Toward Developing a Regional IFC Forest Productivity Model

Christopher Chase (Presenter)
Nicholas Crookston

Summary

- Background
- Individual tree analysis
- RF
- Linear models
- Whole stand productivity
- Stand subset productivity
- Challenges
- Conclusions / future directions

Background

- What is Site Productivity?
- Productivity can be directly measured
- Volume growth/acre/year
- Site Productivity is a little more tricky . . .
- Volume growth/acre/year the site is capable of producing
- Difficult to directly measure

Background

- Proxies are often used for site productivity
- Site index
- Habitat type
- Site productivity is very useful
- Growth and yield models
- Land appraisals
- Management strategies

Background

Growth and Yield Models

- Many use individual tree models
- Diameter growth
- Volume growth
- FVS
- Whole stand models
- Less common
- Ultimate goal of G \& Y models

The Dataset

- Repeated growth measurements (CFI)
- Primarily Northern ID
- Variety of owners
- USFS
- IDL
- Potlatch
- Etc.

Figure 1: Sample plot locations

The Dataset

- 4589 Unique Stands / Plots
- Over 1,000,000 Individual tree observations
- Initially ...
- Much is lost after data screening

Figure 1: Sample plot locations

Phase 1: Individual Tree

- Response Variable
- InDDS
- "...Logarithm of the change in squared insidebark individual tree diameter over a period of 10 years..."
- Used in FVS
- 110,852 individual tree observations
- Model selection methods
- Random Forests (RF, Breiman 2001)
- Best R^{2}

Random Forests Models

- Builds multiple regression trees
- Rank explanatory variables on influence / importance
- Examines:
- Increase in Mean Squared Error
- Node purity
- Decrease in residual sum of squares
- Averaged over all the trees

Random Forests Models

Four models

- rf1: all predictors were included
- rf2: just site predictors
- rf3: rf2 plus Species and cr.
- rf4: traditional variables used in FVS

Table 9: Summary of the RF models

RF model	R2	Best 10 predictors
rf1	0.84	DBH, cr, Species, soilcd, TopHt, baldbh, QMD, pratio, BAPctile, Slope
rf2	0.39	slca, slsa, soilcd, pratio, ffp, smrsprpb, map, Geology, gsp, winp
rf3	0.54	Species, cr, pratio, slca, slsa, winp, soilcd, map, adi, Geology
rf4	0.83	cr, Species, DBH, TopHt, elev, slca, baldbh, BAPctile, QMD, PtBAL

RF 1

- rf1: all predictors were included

Variable	Description
DBH	Diameter breast height
Species	Tree species
cr	Crown ratio
soilcd	Soil class names
pratio	Ratio of summer precipitation to total precipitation
TopHt	Height of the largest 40 trees per acre in the stand
baldbh	Interaction between DBH and Ratio of basal area in trees larger than subject tree (bal)
QMD	Quadratic mean diameter
BAPctile	Percentile point in the distribution of tree basal areas
Slope	Slope percentage

Table 9: Summary of the RF models
RF model R2 Best 10 predictors
rf1 0.84 DBH, cr, Species, soilcd, TopHt, baldbh, QMD, pratio, BAPctile, Slope

Phase 1: Individual Tree

Explanatory Variables

- Species

Table 1: Species codes, names, and observation counts

FVSCode	Common Name	Name	Frequency
AF	subalpine fir	Abies lasiocarpa	3085
DF	Douglas-fir	Pseudotsuga menziesii	24769
ES	Engelmann spruce	Picea engelmannii	3383
GF	grand fir	Abies grandis	23314
LP	lodgepole pine	Pinus contorta	5520
MH	mountain hemlock	Tsuga mertensiana	1986
PP	ponderosa pine	Pinus ponderosa	2477
RC	western redcedar	Thuja plicata	13465
WH	western hemlock	Tsuga heterophylla	8686
WL	western larch	Larix occidentalis	7481
WP	western white pine	Pinus monticola	16701

Phase 1: Individual Tree

Soil class names (soilcd)

Table 2: Soil class names (soilcd) and observation counts
Soil class name Frequency
Basalt155
Glacial 1427
Loess 261
LoessBasalt 803
LoessMetaGranite 1001
Metased 426
Other 331
Seds 1180
VolcanicBasalt 166
VolcanicGlacial 7901
VolcanicLoess 2696
VolcanicLoessBasalt 2814
VolcanicLoessGlacial 8156
VolcanicLoessMetaGranite 3540
VolcanicLoessMetased 523
VolcanicLoessOther 239
VolcanicLoessQuartzite 1209
VolcanicMetaGranite 16208
VolcanicMetased 41667
VolcanicOther 408
VolcanicQuartzite 4919
VolcanicSeds 14822

RF2

- rf2: just site predictors

Variable	Description
slca	Slope ${ }^{*} \cos \left(\mathrm{pi} / 180^{*}\right.$ Aspect)
slsa	Slope $* \sin \left(\mathrm{pi} / 180^{*}\right.$ Aspect)
soilcd	Soil class names
pratio	Ratio of summer precip to total precip
ffp	Frost free period
smrsprpb	Summer spring precipitation balance
winp	Winter precipitation
map	Mean annual precipitation
Geology	Parent material
gsp	Growing season precipitation

Table 9: Summary of the RF models
RF model R2 Best 10 predictors
rf2 0.39 slca, slsa, soilcd, pratio, ffp, smrsprpb, map, Geology, gsp, winp

RF 3

- rf3: rf2 plus Species and cr.

