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Abstract. Many migratory species traverse highly heterogeneous landscapes, often including habitats
that have been altered by human activities. Modeling migration dynamics is challenging because individ-
ual variability in behavior at multiple spatial and temporal scales can produce complex, multi-modal dis-
tributions in migration travel times. Moreover, behavioral responses to conditions encountered en route
can affect habitat-specific migration rates which then influence bioenergetic costs and mortality risk over
the entire migration. To quantify impacts of conditions within migration corridors, refined analyses of
behavior are needed. In this study, we developed a behavior-based simulation model that predicts
individual adult salmon migration duration over 24 distinct river reaches totaling 922 km, including eight
hydropower dams. The study population, threatened Snake River spring/summer Chinook salmon
(Oncorhynchus tshawytscha), had observed migration durations ranging from 23 to 108 d. In a novel
application of N-dimensional mixture models, which can account for subpopulations that behave differ-
ently, we simulated “fast” vs. “slow” travel through migration reaches. The proportion of migrants in each
category was determined by diel, seasonal, and proximate river conditions, which captured the temporally
shifting bimodal patterns in the data. We fit reach-specific models with data from 2188 tagged salmon
migrating in 2000–2013 and validated the cumulative model with additional data through 2015. By
accounting for multiple behaviors in this way, the model successfully recreated the breadth and variability
in total travel times to within 3% of observed durations throughout the 5th–95th quantiles. En route mor-
tality appeared to account for the loss of the slowest fish that encountered record-breaking high tempera-
tures in 2015. For Chinook salmon, this combined reach and cumulative travel-time model provides an
opportunity to link high-resolution behavioral data to individual fitness and population-level impacts on
viability. More generally, the N-dimensional modeling approach offers a framework for assessing the
cumulative impacts of alternative behaviors at small spatial and temporal scales. Improved accounting of
changes in migration rate in response to local conditions will aid recovery efforts for species of concern
traversing complex migration corridors.
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INTRODUCTION

Complex migratory behavior has confounded
conservation efforts for many highly mobile spe-
cies. Migratory taxa that have declined or dis-
appeared include mammals, birds, and fish (Both
et al. 2006, Wilcove and Wikelski 2008), with
long-distance migrants showing more severe
declines than related non-migratory species (San-
derson et al. 2006). Energetic cost and mortality
risk during migration can be naturally high and
particularly vulnerable to amplification due to
anthropogenic impacts or a changing environ-
ment (Both et al. 2006, Rand et al. 2006, Berthold
et al. 2013). In reproductive migrations, excessive
energetic depletion or failure to complete the
migration can constitute total loss of lifetime
fitness, particularly for semelparous species.

Detailed understanding of links between migra-
tory costs and population declines has proven elu-
sive for even the best-studied species (Wilcove
and Wikelski 2008). Information gaps exist
because both individual behaviors and environ-
mental conditions are complex and challenging to
quantify over long migrations. Migrants often
encounter multiple habitats and express diverse
behaviors both within and between different habi-
tat types. Migrating animals may travel at differ-
ent rates (Noad and Cato 2007) or make multiple
stops of varying duration as they confront trade-
offs between migration speed and energetic
demands or mortality risks (Alerstam et al. 2003,
Lindstr€om et al. 2016). Individual responses to
conditions encountered en route can produce
complex patterns in cumulative travel times that
are difficult to characterize with standard statisti-
cal distributions.

Nonetheless, characterizing behavioral and
temporal complexity is important because time
spent in particular habitats can have a dispropor-
tionate effect on fitness via energy budgets and
immediate or delayed mortality risks (Weimer-
skirch et al. 2015). Typically, longer duration
increases energetic costs or exposure to mortality
agents or creates a mismatch between arrival
timing and conditions at breeding sites (Both
et al. 2006). Conversely, slowed migration and
stopovers can allow individuals to shelter from
unfavorable conditions or improve their physio-
logical status. Accurate estimates of migration
fitness costs require development of models that

explicitly link variation in behavior, timing, and
migration duration to environmental conditions.
A common approach to modeling the energetic

cost of migration assumes that animals travel at a
constant speed (the average of observed rates)
within a migration. Alternative rest-to-travel ratios
might be compared to determine optimal strate-
gies (Braithwaite et al. 2015), or energetic require-
ments under changing environmental conditions
(Roff 1991, Southwood and Avens 2010, Villegas-
Amtmann et al. 2015). However, rapid advances
in tag technology and accumulation of telemetry
data show highly variable migration rates within
and among individuals in many species (Webster
et al. 2002, Jellyman 2009, Crossin et al. 2014, Hus-
sey et al. 2015). Mechanistic models of migration
rate in response to environmental conditions are
needed to explore complex migration conditions
and tradeoffs (Costa et al. 2012). Here, we take a
novel approach to the incorporation of intra- and
inter-individual changes in behavior during
migration, which is to allow mixture models to
describe different patterns in migration rate.
Mixture models allow a sample population to

