Intermountain Forest Tree Nutrition Cooperative

Harvest & Post-Harvest Nutrient Mitigation: Effects on soil and tree nutrition, growth and mortality

USFS Funded Add-on Project Update

April 7, 2015

University of Idaho

Project Background

- Northern Idaho dominated by Belt Supergroup Metasediment Rocks
- Metasediment soils typically shallow, coarse textured and nutrient poor relative to basalt or granitic soils
- Forest stands throughout the region are often nutrient deficient – particularly on metasediment soil parent material
- USFS R1 often questioned or on harvest effects on long-term forest health and productivity
- Maintaining soil productivity is a common litigation or appeal point in Forest Service timber harvest projects.

Observed Limitations on the St Joe

Project Initiation

- Premise: Whole-tree harvesting removes nutrients from forest sites
 - Question 1: Does whole-tree harvesting reduce soil nutrient availability and thereby negatively impact plant nutrition?
 - Question 2: Is post-harvest fertilization an effective tool for maintaining forest soil nutrient pools at pre-harvest levels?
 - Question 3: How does harvesting and post harvest nutrient mitigation effect seedling nutrition and productivity?
 - Question 4: How does shifts in nutrient availability impact soil microbial communities, which are critical for nutrient cycling?

Study Site Selection

Rye and Ham Location

Harvest and Post-Harvest Nutrient Mitigation Study

QMD Volume Site BA (sq/ft/ac) (cu/ft/ac) (in) Height (ft) SDI CCF AGE TPA 614 82 7.5 329 172 81 170 5596

Legend

600 ft

Reserve Stand

Reserve Unharvested Units

Google earth

Image Landsat @ 2015 Google

Study Design

Site Biomass & Removal Metrics

Overstory Biomass and Nutrients (lbs acre ⁻¹)									
						UnMerch	Merch		
	Foliage	Branches	Total Crown	Unmerch Bark	Merch Bark	Wood	Wood		
Total Biomass	6,771	13,468	20,239	1,199	5,794	39,816	176,983		
N	74	46	120	2	11	12	52		
К	33	34	67	2	10	48	211		
В	0.17	0.09	0.26	0.01	0.05	0.16	0.70		
Cu	0.14	0.76	0.90	0.01	0.04	0.74	3.3		

Total, Remaining and Removed Nutrient Biomass (lbs acre ⁻¹)							
Nutrient	Total	Remaining ¹	Removed				
Ν	197	67	130				
К	338	58	280				
В	1.2	0.2	1.0				
Cu	4.9	0.8	4.1				

Treatment Applications

Treatment	Application Rates ¹ (lbs ac ⁻¹)	Timing
K, B, Cu Fixed Rate	170K, 3B, 10Cu	Immediate
K, B, Cu Replacement	280K, 1B, 4Cu	Immediate
N, K, B, Cu Replacement	130N, 280K,1B, 4Cu	Immediate
K, B, Cu Delay Replacement	280K, 1B, 4Cu	4 Years
Control (No Fert - harvest)		
Control (No Fert - no harvest)		

Question #1

 Question 1: Does whole-tree harvesting reduce soil nutrient availability and thereby negatively impact plant nutrition?

Early Soil Findings – 2 Yrs Post-Harvest

Mature PICO Foliar Nutrition

Lodgepole pine - Mature

Lodgepole pine - Mature

Question #1 Summary Findings

 Over the monitoring period, whole tree harvesting did not significantly impact soil nutrient pools

- when comparing between similar stand types

 Dominant tree species showed no overall decline in foliar nutrition as a consequence of whole tree harvesting

Question #2

 Is post-harvest fertilization an effective tool for maintaining forest soil nutrient pools at pre-harvest levels?

Soil Nutrient Pools

Soil Nutrient Flux

Question #2 Summary Findings

- Traditional soil extractions indicate that postharvest fertilization significantly increases soil nutrient pools
- Ion exchange resins suggest nutrient amendments are assimilated rapidly (N, B), with only K showing longer-term soil availability
- As shown previously, harvesting did not negatively impact soil nutrient pools during monitoring period

Question #3

 How does harvesting and post harvest nutrient mitigation effect seedling nutrition and productivity?

Seedling PICO Foliar Nutrition

Lodgepole pine - Seedling

Seedling Growth - All Species

Seedling Mortality - By Species

Question #3 Summary Findings

- Nitrogen and boron fertilization temporarily overcame deficiencies for PICO and LAOC, but was not effective over the entire monitoring period
- Potassium was not limiting for lodgepole pine or western larch
- Copper treatments showed a delayed response at best, an analytical method change at worse

Question #3 Summary Findings

- Nitrogen significantly increased overall seedling growth for the first three years, then showed no significant annual growth differences thereafter, relative to other treatments
- Douglas-fir and western white pine showed no caliper-height growth response to N
- Foliar nutrient deficiencies suggest multi-nutrient growth response (wo/N) primarily to B additions

Summation

- No evidence at 5 yrs that whole tree harvesting has:
 - Reduced soil nutrient supply
 - Negatively impacted tree nutrition
- Post-harvest nutrient mitigation temporarily:
 Relieved native soil nutrient limitations
 Increased growth (primarily a N & B response)
- Year 10 measurements (Fall 2017) will reassess trends

Understory Characteristics

Mature LAOC Foliar Nutrition

Western Larch - Mature 1.0 9 Year 1 9 Year 4 0.8 0.6 0.6 0.4 0.2 0.0 ClearCut Uncut_LP Uncut_MC

Western Larch - Mature

Seedling LAOC Foliar Nutrition

Western Larch - Seedling

Western Larch - Seedling

Seedling Caliper Growth

Douglas-fir - Seedling

Seedling Height Growth

Douglas-fir - Seedling

Western larch - Seedling

Nutrient Pool vs Nutrient Flux