Variable	Description
slca	Slope * cos(pi/180*Aspect)
Species	Tree species
cr	Crown ratio
slsa	Slope * sin(pi/180*Aspect)
soilcd	Soil class names
pratio	Ratio of summer precip to total precip
winp	Winter precipitation
map	Mean annual precipitation
Geology	Parent material
adi	Annual dryness index

Table 9: Summary of the RF models

RF 3

- Geology

Table 3: Geology variable frequencies

Geology	Frequency
CaMetased	24464
Extrusive	4895
Glacial	10497
Intrusive	18375
Metasedimentary	44045
Other	8467
Sedimentary	109

Table 9: Summary of the RF models

RF model R2	Best 10 predictors	
rf3	0.54	Species, cr, pratio, slca, slsa, winp, soilcd, map, adi, Geology

RF 4

rf4: traditional variables used in FVS

Variable	Description
DBH	Diameter breast height
slca	Slope * $\cos \left(\mathrm{pi} / 180^{*}\right.$ Aspect)
Species	Tree species
cr	Crown ratio
TopHt	Height of the largest 40 trees per acre in the stand
elev	Elevation
baldbh	Interaction between DBH and Ratio of basal area in trees larger than subject tree (bal)
QMD	Quadratic mean diameter
BAPctile	Percentile point in the distribution of tree basal areas
PtBAL	Basal area per acre in larger trees measured on the subplot same as BAL if there is one plot

Table 9: Summary of the RF models
RF model R2 Best 10 predictors
rf4 0.83 cr, Species, DBH, TopHt, elev, slca, baldbh, BAPctile, QMD, PtBAL

RF Model Summary

Phase 2: Individual Tree

- Linear and mixed effects models
- Selected based on RF models
- Best model R^{2}
- 2 best models presented here

Table 11: Two sequences of adding variables to the lme models[R2 is reported without random effect
R2 Predictors
Sequence 1, adding tree metrics
0.65 Species + soilcd + Species:cr + slca + slsa + pratio + map + Species:adi +
$I(\log (\mathrm{DBH}))+\mathrm{I}(\mathrm{DBH} * \mathrm{DBH})+\mathrm{bal}+\mathrm{Species}: \mathrm{baldbh}$
Sequence 2, adding site metrics
0.64 Species + Species:cr + I(log(DBH)) + I(DBH*DBH) + bal + Species:baldbh + soilcd + slca + slsa + pratio + map

Phase 2: Individual Tree

Itrie2.1

Table 10: Pseudo-R-square (R2) values for the linear models in table 8

Linear model	R2	R2 when predictions include random "StandID" effect

$\operatorname{lm} 1$	0.23	n / a
$\operatorname{lm} \mathrm{e} 1$	0.10	0.48
$\operatorname{lm} 2$	0.69	n / a
$\ln 22$	0.65	0.82
$\operatorname{lme} 3$	0.64	0.82
$\operatorname{lme} 4$	0.64	0.82

- All models tested here
- Random "StandID" effect explaining a lot of variation
- Not explained by other variables

Individual Tree Conclusions

- Growth models can benefit from including soil and climate data
- Stand and tree characteristics often out-weight site characteristics
- Site characteristics are indirectly incorporated in stand and tree measurements
- Quantifying inter-tree competition was difficult on large fixed area plots
- "StandID" effect?
- Whole stand productivity could be explored. . .

Whole Stand Productivity

- Same data set
- Summarized and examined in different ways
- 4,308 stands initially
- $12 \%-20 \%$ available after screening
- Stands that were treated with fertilizer
- Negative or 0 growth

Whole Stand Productivity

Data Summaries

- DBH, Height, Volume calculated for every tree
- Every measurement period
- Expanded to a per acre value
- Means for each stand to represent productivity
- Standardized to per year
- Different measurement period lengths

Whole Stand Productivity

Model and Variable selection

- 3 parts
- First chose model with the best fit via AICC selection
- Removed insignificant variables $(\alpha<0.1)$
- Tested interactions between significant variables

Whole Stand Productivity

- Whole stand volume growth (ft ${ }^{3} /$ acre/year)
- Including everything . . . $\mathrm{R}^{2}=0.56$!