be described by the sum of multiple statistical dis-
tributions or moments (McLachlan and Peel 2000,
Skalski and Gilliam 2003). Because mixture models
are not limited to a single statistical distribution
for different groups, they provide an intuitive way
to incorporate individual or group choices into
models of population migrations. Such models are
particularly useful for characterizing movement
patterns as individuals alternate among behaviors,
such as resting/feeding vs. active migration, breed-
ing vs. non-breeding behavior, or migration diver-
sions in response to anthropogenic disturbances
(Skalski and Gilliam 2000, 2003). State-space mod-
els have also been used to detect these distinctions,
or hidden states (Jonsen et al. 2006, Breed et al.
2009, Mills Flemming et al. 2010). Our approach is
similar except that we do not differentiate observa-
tion error from process error, which simplifies the
model, making it easier to fit. We justifiably
assume observation error is low because of the fine
scale at which radiotelemetry data were collected.
Our model also takes the additional step of linking
behavioral states and the characteristics of those
states to dynamic environmental conditions.
Mechanistic models such as these that relate
movement duration to habitat use are needed to
test hypotheses regarding energetic or other
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fitness-related costs under alternative future
scenarios.

Salmon case study
Pacific salmon (Oncorhynchus spp.) offer an illu-

minating example where adequate data exist to
improve our modeling toolbox for studying
migratory behavior. Of 52 identified salmon and
steelhead Oncorhynchus mykiss evolutionarily sig-
nificant units on the contiguous U.S. west coast,
29 are listed as endangered, threatened, or species
of concern (NMFS 2016), prompting extensive
research and monitoring. Hindrances to migra-
tion, including hydropower projects, are consid-
ered limiting factors for Columbia and Snake
River Chinook salmon, in addition to habitat loss,
harvest, and hatcheries (NOAA Fisheries 2008,
2014). Direct adult salmon mortality during
upstream passage of dams in this river system is
uncommon, but cumulative impacts of slowed
passage at one or more dams and downstream
fallback over dams may culminate in delayed
mortality or reduced fecundity (Keefer et al. 2005,
Caudill et al. 2007). The indirect effects of the Fed-
eral Columbia River Power System (FCRPS, here-
after hydrosystem) on population mean fitness
have not been quantified and are therefore not
considered in Biological Opinions mandated for
federal hydrosystem operations under the Endan-
gered Species Act (NOAA Fisheries 2008, 2014).

Variation in individual experience, behavior,
and encountered conditions can result in consid-
erable differences in adult salmon migration
rates, even among fish from a single cohort (Kee-
fer et al. 2004b, Caudill et al. 2007). Moreover,
cumulative variation along the migration route
can result in total travel times that are strongly
skewed or multi-modal. Such variation in indi-
vidual experience and overall travel time could
have large effects on energy use and fitness. For
example, longer travel times in early summer can
increase cumulative exposure to elevated water
temperatures. Further, behaviors at different
stages of migration are not necessarily indepen-
dent. Individuals might vary systematically in
their behavior, or environmental factors might
drive correlations in behavior across migration
stages. A complete model of fish travel time from
river entry to spawning grounds that allows for
variation in start dates, migration rates through
individual river sections, and environmental

variation is needed to accurately account for
potentially compounding energetic costs and
tradeoffs at the individual level. Similar variation
in migration timing and encountered habitats is
common among migratory species (Costa et al.
2012, Hussey et al. 2015).
Migration slowdowns can increase fish mortal-

ity through either energetic exhaustion (Castro-
Santos and Letcher 2010, Burnett et al. 2014),
elevated exposure to other threats such as harvest
(Keefer et al. 2009), or reduced resilience to other
stressors. Multiple stressors can cause mortality
when a single factor might not (e.g., fish stressed
by handling are more likely to die at moderately
high temperatures; Gale et al. 2013). Notably,
upstream migration corridors are often heteroge-
neous. Regulated river systems such as the
Columbia and Snake include long, low-gradient
reservoir reaches punctuated by high-gradient
dam tailraces and fishways, as well as less regu-
lated or unregulated reaches as fish approach
spawning tributaries. Thus, migration duration
and cost vary widely among individuals within
and among these environments and a model
accounting for duration in each habitat is needed
to calculate fitness costs related to energetic costs
or arrival timing on spawning grounds.
The travel-time model described in this paper

can be used in future applications to quantify
potential indirect effects of adult salmon travel
time within and upstream of the hydrosystem,
which is a critical need for migrants that are
protected under the Endangered Species Act. For
example, slower travel might lead to lower
survival by increasing exposure to extrinsic
mortality factors or through energetic costs that
lower resilience to other stressors. Importantly, it
is difficult to directly test mortality-related
hypotheses when using observational passage-
time data, because travel times of fish that die en
route are not observed for the reach in which
mortality occurs. In our case study, the model
characterizes expected travel times without the
confounding effects of variable mortality rates.

