involving the CPU, which greatly reduces CPU consumption and also eliminates redundant data 
copies between device and kernel buffers.  
 
Zero copy can also reduce the number of copies between user memory space and kernel 
memory space. Several different approaches have been proposed to solve this problem, and they 
are all called zero copy. For example, memory mapping is used to map the user buffer to the 

                                                   
 
1
 This means that relative to CPU speeds, memory performance is cut in half every 7 years. 
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kernel buffer; in LyraNET, a modified sk_buff structure can be used to eliminate data copies; 

and buffers can be shared, so stored data can be referenced via pointers. In addition, some 
system calls in Linux support zero copy by reducing data copies such as the sendfile() and  

splice() system calls. Instead of copying data, descriptors are appended to buffers in sendfile. 

The system call splice() sets up a data transfer path between different buffers in kernel 
memory. 
 
However, in addition to performance benefits of zero copy techniques, it is important to 
understand the security implications of using those techniques. This is important for commercial 
servers as well as e-government systems. 
 
Zero copy helps reduce the number of data copies and context switches which improves the CPU 
performance. But it also causes some new problems that we have to understand. This paper 
focuses on analyzing different zero copy techniques which are used to reduce the data copies in 
TCP/IP transmission, which are being implemented in many commercial servers which could end 
up being used by government offices to gain better performance. 
 
The remainder of this paper evaluates the use of zero copy for performance in secure 
environments as is laid out as follows. The traditional data transfer approach and security issues 
are presented in Section 2 and zero copy techniques are described in Section 3. Problems 
caused by zero copy are examined in Section 4; this section also discusses security issues 
relating to zero copy techniques, which will help developers and acquisition offices in determining 
the appropriate use of this technology. 
 

2. BACKGROUND 
 
2.1 Traditional Data Transfer Method 
Traditionally, if a user/server application wants to send data to a network, the data is read from 
disk to kernel memory, then stored in a buffer allocated by the user application in user memory, 
then sent to the kernel buffer associated with the network stack, and finally sent to the network 
interface card (NIC) for transfer over the network. Although the whole procedure needs only two 
system calls -- read() and write(), from the view of kernel, it is quite inefficient, even if DMA 
is supported by hardware. The traditional data transfer method is shown in Figure 1. We will 
examine this approach step by step to illustrate the CPU copies

2
 and context switches. 

 
First, if the data is not cached in a kernel buffer, the kernel needs to load the data from disk to a 
kernel buffer. For this step, DMA is typically used, which allows this first copy to consume little 
CPU resources. However, extra effort is needed to manage the DMA copy. Then, the data needs 
to be transferred into the buffer allocated by the application in user memory. This step is 
completed by the read() call, which, is typically done by a CPU copy in a kernel function such 

as copyout() or copy_to_user() [1]. Also, the read() system call needs a context switch 

from user mode to kernel mode. After copying data to the application buffer, the read() system 

call returns, which causes another context switch from kernel mode to user mode. 
 
From the application buffer to the corresponding network stack in the kernel buffer the data needs 
to be transferred using a user-to-kernel copy function, such as copyin() or 

copy_from_user() [1]. This kernel buffer is not the same buffer used for the initial fetch from 
disk. It is a new buffer which is associated with the network stack. Data is packetized according to 
the Internet protocol in the network stack. For this step, the use of the write() system call 

generates a context switch from user mode to kernel mode. Finally, the prepared data are sent 
from the kernel buffer to the buffer on the network interface card, and then transferred over the 

                                                   
 
2
 We use the term CPU copy to refer to any time the CPU reads a memory cell and writes a result back out. 
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network. This fourth copy can be done using DMA. Although no CPU copy is needed, the 
returned write()system call forces another context switch from kernel back to user mode.  

 
 

FIGURE 1: Traditional Data Transfer 

 
2.2 Secure Communications 
For secure communication across the network, applications will encrypt data packets. Depending 
upon the security mechanism used, encryption could occur at a high level or low level of the 
network stack. Servers and secure network applications often use SSL (Secure Socket Layer) for 
secure communication. 
 
There are two aspects to SSL that can slow down system processing. The first is the negotiation 
of the encryption key and authentication. These processes typically use modular arithmetic over 
very large numbers and take a good amount of CPU time. There are hardware accelerators, such 
as SSL cards, that allow an application to offload this computation load. This set up of the 
encryption is beyond the scope of this paper. The second aspect is the actual encryption of the 
data. This requires applying an encryption algorithm to all of the data, reading the results from 
one buffer and writing them to another buffer (labeled security processing in Error! Reference 
source not found.). Even with CPU help, data copies are needed, for example in 2010 Intel 
introduced the AES instruction set extension to support fast encryption, and utilize 128-bit 
registers in the Intel architecture. These instructions require CPU access to the data and hence 
require a CPU copy. 
 
