## Toward Developing a Regional IFC Forest Productivity Model



Christopher Chase (Presenter) Nicholas Crookston

## Summary

- Background
- Individual tree analysis
  - RF
  - Linear models
- Whole stand productivity
- Stand subset productivity
- Challenges
- Conclusions / future directions

## Background

- What is Site Productivity?
- Productivity can be directly measured
  - Volume growth/acre/year
- Site Productivity is a little more tricky . . .
  - Volume growth/acre/year the site is capable of producing
    - Difficult to directly measure



# Background

- Proxies are often used for site productivity
  - Site index
  - Habitat type

- Site productivity is very useful
  - Growth and yield models
  - Land appraisals
  - Management strategies



# Background

### Growth and Yield Models

- Many use individual tree models
  - Diameter growth
  - Volume growth
  - FVS
- Whole stand models
  - Less common
  - Ultimate goal of G & Y models



# The Dataset

- Repeated growth measurements (CFI)
- Primarily Northern ID
- Variety of owners
  - USFS
  - IDL
  - Potlatch
  - Etc.



Figure 1: Sample plot locations

# The Dataset

- 4589 Unique Stands / Plots
- Over 1,000,000 Individual tree observations
- Initially . . .
- Much is lost after data screening



Figure 1: Sample plot locations

# Phase 1: Individual Tree

- Response Variable
  - InDDS
    - "…Logarithm of the change in squared insidebark individual tree diameter over a period of 10 years…"
  - Use<mark>d</mark> in FVS
- 110,852 individual tree observations
- Model selection methods
  - Random Forests (RF, Breiman 2001)
  - Best R<sup>2</sup>

## **Random Forests Models**

- Builds multiple regression trees
- Rank explanatory variables on influence / importance
- Examines:
  - Increase in Mean Squared Error
  - Node purity
    - Decrease in residual sum of squares
    - Averaged over all the trees



### **Random Forests Models**

### Four models

- rf1: all predictors were included
- rf2: just site predictors
- rf3: rf2 plus Species and cr.
- rf4: traditional variables used in FVS

| Table 9: Summary | of the | RF | models |
|------------------|--------|----|--------|
|------------------|--------|----|--------|

| RF model | R2   | Best 10 predictors                                                    |
|----------|------|-----------------------------------------------------------------------|
| rf1      | 0.84 | DBH, cr, Species, soilcd, TopHt, baldbh, QMD, pratio, BAPctile, Slope |
| rf2      | 0.39 | slca, slsa, soilcd, pratio, ffp, smrsprpb, map, Geology, gsp, winp    |
| rf3      | 0.54 | Species, cr, pratio, slca, slsa, winp, soilcd, map, adi, Geology      |
| rf4      | 0.83 | cr, Species, DBH, TopHt, elev, slca, baldbh, BAPctile, QMD, PtBAL     |

### RF 1

• rf1: all predictors were included

| Variable | Description                                                          |
|----------|----------------------------------------------------------------------|
| DBH      | Diameter breast height                                               |
| Species  | Tree species                                                         |
| cr       | Crown ratio                                                          |
| soilcd   | Soil class names                                                     |
| pratio   | Ratio of summer precipitation to total precipitation                 |
| TopHt    | Height of the largest 40 trees per acre in the stand                 |
|          | Interaction between DBH and Ratio of basal area in trees larger than |
| baldbh   | subject tree (bal)                                                   |
| QMD      | Quadratic mean diameter                                              |
| BAPctile | Percentile point in the distribution of tree basal areas             |
| Slope    | Slope percentage                                                     |

#### Table 9: Summary of the RF models

RF model R2 Best 10 predictors

rf1 0.84 DBH, cr, Species, soilcd, TopHt, baldbh, QMD, pratio, BAPctile, Slope

## Phase 1: Individual Tree

### **Explanatory Variables**

• Species

### Table 1: Species codes, names, and observation counts

| FVSCode | Common Name        | Name                  | Frequency |
|---------|--------------------|-----------------------|-----------|
| AF      | subalpine fir      | Abies lasiocarpa      | 3085      |
| DF      | Douglas-fir        | Pseudotsuga menziesii | 24769     |
| ES      | Engelmann spruce   | Picea engelmannii     | 3383      |
| GF      | grand fir          | Abies grandis         | 23314     |
| LP      | lodgepole pine     | Pinus contorta        | 5520      |
| MH      | mountain hemlock   | Tsuga mertensiana     | 1986      |
| PP      | ponderosa pine     | Pinus ponderosa       | 2477      |
| RC      | western redcedar   | Thuja plicata         | 13465     |
| WH      | western hemlock    | Tsuga heterophylla    | 8686      |
| WL      | western larch      | Larix occidentalis    | 7481      |
| WP      | western white pine | Pinus monticola       | 16701     |