Model overview
Our primary study objective was to develop a

general modeling framework using N-dimensional
mixture models to capture a wide range of migra-
tory animal behaviors, such as those observed in
Chinook salmon. Our second objective was to
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demonstrate the good fit of a cumulative migration
model that includes mixture models in our case
study. Our third objective was to summarize pat-
terns that emerged from the reach-specific and
cumulative migration models that could inform
future study of indirect fitness effects on Columbia
River salmon, particularly in relation to potential
energetic costs and exposure to known stressors.

We developed a simulation model based on
salmon behavior that estimates individual travel
time as a function of environmental conditions
through 24 separate river reaches. The number of
reaches reflects the management units under
consideration in the FCRPS Biological Opinion
(i.e., dam tailraces, fishways, and reservoirs, and
the section upstream of the hydrosystem are dif-
ferentiated). Different levels of time and exertion
are required to traverse each of the different
reach types. Within specific reaches, we used
two-dimensional mixture models (McLachlan
and Peel 2000) to account for bimodal patterns
apparent in salmon behavior at diel and seasonal
scales. River reaches were combined into a
cumulative migration model, wherein the rate at
which an individual model fish moved through
each consecutive reach could be a function of
time of day, migration date, individual variabil-
ity, and/or abiotic river conditions.

METHODS

In the following sections, we describe (1) the
study population; (2) the specific river reaches in
their migration; (3) the data sources and criteria
for including data in model fitting, validation,
and application; and (4) the design and valida-
tion of the various models used. Our general ana-
lytical approach was to first fit reach-specific
migration-time models to individually tagged

fish detected at the beginning and end of each
reach from 2000 through 2013. We then com-
bined these individual reach models to build a
cumulative migration model. We validated the
cumulative model by comparing total salmon
travel times through the 462-km hydrosystem
and the full 922-km migration to the spawning
grounds (Table 1). Finally, we applied the cumu-
lative model to data from two years that were
outside our training dataset (2014–2015), to
demonstrate how deviations from model predic-
tions related to salmon survival.

Study system
Chinook salmon Oncorhynchus tshawytscha and

sockeye salmon Oncorhynchus nerka pursue some
of the longest, most arduous migrations of any
anadromous fish. In some populations, over 40%
of total available energy is typically spent on the
freshwater migration as salmon traverse over
1000 km and ascend to elevations >1000 m above
sea level to reach spawning habitat (Crossin et al.
2004, Bowerman et al. 2017). The Snake River
spring/summer Chinook salmon in our case study
spawn and rear in low-order, high-elevation
tributaries (Fig. 1). Many juvenile Snake River sal-
mon are tagged with passive integrated transpon-
der (PIT) tags in natal streams before they migrate
to the Gulf of Alaska. After 1–4 yr of ocean resi-
dency, adults return to their natal stream for a sin-
gle lifetime spawning event. Weirs that block
return to certain spawning grounds provide an
opportunity to identify which fish complete the
migration and when they arrive. We selected the
South Fork Salmon River (SFSR) population in
central Idaho for our case study because fish
returning to the spawning grounds pass through
a weir, which is located 1550 m above sea level
and 1200 km from the mouth of the Columbia

Table 1. Model steps and data used in each step.

Step Data type Years Inclusion criteria

Fit model to individual reaches
Hydrosystem section RT 2000–2013 Detected at entry and exit of each reach
Snake/Salmon section PIT 2002–2013 Detected at both Lower Granite Dam and South Fork

Salmon River weir
Validate cumulative model
Full migration PIT 2002–2015 Detected at both Bonneville fishway and South Fork

Salmon River weir

Note: RT, radio tag; PIT, passive integrated transponder tag.

 ❖ www.esajournals.org 4 October 2017 ❖ Volume 8(10) ❖ Article e01965

CROZIER ET AL.



River. All adults collected at the weir are mea-
sured and checked for tags, so a complete migra-
tion history can be generated.