In addition to encrypted communication, some security system requires filtering or guarding by 
the application. Typically this occurs in a secure communications environment where messages 
are being transmitted between different security domains. The concepts of zero copy still work, 
but the source is often another network device and not a disk. Filtering also occurs when data 
retrieved from a database is filtered before release. In these situations, the application needs to 
read and review the information before making the decision whether to allow the information to go 
out (labeled security processing in Error! Reference source not found.). We also have to make 
sure that no unauthorized processes get access to the sensitive information. As we examine 
different zero copy techniques, we will have to see if they provide any performance enhancement 
in encryption or filtering secure environments. 
 

3. ZERO COPY TECHNIQUES 
There are at least four data copies and four context switches during the data transmission in the 
traditional data transfer approach. According to Huang et al [2], in addition to the costs of data 
copies, software interrupts consume a great portion of CPU usage, for interrupts are generated 
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for each packet. As we see, some of the data copies are redundant and some of the context 
switches between user mode and kernel mode can be eliminated by avoiding calling the read and 
write system calls separately. As a result, zero copy techniques are implemented to reduce the 
unnecessary data copies and improve the CPU performance. Many different schemes are used 
to help implement zero copy techniques, such as memory remapping, shared buffers, different 
system calls, and hardware support. 
 
3.1 Dynamic Remapping 
Dynamically remapping memory can eliminate the data copies between the application buffer and 
kernel buffer. As Error! Reference source not found. shows, firstly, data loaded from disk is 
stored in a kernel buffer by DMA copy. Then the pages of the application buffer are mapped to 
the kernel buffer, so that the data copy between kernel buffers and application buffers are 
omitted. 
 
According to Stancevic [3], to remap the memory, the Linux mmap()system call will be called 

instead of the read() system call. After data are copied to the kernel buffer by DMA copy, the 

system call write() causes the data to be copied from the kernel buffer to another socket buffer 

in kernel address space. This means that the original copies from kernel buffer to application 
buffer and following copies from application buffer to socket buffer are substituted by only one 
data copy directly from kernel buffer to socket buffer. Then data will be copied to the network card 
buffer by DMA. Dynamic remapping needs three CPU copies (two DMA copies and one CPU 
copy) and four context switches, since the system calls mmap() and write() are made during 

data transmission. 
 

 
 

FIGURE 2: Data copy using memory remapping. 

 
In an environment requiring encryption, unless the kernel supports an encrypt-while-copy 
operation, we must allow the user application to copy data from the kernel buffer to the socket 
buffer. In a filtering situation we must allow the user application to process the data.  
Therefore, unless we can link the application buffer to both the kernel buffer and the socket 
buffer, and have the security routine read from one to the other, we will get no savings using 
dynamic remapping. We also have to make sure that no other process can get access to the 
kernel buffer and bypass the security routine. 
 
3.2 Shared Buffer in Kernel Memory Space 
In INSTANCE-buffer [4], a memory area is shared in kernel space. As Error! Reference source 
not found. shows, there is a buf structure in the kernel buffer and buf.b_data is a pointer 
which points to the shared memory region which is in kernel memory space. Data fetched from 
disk are transferred to the shared memory area according to the b_data pointer. Furthermore, in 

the socket buffer, the m_data pointer in the mbuf structure points to the shared memory area. 
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Therefore, data are copied from the memory pointed by mbuf.m_data to the buffer on the 

network card. According to Halvorsen and Jorde et al [4], the INSTANCE-buffer scheme allocates 
the shared memory region and the structures (buf and mbuf) statically, which means the time 
cost for allocating memory and variables is reduced. 
 
In a secure environment, this technique will cause problems. To encrypt, we have to read the 
data from the source buffer and write it to a destination buffer. Even if we can encrypt in place, 
there will still need to be a read and write of data. A simple filter process will work as long as we 
can be sure that data is not sent out to the network card without the filter approving the message, 
but we cannot use a complex filter that modifies the data. In high-assurance systems this may not 
provide enough separation and isolation control. 
 

 
 

FIGURE 3: Shared buffer with structures. 

 
3.3 Shared Buffer Between User and Kernel 
In Linux, the sk_buff structure contains all the control information about individual network 

packets. Data sent to the network are copied to one or more sk_buff buffers. In LyraNET [5], 

the original sk_buff structure is modified to an enhanced copy elimination sk_buff structure, 

which eliminates the data copy by just passing the address of the data buffer. According to 
Chiang and Li [5], the modified sk_buff structure includes a new array with two elements, 

named dataseg, to record addresses for data without copying the data. 