## Phase 1: Individual Tree

### Soil class names (soilcd)

Table 2: Soil class names (soiled) and observation counts

| Soil class name          | Frequency |
|--------------------------|-----------|
| Basalt                   | 155       |
| Glacial                  | 1427      |
| Loess                    | 261       |
| LoessBasalt              | 803       |
| LoessMetaGranite         | 1001      |
| Metased                  | 426       |
| Other                    | 331       |
| Seds                     | 1180      |
| VolcanicBasalt           | 166       |
| VolcanicGlacial          | 7901      |
| VolcanicLoess            | 2696      |
| VolcanicLoessBasalt      | 2814      |
| VolcanicLoessGlacial     | 8156      |
| VolcanicLoessMetaGranite | 3540      |
| VolcanicLoessMetased     | 523       |
| VolcanicLoessOther       | 239       |
| VolcanicLoessQuartzite   | 1209      |
| VolcanicMetaGranite      | 16208     |
| VolcanicMetased          | 41667     |
| VolcanicOther            | 408       |
| VolcanicQuartzite        | 4919      |
| VolcanicSeds             | 14822     |

### • rf2: just site predictors

| Variable | Description                            |
|----------|----------------------------------------|
| slca     | Slope * cos(pi/180*Aspect)             |
| slsa     | Slope * sin(pi/180*Aspect)             |
| soilcd   | Soil class names                       |
| pratio   | Ratio of summer precip to total precip |
| ffp      | Frost free period                      |
| smrsprpb | Summer spring precipitation balance    |
| winp     | Winter precipitation                   |
| map      | Mean annual precipitation              |
| Geology  | Parent material                        |
| gsp      | Growing season precipitation           |

#### Table 9: Summary of the RF models

RF model R2 Best 10 predictors

rf2 0.39 slca, slsa, soilcd, pratio, ffp, smrsprpb, map, Geology, gsp, winp

• rf3: rf2 plus Species and cr.

| Variable | Description                            |
|----------|----------------------------------------|
| slca     | Slope * cos(pi/180*Aspect)             |
| Species  | Tree species                           |
| cr       | Crown ratio                            |
| slsa     | Slope * sin(pi/180*Aspect)             |
| soilcd   | Soil class names                       |
| pratio   | Ratio of summer precip to total precip |
| winp     | Winter precipitation                   |
| map      | Mean annual precipitation              |
| Geology  | Parent material                        |
| adi      | Annual dryness index                   |

#### Table 9: Summary of the RF models

RF model R2 Best 10 predictors

rf3 0.54 Species, cr, pratio, slca, slsa, winp, soilcd, map, adi, Geology

Geology

### Table 3: Geology variable frequencies

| Geology         | Frequency |
|-----------------|-----------|
| CaMetased       | 24464     |
| Extrusive       | 4895      |
| Glacial         | 10497     |
| Intrusive       | 18375     |
| Metasedimentary | 44045     |
| Other           | 8467      |
| Sedimentary     | 109       |

Table 9: Summary of the RF models

RF model R2 Best 10 predictors

rf3 0.54 Species, cr, pratio, slca, slsa, winp, soilcd, map, adi, Geology

### RF 4

### rf4: traditional variables used in FVS

| Variable | Description                                              |
|----------|----------------------------------------------------------|
| DBH      | Diameter breast height                                   |
| slca     | Slope * cos(pi/180*Aspect)                               |
| Species  | Tree species                                             |
| cr       | Crown ratio                                              |
| TopHt    | Height of the largest 40 trees per acre in the stand     |
| elev     | Elevation                                                |
|          | Interaction between DBH and Ratio of basal area in trees |
| baldbh   | larger than subject tree (bal)                           |
| QMD      | Quadratic mean diameter                                  |
| BAPctile | Percentile point in the distribution of tree basal areas |
|          | Basal area per acre in larger trees measured on the      |
| PtBAL    | subplot same as BAL if there is one plot                 |