The freshwater migration entails passage of
four hydroelectric dams on the Columbia River
and four dams on the Snake River, followed by
passage through portions of the Snake, Salmon,
and South Fork Salmon rivers. The hydrosystem
study section extends from Bonneville Dam
(235 km from the Columbia River mouth) to
Lower Granite Dam (462 km, 180 m elevation
gain). Above Lower Granite Dam, the Snake/Sal-
mon section includes Lower Granite reservoir
(~60 km), an unimpounded section of the lower

Snake River (~70 km), and portions of the free-
flowing Salmon and South Fork Salmon rivers
(Snake/Salmon total: 460 km; 1370 m elevation
gain). The study population typically initiates
migration at Bonneville Dam from ~5 May to 22
June, arrives at the weir ~27 June to 28 August,
and spawns ~23 August to 15 September.
In 11 yr, adult salmon were collected at Bon-

neville Dam and implanted with radiotelemetry
transmitters, which provided detailed informa-
tion about their movements through the
hydrosystem. Salmon can exhibit qualitatively
different stopover behaviors at dams and near
spawning grounds, where individuals remain

114° W116° W118° W120° W122° W124° W

48° N

47° N

46° N

45° N

44° N

43° N 0 100 20050

Kilometers

BO

LG

Hydrosystem section

Snake/Salmon 
section

Salmon River

Canada

U.S.

TD
MNJD

IH

LM GO

Columbia River

Snake River

SF
SR

Spawning area

Legend
Dam
Weir

Pacific 
Ocean

C
ol

um
bi

a River

Sn
ak

e
Ri

ve
r

Fig. 1. Map showing study area within the Columbia River Basin (gray shading; inset), including the
hydrosystem section from Bonneville Dam to Lower Granite Dam, and the Snake/Salmon section from Lower
Granite Dam the South Fork Salmon River (SFSR) weir (star) within the spawning area (box). Dams are labeled
as BO, Bonneville; TD, The Dalles; JD, John Day; MN, McNary; IH, Ice Harbor; LM, Lower Monumental; GO,
Little Goose; LG, Lower Granite. A schematic of the reaches modeled at each dam within the hydrosystem
section is also shown.
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relatively stationary in a habitat for hours to
weeks. Adult salmonids exhibit diel variation in
passage behavior (Keefer et al. 2013) and tempo-
rary stopping or staging behavior to avoid warm
water or other adverse conditions before continu-
ing upstream to complete migration (Goniea
et al. 2006, High et al. 2006). Many spring- and
summer-run adult Chinook salmon also enter
natal tributaries 1–2 months prior to spawning
(Quinn et al. 2016, Bowerman et al. 2017). They
spend this holding period near or downstream of
spawning sites within tributaries, where proxi-
mate conditions (especially water temperature;
Torgersen et al. 1999) affect energetic costs.

Hydrosystem section.—The first half of the
migration, from Bonneville Dam to Lower Granite
Dam, was partitioned into three reach types at
each dam: tailrace, adult fishway, and reservoir
(Fig. 1, inset). Dam tailraces are among the most
turbulent and energetically expensive reaches of
the migration (Brown et al. 2006). Passage
requires ascending through high-velocity water,
as well as finding and entering a fishway. Each
dam had 1–2 aerial radio antennas positioned 1–
4 km downstream to monitor salmon entry into
the tailrace, and antennas at fishway entrances to
monitor tailrace exit (Keefer et al. 2004a).

Once inside a fishway, navigation is more
straightforward. Fishways provide structural
guidance, and flow and hydraulics are more pre-
dictable and largely independent of river dis-
charge. However, variability in water temperature
gradients, fish density, and hydraulic conditions
at fishway entrances can be challenging for some
salmon, and consequently, some individuals
make multiple attempts prior to successful pas-
sage (Caudill et al. 2013).

Chinook salmon migrate fastest through reser-
voirs (often 50–70 km/d; Keefer et al. 2004a).
Energetically, reservoirs are the least expensive
per km (Brown et al. 2006), but constitute a
majority of the physical distance through the
hydrosystem section. We defined reservoir time
as beginning with fish detection at the fish ladder
exit at one dam and ending with first detection
in the tailrace of the next dam upstream.

When calculating the time a fish spent in each
reach, we summed all time spent between desig-
nated beginning and ending points, regardless of
the number of entries and exits. The one exception
was for fish documented reascending a dam after

a fallback (i.e., they passed downstream via a dam
spillway, turbine, or other route; Boggs et al. 2004).
For fallback fish, we conservatively excluded sec-
ond or subsequent ascents at that dam. Thus,
actual cumulative times for fish that fell back were
expected to be longer than modeled times.
Snake/Salmon section.—The second half of the