 
LyraNET is focused on reducing the data copies from user buffer to kernel buffer and from kernel 
buffer to network card. Using the enhanced copy elimination sk_buff structure, information 

about the protocol headers is copied to the network card and then data can be retrieved correctly 
according to the pointers and the data length stored in the modified sk_buff. LyraNET also 

uses DMA to copy data from the socket buffer to network card (Figure 4). 
 
In a secure environment the security routine will have to copy data from the shared data region 
into a new region upon encryption. Filtering requires a CPU read of the data, but may not require 
a write. The system will have to ensure that the shared region is not available to the socket buffer 
until after it has been approved. 
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FIGURE 4: Shared user and kernel buffer 

 
3.4 Sendfile 
According to Stancevic [3], in Linux kernel version 2.1, the sendfile() system call was 
introduced to simplify the transmission of data over the network and between two local file 
descriptors. As Figure 5 shows, when calling the sendfile() system call, data are fetched from 

disk and copied into a kernel buffer by DMA copy. Then data are copied directly from the kernel 
buffer to the socket buffer. Once all data are copied into the socket buffer, the sendfile() 
system call will return to indicate the completion of data transfer from the kernel buffer to socket 
buffer. Then, data will be copied to the buffer on the network card and transferred to the network. 
 
The sendfile() method is much more efficient than the combination of read() and write() 

system calls [6]. Compared with the traditional data transmission method, it replaces the read() 

and write() system calls, which reduces the number of context switch from four to two. 

Compared with dynamic remapping, sendfile() reduces the costs for virtual memory 
management. However, it still needs three data copies (two DMA copies and one CPU copy) to 
finish the data transmission. 
 

This approach to zero copy bypasses the application completely, avoiding any application specific 
security routine or CPU processing of the data, making encryption and filtering impractical. 
 

 
 

FIGURE 5: Data transfer using sendfile. 
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3.5 Sendfile With DMA Scatter/Gather Copy 
The method that enhances the sendfile() system call with DMA scatter/gather copy can 

eliminate the CPU copy between kernel buffer and socket buffer found in the sendfile() 
method. Different from the DMA which maps each buffer one by one and then do the operation, 
DMA scatter/gather copy maps the whole list of buffers at once and transfer them in one DMA 
operation [7]. In this method, support from hardware is needed, for the network interface gathers 
data from various memory spaces (Figure 6). When calling sendfile(), data on disk are 
loaded into a kernel buffer using DMA transfer. Then, only the buffer descriptor is sent to the 
socket, instead of coping all of the data to the buffer. The descriptor contains information about 
the length of the data and where it is. Using this information, header and trailer of the data packet 
can be generated. Then by using the DMA scatter/gather operation, the network interface card 
can gather all the data from different memory locations and store the assembled packet in the 
network card buffer. 
 
Hardware which supports DMA scatter/gather copy eliminates the CPU copy between kernel 
buffer and socket buffer. It means that no CPU copies occur during the data transmission from 
disk to network card, which helps to increase the performance of the CPU. Only one system call, 
sendfile(), is made in this approach, so there are only two context switches. Additionally, 
since hardware supports the DMA scatter/gather operation, data in memory are not required to be 
stored in consecutive memory spaces. 
 
This approach to zero copy bypasses the application completely, avoiding any application specific 
security routine or CPU processing of the data, making encryption and filtering impractical. 
 

 
 

FIGURE 6: Sendfile and DMA scatter/gather copy. 

 
3.6 Splice 
According to the Linux man page [8], the Linux 2.6.17 kernel has a new system call, splice(). 
This call takes two file descriptors and an integer as parameters. It copies data, which size is 
specified by the integer, from one file descriptor to the other file descriptor using a pipe. By doing 
this, it does not need to copy data between kernel space and user space.   
 
When using this approach, data are copied from disk to kernel buffer first.  Then the splice() 
system call allows data to move between different buffers in kernel space without the copy to user 
space, for only file descriptors are transferred. In some zero copy implementations, splice()is 

called to move data from the kernel buffer to socket buffer which is also in kernel space. Then 
data are copied from the socket buffer to the network card buffer by DMA transfer. The system 
call splice eliminates the data copy between kernel buffer and socket buffer.  
 
Unlike the method sendfile() with DMA scatter/gather copy, splice() does not need 
support from hardware. In addition, two context switches are bypassed compared to the 
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traditional method, therefore only two context switches are needed. Instead of coping data to an 
application buffer, splice() works as a pipe between two kernel buffers to allow direct data 

transfer. However, there must be two file descriptors opened to both the input and output devices 
(Figure 7).  
 