		Df	al ue		
nt er cept)	571	1	0. 2718	0. 6024906	
El evFt	32129	1	15. 2918	0. 0001115	
cub.ft.ac	70483	1	33.5467	1. 599e-08	
qnd	38516	1	18. 3319	2. $425 \mathrm{e}-05$	
I ogit. shade	8338	1	3. 9684	0. 0471717	
El evFt : DEM SI opeP	21862		10. 4052	0. 0013802	
DEM SI opePct:tp. acre	27307	1	12. 9969	0. 0003593	
cub.ft. acre: SI opePct	36598		17. 4190	3. $823 \mathrm{e}-05$	
cub.ft.acre: DF_SI	92848		44. 1915	1. 205e-10	
cub.ft.acre:tp.ac	19223	1	9. 1494	0. 0026797	
qrod: Mat	12258	1	5. 8341	0. 0162520	
qnad: DEM SI opePct	30280		14. 4120	0. 0001742	
DEM SI opePct: curt.rd	10578	1	5. 0347	0. 0254955	
DF_SI : curt.rd	94144		44. 8085	9. 125e-11	
cub.ft.acre: cur	46801		22. 275	3. $472 \mathrm{e}-06$	
qnod: curt.rd	33538	1	15. 9626	7. 942e- 05	
DF_SI : sdi	104879		49. 9178	9. 293e-12	
cub.ft.acre: sdi	44641		21. 2471	5. 743e-06	
I ogit. shade: Mat	16244	1	7. 7316	0. 0057323	
El evFt: I ogit.shad	7880	1	3. 7506	0. 0536270	
qud: I ogit. shade	21468	1	10. 2178	0. 0015230	
I ogit. shade: curt.rd	26262	1	12. 4995	0. 0004642	
I ogit. shade: sdi	25508	1	12.	0005587	
Resi dual s	705946				

Whole Stand Productivity

- Got a little messy
- Just look at site factors . . . $\mathrm{R}^{2}=0.09$

	Esti mate	Std. Error	val ue	$\operatorname{Pr}(>\|t\|)$	
(I nt er cept)	1000. 98241	162. 98553	6. 142	1. $45 \mathrm{e}-09$	
dd5	- 0.29277	0. 05517	-5. 306	1. 55e- 07	***
smspr pb	- 407. 96401	53. 33885	-7. 649	7. 70e-14	
El evFt	-0.07385	0. 01726	-4. 279	2. $17 \mathrm{e}-05$	

- Again, stand characteristics very important
- Predicting site productivity (ft³/acre/year) is difficult
- Particularly when only using site variables
- Climate, topography, soils
- Other measures of productivity?

Other Measures of Site Productivity

Response variables

- Largest 10 trees per plot \longrightarrow • Volume growth
- Largest 10 DF per plot $\longrightarrow \bullet$ Height growth
- Diameter growth
- Fastest 10 growing trees (height)

Include one stand explanatory variable

- QMD

Other Measures of Site Productivity

- 10 Largest trees per plot
- Diameter growth $\mathrm{R}^{2}=0.55$

Response: mean. dom dg. yr

Other Measures of Site Productivity

- 10 Largest trees per plot
- Volume growth $\mathrm{R}^{2}=0.77$

Response: mean. domvg. yr

	Sum Sq	Df	F val ue	$\operatorname{Pr}(>F)$	
El evFt	7.745	1	35.035	$7.933 \mathrm{e}-09$	$* * *$
Mat	5.585	1	25.266	$8.104 \mathrm{e}-07$	$* * *$
qrad	206.962	1	936.228	$<2.2 \mathrm{e}-16$	$* * *$
I ogit. shade	2.359	1	10.673	$0.001199^{* *}$	
Resi dual s	74.939	339			

Other Measures of Site Productivity

- 10 fastest height growing trees
- Volume growth $\mathrm{R}^{2}=0.30$

Response: fast. mean. vg. yr

	Sum Sq	Df	F val ue	$\operatorname{Pr}(>F)$	
(I nt er cept)	280.2	1	40.7850	$3.042 \mathrm{e}-10$	$* * *$
qnd	2031.1	1	295.5997	$<2.2 \mathrm{e}-16$	$* * *$
qnd: AshCl ass	105.7	2	7.6893	$0.0004962 * * *$	
Resi dual s	4961.0	722			

Conclusions

- Total stand site productivity is challenging to predict / model
- Stand characteristics are important
- Looking at certain trees or classes in a stand could be representative of a site productivity
- Productivity of a class can be predicted fairly accurately with only a few site variables
- Largest 10 trees
- Continue to look at volume growth as a measure of site productivity

Acknowledgements

- Mark Coleman, Mark Kimsey, Terry Shaw for guidance and funding
- Cooperators for providing the wealth of data
- Nick Crookston for the report and hard work

Questions?