migration, from Lower Granite Dam fish ladder
exit to the SFSR weir, was comparatively complex,
consisting of many different gradients, discharge
volumes, and water velocities. It was modeled as
a single reach because Lower Granite Dam was
the farthest upstream location where PIT tags
were reliably detected before the SFSR weir.
Lower Granite reservoir is also unique among
reservoirs in this study area because it is ther-
mally stratified due to cool-water releases from
Dworshak Dam on the Clearwater River (Keefer
and Caudill 2015). After leaving Lower Granite
reservoir, summer-migrating salmon confront not
only a major reduction in Snake River volume
and increased velocity, but also much warmer
temperatures above the Clearwater River–Snake
River confluence. Migration rates decline as fish
pass from Lower Granite reservoir (60–70 km/d;
Keefer et al. 2004a) to the confluence of the Snake
and Salmon rivers and finally into the free-flowing,
steep gradient of the Salmon River (10–20 km/d;
Keefer et al. 2004b). At the SFSR weir, all fish
were collected and arrival time at the weir was
recorded. Prespawn holding and spawning occur
both above and below the weir, but only fish that
were detected at the weir were included in the
travel-time models.

Model structure
Tailrace and fishway reaches.—One aspect of sal-

mon behavior that has not been fully explored in
previous models is a curious bimodal pattern of
diel behavioral change in tailraces and fishways
(Fig. 2). Previous analyses identified slowed
movement at night, especially in complex reaches
(Keefer et al. 2013, Zabel et al. 2014). However,
the simple day vs. night dichotomy applied in
past models did not capture the continuous varia-
tion of the temporally shifting bimodal pattern we
observed, especially in dam tailraces.
To model the bimodal pattern, we considered

the passage-time distribution of the whole popu-
lation to be a combination of two separate
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probability distributions using a two-dimensional
finite mixture model (McLachlan and Peel 2000).
The proportion of fish in the first mode fluctuated
as a function of the time of day. At each hour of
the day, each fish had a probability p of belonging
to the first distribution (Gf) and a probability
1 � p of belonging to the second distribution (Gs).
This model structure has the added benefit of
improving characterization of the extreme right-
skew in tailrace and fishway passage times.

The probability of travel time t for an individ-
ual fish i through reach ξ was:

Fðti;njhf ;n; hs;nÞ ¼ pi;nGf;nðti;njhf ;nÞ
þ ð1� pi;nÞGs;nðti;njhs;nÞ

(1)

where travel times were conditioned on the
parameters in h, which differed for the fast f and
slow s mode within each reach ξ. We modeled
the diel pattern of proportions of fish in the fast
vs. the slow mode as a sine function with ampli-
tude 1, phase φ, and shift a. We constrained p
between 0 and 1 using a logit transformation:

Logitðpi;nÞ ¼ 1n sinð2pðHi � /nÞÞ þ an (2)

where time of day H was a fraction of the day
(i.e., h/24). The two distributions Gf and Gs in the
dam passage models (i.e., all tailraces and fish-
ways) were both lognormal probability distribu-
tions with mean l and standard deviation r, and
hf,ξ = [lf,ξ,, rf,q] and hs,ξ = [ls,ξ, rs,q], where q
represented the river (Columbia or Snake) and
type of reach (tailrace or fishway). We con-
strained lf to be less than ls for identifiability
reasons, and to assign the fast and slow modes,
respectively.
The model was fit separately for tailraces in the

Columbia River, tailraces in the Snake River, fish-
ways in the Columbia River, and fishways in the
Snake River. We grouped dams in this way
because we assumed the effects of covariates were
shared among dams within each river, but were
potentially different between the much larger and
seasonally cooler Columbia River vs. the smaller
and warmer Snake River. Although we modeled
the mean of each distribution as a function of
covariates, the standard deviation was held con-
stant within each reach/river combination q.
We allowed the means of both distributions to

vary with reach, time of day H, water temperature
T, and flow F determined at the hour the individ-
ual fish arrived at the reach. For each distribution,
we fit additive models that included all possible
combinations of the covariates up to a maximum
of three covariates per model. We included quad-
ratic terms for time of day and temperature,
resulting in the following full model:

li;m;n ¼ bm;n þ bm;q;HHi þ bm;q;H2H2
i

þ bm;q;TTi þ bm;q;T2T2
i þ bm;q;FFi

(3)
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Fig. 2. Histograms showing the frequency distribu-
tion of Chinook salmon observed passage times in 4-h
increments through the combined tailraces of the four
Columbia River dams (Bonneville, The Dalles, John
Day, and McNary). Panels show patterns for Chinook
salmon that enter the reach at different times of day,
indicated by panel titles. The solid line is a smoothed
line of the density distribution from the model simula-
tion. The dotted lines show the shift in mean travel
time for the fast and slow modes over a 24-h period.
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where lm,i,ξ is the mean expected travel time for
fish i in distribution m in reach ξ. The estimated
coefficients bm,ξ, bm,q,H, bm;q;H2 , bm,q,T , bm;q;T2 , and
bm,q,F define the intercept for each dam and
slopes for hour (H), hour2 (H2), temperature (T),
temperature2 (T2), and flow (F).