#### Table 9: Summary of the RF models

| RF model | R2   | Best 10 predictors                                                |
|----------|------|-------------------------------------------------------------------|
| rf4      | 0.83 | cr, Species, DBH, TopHt, elev, slca, baldbh, BAPctile, QMD, PtBAL |

### **RF Model Summary**



Phase 2: Individual Tree

- Linear and mixed effects models
- Selected based on RF models
- Best model R<sup>2</sup>
- 2 best models presented here

Table 11: Two sequences of adding variables to the lme models[ R2 is reported without random effect

R2 Predictors

```
Sequence 1, adding tree metrics
0.65 Species + soilcd + Species:cr + slca + slsa + pratio + map +
Species:adi +
I(log(DBH)) + I(DBH*DBH) + bal + Species:baldbh
Sequence 2, adding site metrics
0.64 Species + Species:cr + I(log(DBH)) + I(DBH*DBH) + bal +
Species:baldbh + soilcd + slca + slsa + pratio + map
```

## Phase 2: Individual Tree



|              | •    |                                                        |
|--------------|------|--------------------------------------------------------|
| Linear model | R2   | R2 when predictions include random<br>"StandID" effect |
| lm1          | 0.23 | n/a                                                    |
| lme1         | 0.10 | 0.48                                                   |
| lm2          | 0.69 | n/a                                                    |
| lme2         | 0.65 | 0.82                                                   |
| lme3         | 0.64 | 0.82                                                   |
| lme4         | 0.64 | 0.82                                                   |

Table 10: Pseudo-R-square (R2) values for the linear models in table 8

- All models tested here
- Random "StandID" effect explaining a lot of variation
  - Not explained by other variables

# Individual Tree Conclusions

- Growth models can benefit from including soil and climate data
- Stand and tree characteristics often out-weight site characteristics
  - Site characteristics are indirectly incorporated in stand and tree measurements
- Quantifying inter-tree competition was difficult on large fixed area plots
  - "StandID" effect?
- Whole stand productivity could be explored.

- Same data set
- Summarized and examined in different ways
- 4,308 stands initially
- 12% 20% available after screening
  - Stands that were treated with fertilizer
  - Negative or 0 growth

Data Summaries

- DBH, Height, Volume calculated for every tree
- Every measurement period
- Expanded to a per acre value
- Means for each stand to represent productivity
- Standardized to per year
  - Different measurement period lengths

### Model and Variable selection

- 3 parts
- First chose model with the best fit via AICC selection
- Removed insignificant variables ( $\alpha < 0.1$ )
- Tested interactions between significant variables

- Whole stand volume growth (ft<sup>3</sup>/acre/year)
- Including everything . . .  $R^2 = 0.56!$