Fall and Pasquale [9] indicated that, in the best case, the performance of using splice() is at 

1.8 times than the maximum throughput of the traditional data transfer method. This approach to 
zero copy bypasses the application completely, avoiding any application specific security routine, 
making encryption and filtering much more difficult. 
 

 
 

FIGURE 7: Data transmission using splice. 

 

4. POTENTIAL PROBLEMS AND SECURITY CONCERNS 
The implementation of zero copy technique helps to decrease overhead so as to release CPU 
cycles. Redundant data copies are reduced which saves more CPU and memory resources. 
However, the benefits of zero copy are sometimes overestimated, for the implementation of zero 
copy brings other new problems which may nullify the improvement of the system. For example, 
memory mapping needs costly virtual memory operations, the method of sendfile() with DMA 
scatter/gather copy needs support from hardware to gather data from various memory locations. 
In addition, zero copy techniques ignore or even introduce security concerns as well. 
 
4.1 Dynamic Remapping Problem 
Dynamic remapping uses mmap() instead of the read() system call, which reduce one copy 
during the data transmission. However, data might be modified by the user program while being 
prepared for transmission, this may cause security problems. 
  
This problem can be prevented by implementing the Copy-on-write (COW) technique. COW is a 
simple technique. When the pages of the application buffers are mapped into kernel space, these 
pages can be written by the user. After the mmap() system call returns, both application and 

socket buffers can then only read the kernel buffer. The user can then start writing to the kernel 
buffer when the write() system calls return, which means the required data are sent to socket 
buffers. COW is implemented when using page remapping. It helps to ensure that while data is 
transferring, write permission is controlled. So the content of the physical memory page cannot be 
changed. However, COW is a costly event which consumes more CPU resource than a simple 
CPU copy [10]. 
 
4.2  Pre-allocated Buffer Problem 
Some zero copy techniques use pre-allocated buffers to store data. By using pre-allocated buffer, 
the costly virtual memory operations are done only once. In addition, the pre-allocated buffer 
eliminates the exchange of the size of data between sender and receiver, but it causes another 
problem: the pre-allocated buffer space in receiver might be exhausted. If the receiver's pre-
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allocated buffers are exhausted, the receiver has to wait until some buffers are usable. According 
to Yamagiwa et al [11] even if there are a lot of pre-allocated buffers, the receiver still might be 
exhausted since these buffers cannot be paged out. 
 
4.3 Sendfile System Call Problem 
According to Brose [1], the sendfile() interface requires two file descriptors. The first one is a 
readable memory mappable file such as regular file or a block device. The second one can be a 
writable file or a network socket. The sendfile() system call can only transmit data which has 

specified length. The other disadvantage of the sendfile approach is that it is hard to implement 
sendfile() on the receivers' end, for network transfers are asynchronous and the 

sendfile() system call is not a standard system call among different Linux or UNIX systems. In 

some systems, sendfile() is routed to the transferto() system call, which makes the 
implementation of this approach more difficult. 
 
4.4 Sendfile With DMA Scatter/gather Copy Problem 
The method that uses sendfile() with DMA scatter/gather copy enhances the performance of 

the CPU by avoiding CPU copies. Since data can be copied from various memory areas to the 
network card buffer by DMA scatter/gather copy, which is supported by hardware, cache 
coherency is not required anymore. However, according to Brose [1], the source buffer may be a 
part of the page cache, which means it is available for the generic read functionality and may be 
accessed in traditional way as well. As long as the memory area can be accessed by the CPU, 
the cache consistency has to be maintained by flushing the caches before DMA transfers. 
 

5. CONCLUSION 
 
5.1 Zero-Copy Impacts 
Over the past decade we have seen tremendous growth in e-government services at the state 
and federal level. The OMB report “FY 2009 Report to Congress on the Implementation of The E-
Government Act of 2002” highlights federal agencies' efforts to implement e-government. These 
activities have included performance enhancing and cost saving consolidation of services into 
server farms and clouds, and increased availability of private and secure information. There are 
other reports that highlight similar efforts by the states. These reports indicate that there is a 
growth in the use and availability of e-government. 
 
Vendors developing solutions for data servers will use new technologies if they can increase 
performance, such as zero copy. Although the implementations of zero copy techniques help 
reducing the redundant data copies between the kernel memory space and user memory space, 
they also bring us new problems. Memory remapping approach needs virtual memory operations 
and COW which might nullify the improvement of the CPU performance. When using the pre-
allocated buffer or static buffer, size of the buffer becomes a problem. Because the buffer 
overflow attack and the condition that the buffers are exhausted need to be considered. 
 