We minimized the negative log likelihood
function based on Eq. 1 using the maximum like-
lihood estimator mle2 (package bbmle), imple-
mented with the Nelder and Mead (1965)
optimizer. Within each reach/river combination,
we selected the most parsimonious model as the
one with the lowest Akaike’s information criter-
ion (AIC) value compared with all other possible
model subsets (Akaike 1973, Burnham and
Anderson 2002). We analyzed travel time in min-
utes, although we converted summary statistics
to hours for a more intuitive interpretation. All
analyses were conducted using R (R Core Team
2013).

Reservoir reaches.—Visual examination of sal-
mon travel times through reservoirs showed no
indication of bimodality. Assuming the variable
reservoir lengths (36–120 km) would not result in
variable swim speeds, we standardized migration
time by unit distance (h/km), such that travel time
through a specific reservoir is the product of unit
travel time and reservoir length (Zabel 2002).
Unlike dam passage, where there is no theoretical
justification for choosing a specific distribution,
movement through reservoirs can be described as
a general dispersal process with drift observed at
an absorbing boundary at the upstream dam
(Zabel 2002). We therefore modeled migration
time with an inverse Gaussian distribution, which
was consistent with the theoretical underpinnings
of dispersal (Okubo 1980). The mean and shape
parameters were modeled as linear functions of
covariates with a log-link function to ensure posi-
tive travel times. The probability density function
of the inverse Gaussian distribution is

f ðtjl; kÞ ¼ l
2pt3

� �1
2

exp
�kðt� lÞ2

2l2t

" #
(4)

for travel time t > 0, where l > 0 is the mean and
k > 0 is the shape parameter. Following Zabel
(2002), the expected mean and shape of the distri-
bution were allowed to vary with fish length, Li,
water temperature, Ti, and flow, Fi, at the time the
individual salmon i entered reservoir r:

li;r ¼ br þ bLLi þ bTTi þ bFFi
ki;r ¼ Sr þ SLLi þ STTi þ SFFi

(5)

where br and Sr were the intercepts for each reser-
voir, and the effects of covariates (bL, bT, bF, Sr, SL,
ST, and SF) were constant across all reservoirs. We
minimized the negative log likelihood function
based on Eq. 4 using the maximum likelihood
estimator mle2 (package bbmle), implemented
with the Nelder and Mead (1965) optimizer. We
selected the model with the lowest AIC score
among all possible subsets of covariates.
Snake/Salmon reach.—Travel times through the

final leg of the migration from Lower Granite
Dam to the SFSR weir pointed to two distinct
behavior patterns (Fig. 3). As holding habitat is
available both above and below the weir, we
interpreted the observed bimodal arrival pattern
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Fig. 3. Arrival day at the South Fork Salmon River
(SFSR) weir (left) for 2002–2013 as observed in PIT-
tagged adult Chinook salmon (histogram) and mod-
eled (line). Arrival day at the weir relative to the day
salmon were detected at Lower Granite Dam (right).
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at the weir as an indication that some fish held
above the weir, while others held below it until it
was near time to spawn.

We again used a two-dimensional mixture
model to capture this variation in behavior, but
in this reach the fast and slow modes were char-
acterized by different probability density func-
tions. Fish that passed the weir before holding
(the fast mode) were modeled using the inverse
Gaussian distribution (Eq. 4), following the same
logic that we applied for reservoirs. Because only
one reach was modeled in this section, there was
no need to standardize by unit distance. The
mean of the inverse Gaussian distribution was
allowed to vary by date at Lower Granite Dam,
fish length, water temperature, and flow. The
model was fit with a log link to ensure a positive
travel time. To limit the total number of parame-
ters in the model, we did not consider covariates
for the shape parameter k.

If a fish held below the weir (the slow mode),
its travel time was constrained between 0 and a
maximum assumed to be determined by spawn-
ing date. Although both arrival timing at Lower
Granite Dam and spawn timing vary slightly
from year to year, we assumed the maximum
holding time (and hence maximum travel time
for the slow mode) was fixed over the study per-
iod. Because the inverse Gaussian distribution
does not have a maximum, we instead used a
logistic probability distribution for the slow
mode in this reach. We multiplied observed
travel times by 0.01 to scale them to a range
between 0 and 1. We then modeled scaled travel
times using the logistic distribution, in which the
location parameter was determined by the date
at Lower Granite Dam.

The probability that a fish would hold below
the weir (p) was constrained between 0 and 1
using a logit link. The probability p was allowed
to vary with fish length, day of year, tempera-
ture, and flow at Lower Granite Dam. Day J was
standardized by subtracting the minimum
observed arrival day at the weir (26 April).

