IFC SDIMAX LODGEPOLE PINE MODEL:

EVALUATION OF SITE EFFECTS ON THE FRONTIER BOUNDARY

MARK KIMSEY 2017 ANNUAL MEETING

STAND DENSITY INDEX REVIEW

- For a given average tree size, there is a limit (maximum) to the number of trees per acre that may coexist in a stand
- % of max SDI an index of intra-tree competition for site resources
- Shifts in the slope & intercept reflect changes in site carrying capacity – site quality?
- Used to define upper and lower limit management zones

University of Idaho

IFC PARTNER CONTRIBUTION

LODGEPOLE PINE SIZE-DENSITY PLOT

ECOLOGY OF LODGEPOLE

- Three major subspecies two within the INW
- Wide geographic and physiographic amplitude
- Niches:
 - Seral species to more shade tolerant tree species
 - Relatively stable co-dominant with one or more other species
 - Pure, climax only tree species dominant
- Physiology varies by ecological niche and geography

SITE & STAND CHARACTERISTICS

SITE & STAND CHARACTERISTICS

SITE & STAND CHARACTERISTICS

STOCHASTIC FRONTIER REGRESSION

- Econometrics fitting technique used to study production efficiency, cost and profit frontiers
- SFR Model:
 - $Ln(TPA) = \alpha + \beta^* Ln(QMD) + v u$
 - v = two-sided random error (OLS error)
 - u = non-negative random error (Frontier error)
 - Maximum likelihood techniques estimate the frontier
- Fitting performed using SAS PROC QLIM

MODEL VARIABLE SPECIFICATION

• Stepwise model selection using the basic formula:

 $lnTPA = \beta_0 + \beta_1(lnQMD) + \dots + \beta_n(factor n)$

- Stand characteristics (Q,P) QMD, logit(LP BA proportion)
- Geographic (G) Latitude, Longitude
- Topographic (T) Slope, sin/cos(aspect), Elevation
- Climatic (C) DD5, ADI, FFP, MTCM, SMSPRPB
- Soil Parent Material (S) Geology, Volcanic Ash

MODEL SELECTION – AIC/LLR TESTS

		Stochastic Frontier Regression Statistics					
Species	Model*	σ²	σ^2_{v}	σ² _u	γ (σ² _u / σ²)	AIC	LLR**
Lodgepole pine	Q	1.333	0.081	1.252	0.939	52730	-
	Q+P	1.312	0.083	1.229	0.937	52165	206
	Q+P+T	1.283	0.079	1.204	0.942	51453	714
	Q+P+T+G	1.242	0.078	1.164	0.937	50761	698
	Q+P+G+C***	1.229	0.073	1.156	0.941	50216	548
	Q+P+G+C+S	1.220	0.073	1.147	0.940	50141	80

* Q = QMD, P = % LP BA, T = Topography, G = Geography, C = Climate, S = Soil

**All sequential models to Model Q significant at α =0.05, Chi-square distribution

** Topography drops from model with climate variables

FINAL MODEL SELECTION

• Stochastic Frontier Regression Equation:

 $lnTPA = \beta_0$

$$-\beta_1(lnQMD) - \beta_2\left(logit\left(\frac{PBA}{1-PBA}\right)\right)$$
 Stand

$$-\beta_3(Latitude - 42) + \beta_4(Abs(Longitude - 111))$$
 Geography

$$-\beta_5 \left(\frac{DD5}{1000}\right) - \beta_6 (ADI) + \beta_7 (FFP)$$
Climate

$$-\beta_8(CaSedimentary, 0) - \beta_9(Extrusive, 0)$$
 Soil

STAND & SOIL MARGINAL EFFECTS

GEOGRAPHIC MARGINAL EFFECTS

CLIMATE MARGINAL EFFECTS

DEFINING THE SITE TYPE FRONTIER

- Blue Line:
 - 75th %tile Site Conditions @ 90% Purity
 - SDImax = 686 TPA
- Yellow Line:
 - 50th %tile Site Conditions @ 90% Purity
 - SDImax = 486 TPA

University of Idaho

ACCESS & RECOMMENDED USE

- Input layers and equation will be uploaded to OwnCloud\IFC
- Create an acre grid of your ownership and attribute the grid cell with species specific density drivers
- In your DBS, create an algorithm to select which species model to use based on dominant or desired species
- Calculate SDImax/ac for selected species using the appropriate SFR equation, setting the QMD and PBA values appropriately
- Average SDImax/ac values for each stand

THANK YOU – ANY QUESTIONS?

Contact Info:

Mark Kimsey IFC Research Staff <u>mkimsey@uidaho.edu</u> (208) 885-7520