 
 CPU 

copy 
DMA 
copy 

System 
call 

Context 
switches 

Advantages and disadvantages App-level 
security 

processing 

Traditional 
data 
transfer 

2 2 read 
write 

4 Redundant data copies consume 
many CPU cycles. 
2 system calls cause 4 context 
switches. 
Large consumption of memory 
bandwidth. 

Yes 

Memory 
remapping 

1 2 mmap 
write 

4 Needs costly virtual memory 
operations. 
Needs COW to be implemented 
which costs a lot.  

Yes 
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Shared 
buffer 
(INSTANCE
-buffer) 

0 2  0 Buffers need to be released after 
using. 
Pre-allocated buffer reduces the 
exchange of the data size, since 
the buffer size is fixed. 
Pre-allocated buffer needs less 
virtual memory operations, for the 
virtual memory operations only 
used when creating the buffer. 

Yes 

LyraNET 1 2 read 2 Need costly virtual memory 
operations. 
LyraNET still needs data copy from 
kernel buffer to application buffer. 

No 
 

Sendfile 1 2 sendfile 2 Reduces the costs for virtual 
memory management. 
Sendfile hard to implement due to 
asynchronous network transfers. 
Sendfile system call is not a 
standard system call among 
different Linux or UNIX systems. 

Yes 

Sendfile 
with DMA 
scatter/gath
er copy 

0 2 sendfile 2 Reduces the costs for virtual 
memory management. 
Needs hardware which supports 
DMA scatter/gather copy. 
Sendfile hard to implement due to 
asynchronous network transfers. 
Sendfile system call is not a 
standard system call among 
different Linux or UNIX systems. 

No 
 

Splice 0 2 splice 2 When using splice system call, 
there must has two file descriptors 
which opened to both the input and 
the output devices. 

No 
 

 

TABLE 1: Comparison of different zero copy techniques. 

 
Therefore, the implementation of zero copy techniques regard to network is limited by many 
factors. That is why zero copy techniques have not been widely adopted in the operating 
systems. Although these new techniques need more evaluation, zero copy is worth analyzing and 
implementing carefully for critical e-government services. Removing redundant CPU copies can 
improve the performance of servers, and this is especially useful for commercial and government 
servers which require high efficiency. The advantages and disadvantages of different zero copy 
techniques are compared in  
TABLE 1. Any zero-copy technique that bypasses the application will limit the ability to perform 
security processing. Therefore the sendfile() and splice() system calls are not 
recommended for use in applications that require security processing. The right most column 
indicates whether security processing can be used with each zero-copy technique, providing 
some performance improvement. 
 
5.2 Understanding the Implications 
To better understand the implications of security on performance improving solutions, we 
recommend that the acquisition officer evaluate the proposed solution using questions similar to 
the following list: 
 
1) Will the server need to provide encrypted communication? 

a) Can the encryption be performed at the connection-level by dedicated hardware, or will 
you need application-level processing? 
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b) Will the server need to provide multiple encryption services, supporting different 
algorithms and protocols? 

2) Will the service need to provide application-level security processing/filtering on the data 
being serviced? 
a) Will that processing be service specific (same processing for all users) or user-specific? 
b) Will the service require multiple filtering processes? 

3) Does the server need to support multiple concurrent services (such as cloud servers)? 
4) Does the proposed solution support the level of encryption and application processing 

required? 
 

The answers to these questions will help acquisition officers and developers better understand 
the expected use cases of the system and better evaluate the use of performance-improving 
technologies such as zero-copy. Any system that requires the examination or processing of the 
contents of the message, such as encryption, or filtering will require either a hardware solution, or 
application-level processing.  
 
A hardware solution, such as a cryptographic hardware module, allows the use of all of the zero-
copy techniques by passing the data packet directly to the cryptographic hardware. However, if 
the system supports multiple encryption services, a hardware solution may become impractical, 
thus forcing the system to rely on an application-level software solution. 
 
Any software-based solution that requires access to the full data packet, cannot utilize the zero-
copy features with a “no” in the final column of TABLE 1, Lyrannet, Sendfile with DMA 
scatter/gather copy and Splice. Other techniques will allow application level security processing. 
 

We believe that it would be beneficial to develop a set of benchmark scenarios that address 
encryption and filtering technologies at the connection and application level and the recommend 
that the vendors provide performance data with respect to these benchmarks. This can be done 
to help address a wide-variety of proposed performance-improving technologies, which may not 
work well for security-enabled environments, contrary to vendor’s claims. 
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