We minimized the negative log likelihood func-
tion for Eq. 1 where Gf was the probability den-
sity function for the inverse Gaussian (Eq. 4; fast
fish) and Gs was the logistic function (slow fish)
using the maximum likelihood estimator mle2
(package bbmle), implemented with the Nelder
and Mead (1965) optimizer. We compared models

in each mode with different subsets of covariates
and selected the most parsimonious model based
on AIC values.
Cumulative migration model.—After selecting the

most parsimonious model for each river reach,
we combined all reach-specific models into a
full-migration simulation model from Bonneville
Dam to the SFSR weir. We initialized the cumula-
tive model with start dates and times observed at
Bonneville Dam between 2002 and 2015 for PIT-
tagged salmon from the South Fork Salmon
River. We then simulated individual salmon pas-
sage through each reach sequentially, drawing
reach-specific travel times randomly from the fit-
ted distributions, using continuously updated
environmental conditions. Cumulative migration
time Ci was the sum of time spent in each reach
(ti) for an individual salmon i:

Ci ¼
X8
1

ti;tailrace þ
X8
1

ti;fishway

þ
X7
1

ti;reservoir þ ti;Snake=Salmon

(6)

Data
Data used in model fitting.—Reach-specific travel

times were calculated from adult Chinook salmon
returning to spawn, some of which were
implanted with radio transmitters at the Adult
Fish Facility at Bonneville Dam. Full methods
describing salmon collection, radio-tagging, moni-
toring, and data processing are described else-
where (Boggs et al. 2004, Keefer et al. 2004a). We
analyzed data from 554 radio-tagged salmon that
could be associated with the SFSR population
(n = 108 PIT-tagged as juveniles and radio-tagged
as adults; n = 309 radio-tagged adults that
returned to the SFSR), or the larger Snake River
spring/summer Chinook salmon population group
(n = 137 PIT-tagged as juveniles upstream from
Lower Granite Dam and radio-tagged as adults).
Each Snake and Columbia River dam in the

hydrosystem section was equipped with radio
antennas in 11 yr from 2000 to 2013 (Table 2).
Detection data from multiple antennas at each
dam were used to delineate salmon passage tim-
ing through the tailrace, fishway, and reservoir.
To avoid unreasonable times resulting from
missed detections, fish with reach passage times
<2 min in a tailrace or 55 min in a fishway were
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excluded from the model fit for that reach. These
criteria stemmed from natural breaks in the data
and author experience watching fish behavior in
these locations.

In contrast, PIT-tag monitoring systems were
located only inside the adult fishways at a subset
of dams. PIT-detection capability increased from
2002 to 2015. To maximize the strengths of each
type of data (the fine spatio-temporal scale of
radiotelemetry [RT] data and large numbers of
PIT-tagged fish), we used RT data to fit models
of reach-specific travel time within the hydrosys-
tem, and PIT-detection data for model fitting and
validation at larger spatial scales. Due to insuffi-
cient numbers of RT fish that completed the
entire migration, we used PIT-tag data first to fit
the model in the Snake/Salmon River section,
and second, to validate cumulative travel times
for the entire hydrosystem section as well as over
the full migration (Table 1).

For travel times modeled in the Snake/Salmon
section, we used data from the PTAGIS database
(PTAGIS 2015) for 1644 Chinook salmon that had
been PIT-tagged as juveniles in the SFSR (i.e.,
known-origin SFSR fish) and detected as adults at
both Lower Granite Dam and the SFSR weir.
Using salmon PIT-tagged as juveniles eliminated

any bias from adult handling effects and collection
dates and locations that might affect travel times.
Data used in model validation.—The cumulative

model (Bonneville Dam to SFSR weir) was tested
against 1894 PIT-tagged salmon that returned as
adults in 2002–2015. Selection criteria for inclusion
of individuals for testing and validating included
detection at both Bonneville and Lower Granite
dams for the hydrosystem section and at both
Bonneville Dam and the SFSR weir for the full
migration. Many (1611) of the 1644 fish used in
the Snake/Salmon model fitting process were also
used in the test of the full migration from Bon-
neville Dam to the weir. However, the PIT-tagged
salmon that returned in 2014 and 2015 were not
included in any part of model parameterization.
On 7 August 2014, a large sediment-laden

flood event shut down SFSR weir operations for
several days and may have killed adult salmon
below the weir. We excluded returns after the
flood event from both the observation and mod-
eled datasets.
Data used in model application to survival.—One

critical element of travel time data is that reach
duration can only be measured for fish that sur-
vive through that particular reach. If the proba-
bility of survival varies systematically with travel

Table 2. The number of records used in the analyses.

