Maximum stand-density model development and validation

Mark Coleman, Mark Kimsey & Roberto Volfovicz-Leon

University of Idaho

IFTNC Site Type Initiative

Site Type Initiative

- Phase I: Data assembly, model development, validation
- Phase II: Field studies

Goal of forest stand density management studies

Accurately predict site-specific maximum stand density across the Inland Northwest to meet landowner management objectives

- Forest size-density: conventions, assumptions
- Modeling approach
- Factors controlling size-density functions
- Validating the unmeasurable
- Using the predictions

The size-density function

- Non-linear exponential function
- Log transformed into linear function

 $y = \beta_0 e^{\beta_1 x}$ In(TPH) = $\beta_0 + \beta_1 ln(QMD)$

Upper boundary defines maximum stand density The self-thinning line

- Two conventions for tracking stand development
- Diameter increases until stand nears maximum stand density i.e. imminent mortality growth phase

SDImax Reineke (1933)

Assumes:

- Slope is universal (-1.605)
- Intercept is constant for a given species and region
 - i.e. not affected by site factors

Are the assumption valid?

- Slope is not universally -1.605
- Site does affect the intercept

Objective of modeling approach:

Identify and employ the most effective approach to define the principal factors that control the size-density function

Data assembly

Dataset: >110,000 plots 4+ million trees 28 tree species

Associated Input: Sand/tree level, climate, geology, topography

Cooperator Data Suppliers:

Bennett Lumber, BLM, Forest Capital, Hancock, IDL, Inland Empire Paper, Stimson, USFS-FIA/CVS, WA DNR

Fitting the size-density function limit The self-thinning line

Ordinary least squares regression (OLS)

Fit a line through all points, then shift to the top edge

Select stands with highest SDI, then fit a line through those points

Fitting the size-density line with Stochastic Frontier Regression (SFR)

The SFR Model:

 $Ln(TPA) = \beta_0 + \beta_1 * Ln(QMD) + v - u$

v = two-sided random error

u = non-negative random error

Maximum likelihood techniques are used to estimate the frontier

- Combined error defines the frontier
- Multi-vairate analysis possible
- Describes variability above the size-density line

SFR detects species differences in max SDI

Basic model applied to each of four species:

 $Ln(TPA) = b_0 + b_1 \cdot Ln(QMD) + v + u$

Select when target species is more than 20% of plot basal area So, includes abundant mixed species stands

Testing site factors:

Are the self-thinning lines affected by soil parent material ?

Rock-type covariates added to individual species models:

	Rock Type	Douglas-fir		
$Ln(TPA) = b_0 +$		Intercept	Slope	SDI Max
$b_1 \cdot Ln(QMD) +$				
b ₂ , · <i>Rock Type</i> , +	CaMetased	9.96	-1.55	596
V + U	Extrusive	10.22	-1.66	606
	Glacial	9.84	-1.53	557
	Intrusive	9.85	-1.53	568
	Metasedimentary	9.78	-1.48	588
	Sedimentary	9.88	-1.52	585

Soil parent material affects both slope and intercept of self-thinning line

Testing site factors:

Are the self-thinning lines affected by physiography and climate?

 $Ln(TPA) = b_0 + b_1 \cdot Ln(QMD) + b_{2i} \cdot Rock Type_i + b_{3j} \cdot Physiography_j + b_{4k} \cdot Climate_k + v + u$

Physiography:

- Elevation
- Slope
- Aspect

Climate:

• Clusters of variables represented by:

0	Annual degree-days >5 °C:	dd5
0	frost-free period:	ffp
0	Mean temp coldest month:	mtcm
0	Annual Dryness Index:	adi
0	(temp/precip)	

Sumer/Spring precip balance : sspb

Elevation

Mean temperature of coldest month, mtcm

Percent basal area influences individual species models

- Implies that occurrence of other species increases maximum density over that in pure stands
- Must account for the influence of other species when present

Mixed species model

• Full model includes rocks, physiography, climate and species

 $Ln(TPA) = b_0 + b_1 \cdot Ln(QMD) + b_2 \cdot Rock Type_i + b_{3j} \cdot Physiography_j + b_{4k} \cdot Climate_k + b_{5m} \cdot Species BA_m + v + u$

 10% of data reserved for validation

Individual species estimates obtained by specifying pure stands

• Greater stocking is possible in mixed species stands

Validating model estimates

- Measuring maximum density is difficult
- Must be observed in stands that are naturally self-thinning
- Repeated measurements are most helpful
- Even then, differentiating stands may not be at 100% stocking

Validation

Compare 10% reserved data to model estimates

- Mean of upper quartile is 100% SDI max
- Or, 12.5% of plots have stocking levels above SDImax
- Consequence of SFR error terms

Validation

Compare 10% reserved data to model estimates

Select stands with highest or lowest MTCM

Select pure Douglas-fir for comparison with mixed stands

Validation with long-term measurement plots Forest Service 100-yr data

Testing the assumptions

What precision is required?

- Species predominately controls maximum density models
- Site has some influence

• The slope is not universally -1.605

Implications from maximum density predictions

- Known factors control stocking, and therefore productivity rates and yields
- Species mix alters stocking more than site factors
- Accounting for other species becomes important
 - Especially when it's hard to maintain pure stands
- Density management diagrams
 - Slope adjustments necessary
 - Intercept differences among sites are more subtle
- Temperature and elevation do define stocking; therefore:
 - Climate change will affect stocking
 - IFTNC maximum density models predict climate change effect for a give species mix

Next steps

- Model and data adjustments to improve validation
 - Adjust SFR parameters to push estimates closer to frontier
 - Screen dataset for outlier plots
- Potential long-term datasets are important for validation
 - BC Ministry
 - Updated IDL Continuous Inventory Plots
 - Others?