| Response: mean. vol. growth. yr |        |     |          |            |       |
|---------------------------------|--------|-----|----------|------------|-------|
| -                               | Sum Sq | Df  | F value  | Pr(>F)     |       |
| (Intercept)                     | 571    | 1   | 0. 2718  | 0.6024906  |       |
| El evFt                         | 32129  | 1   | 15. 2918 | 0.0001115  | * * * |
| cub.ft.acre                     | 70483  | 1   | 33. 5467 | 1.599e-08  | * * * |
| qmd                             | 38516  | 1   | 18. 3319 | 2.425e-05  | * * * |
| logit.shade                     | 8338   | 1   | 3.9684   | 0.0471717  | *     |
| El evFt: DEM_Sl opePct          | 21862  | 1   | 10.4052  | 0.0013802  | * *   |
| DEM_Sl opePct: tp. acre         | 27307  | 1   | 12.9969  | 0.0003593  | * * * |
| cub. ft. acre: SlopePct         | 36598  | 1   | 17.4190  | 3.823e-05  | * * * |
| cub.ft.acre:DF_SI               | 92848  | 1   | 44. 1915 | 1.205e-10  | * * * |
| cub.ft.acre:tp.acre             | 19223  | 1   | 9. 1494  | 0.0026797  | * *   |
| qmd: Mat                        | 12258  | 1   | 5.8341   | 0.0162520  | *     |
| qmd: DEM_Sl opePct              | 30280  | 1   | 14.4120  | 0.0001742  | * * * |
| DEM_Sl opePct: curt. rd         | 10578  | 1   | 5.0347   | 0. 0254955 | *     |
| DF_SI:curt.rd                   | 94144  | 1   | 44.8085  | 9.125e-11  | * * * |
| cub.ft.acre:curt.rd             | 46801  | 1   | 22.2754  | 3. 472e-06 | * * * |
| qmd: curt. rd                   | 33538  | 1   | 15.9626  | 7.942e-05  | * * * |
| DF_SI: sdi                      | 104879 | 1   | 49.9178  | 9. 293e-12 | * * * |
| cub.ft.acre:sdi                 | 44641  | 1   | 21.2471  | 5.743e-06  | * * * |
| logit. shade: Mat               | 16244  | 1   | 7.7316   | 0.0057323  | * *   |
| El evFt: l ogi t. shade         | 7880   | 1   | 3.7506   | 0.0536270  | •     |
| qmd:logit.shade                 | 21468  | 1   | 10.2178  | 0.0015230  | * *   |
| logit. shade: curt. rd          | 26262  | 1   | 12.4995  | 0.0004642  | * * * |
| l ogi t. shade: sdi             | 25508  | 1   | 12.1405  | 0.0005587  | * * * |
| $\operatorname{Resi}$ dual s    | 705946 | 336 |          |            |       |

- Got a little messy
- Just look at site factors . . . R<sup>2</sup> = 0.09

Coefficients:Estimate Std. Error t value Pr(>|t|)(Intercept)1000.98241162.985536.1421.45e-09\*\*\*dd5-0.292770.05517-5.3061.55e-07\*\*\*smrsprpb-407.9640153.33885-7.6497.70e-14\*\*\*El evFt-0.073850.01726-4.2792.17e-05\*\*\*

- Again, stand characteristics very important
- Predicting site productivity (ft<sup>3</sup>/acre/year) is difficult
  - Particularly when only using site variables
    - Climate, topography, soils
- Other measures of productivity?

Response variables

Largest 10 trees per plot
Volume growth
Largest 10 DF per plot
Height growth
Diameter growth

Include one stand explanatory variable

• QMD

- 10 Largest trees per plot
  - Diameter growth R<sup>2</sup> = 0.55





- 10 Largest trees per plot
  - Volume growth  $R^2 = 0.77$

| Response: mean. dom. vg. yr |          |     |          |                  |       |
|-----------------------------|----------|-----|----------|------------------|-------|
|                             | Sum Sq   | Df  | F value  | <b>Pr(&gt;F)</b> |       |
| El evFt                     | 7.745    | 1   | 35.035   | 7. 933e-09       | * * * |
| Mat                         | 5. 585   | 1   | 25.266   | 8. 104e-07       | * * * |
| qmd                         | 206. 962 | 1   | 936. 228 | < 2. 2e-16       | * * * |
| logit. shade                | 2.359    | 1   | 10.673   | 0. 001199        | * *   |
| Resi dual s                 | 74.939   | 339 |          |                  |       |



- 10 fastest height growing trees
  - Volume growth  $R^2 = 0.30$

Response: fast. mean. vg. yr Df Sum Sq F value Pr(>F)(Intercept) 280.2 40.7850 3.042e-10 1 \* \* \* qmd 2031.1 1 295.5997 < 2.2e-16\* \* \* qmd: AshClass 105.7 2 7.6893 0.0004962 \* \* \* Resi dual s 4961.0 722



AshClass

## Conclusions

- Total stand site productivity is challenging to predict / model
  - Stand characteristics are important
- Looking at certain trees or classes in a stand could be representative of a site productivity
- Productivity of a class can be predicted fairly accurately with only a few site variables
  - Largest 10 trees
- Continue to look at volume growth as a measure of site productivity



- Mark Coleman, Mark Kimsey, Terry Shaw for guidance and funding
- Cooperators for providing the wealth of data
- Nick Crookston for the report and hard work



# Questions?