Year

Reach model fitting Bonneville to SFSR weir

Tailrace Fishway Reservoir Snake/Salmon Cumulative model testing Survival analysis

2000 328 344 275 0 0 0
2001 932 875 760 0 0 0
2002 458 451 393 236 214 0
2003 369 453 317 189 188 0
2004 300 300 258 151 148 525
2005 119 192 119 105 97 286
2006 110 118 82 75 74 188
2007 44 60 63 86 85 231
2008 0 0 0 166 166 488
2009 38 52 81 162 161 408
2010 34 58 66 205 231 627
2011 0 0 0 92 108 397
2012 0 0 0 91 99 333
2013 154 182 136 86 87 225
2014 0 0 0 0 99 373
2015 0 0 0 0 137 591
Total 2886 (543) 3085 (545) 2550 (546) 1644 1894 4672

Notes: The reach model fitting columns show the sum of records in each reach type per year. For reaches within the
hydrosystem (eight dam tailraces, eight fishways, seven reservoirs), data are from radio-tagged fish and multiple records for
individual fish occur at different dams. The row showing total numbers includes the number of unique fish in parentheses. All
records used for fitting the Snake/Salmon reach, cumulative model testing, and survival analyses reflect PIT-tagged fish.
SFSR = South Fork Salmon River.
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time, then unsuccessful migration patterns will
not be included in the model. This is a potential
limitation of most travel-time models, because
they can only be fit to survivors, and model vali-
dation depends on an assumption of consistent
survival. However, interactions between travel
time and survival are also an important reason a
null model of travel time is useful.

Our reach models were primarily fit to fish
that survived the entire migration. To test
whether travel times differed for fish that com-
pleted a migration reach vs. those that did not
required a separate dataset. Therefore, we evalu-
ated the relationship between travel time and
survival using data from all Chinook salmon that
had been PIT-tagged as juveniles in the SFSR,
and hence were expected to return to spawn in
the SFSR. We used data from the subset of these
fish that were detected as adults at Bonneville
Dam in 2004–2015 (n = 4672), because we knew
these individuals had initiated migration to
spawning grounds. This dataset had previously
been used to estimate adult survival through the
hydrosystem (Crozier et al. 2016).

Environmental data.—We associated the total
time a salmon spent in each reach with environ-
mental conditions at the time it first entered that
reach. Environmental conditions do change
between reach entries and exits, especially over
longer passage times (Zabel et al. 2014). How-
ever, the environmental variables considered
here (water temperature and discharge, or flow)
are strongly temporally and spatially autocorre-
lated, such that initial conditions were represen-
tative of future conditions within the reach.
Temperature and flow can also be correlated
with each other, causing statistical problems of
collinearity. During the migration window for
the SFSR population, however, flow tends to be
relatively stable while temperatures increase,
such that the daily values used in our analysis
were not strongly correlated (r = �0.5 from 18
May to 4 June, which is the interquartile arrival
date for SFSR Chinook salmon at Bonneville
Dam). We therefore included both raw tempera-
ture and flow in our models.

At each of the eight Snake and Columbia River
dams, hourly environmental data were collected
by the U.S. Army Corps of Engineers and com-
piled by the University of Washington Columbia
River Research program (Columbia Basin Research

2016). We used environmental data from the
scroll case of each dam wherever possible. We
removed outliers over 35°C or under 5°C, which
were assumed to be recording errors. If data were
missing for fewer than three sequential hours, we
linearly interpolated between observations. For
longer stretches of missing data, we used data
from the dam forebay, the nearest water quality
monitoring station, or by regression estimation
with data from a neighboring dam.
We used hourly data in the reach models and

the cumulative model. We used annual metrics of
environmental conditions for the survival analysis.
Annual metrics consisted of mean temperature
and flow at Bonneville Dam from May through
June. Environmental data were standardized
(mean = 0, standard deviation = 1) so that coeffi-
cient magnitude reflects relative impact across
covariates, and to assist model fitting.

Model validation
To assess cumulative model fit, we compared

simulated migration times with observed times of
PIT-tagged fish. One challenge in making this
comparison was that detections of PIT tags
occurred inside adult fishways and thus did not
coincide exactly with reach definitions used in the
model, which were based on RT detection sites.
To initialize the model for this comparison, we
subtracted 1 d from PIT-detection time at Bon-
neville Dam to account for the median time it took
a Chinook salmon to pass through the Bonneville
tailrace and enter the fishway, based on RT data;
we set the start hour arbitrarily to 6:00 am.
We compared the distribution of simulated to

observed arrival dates and travel times from
Bonneville Dam to the SFSR weir. We conducted
these comparisons first using data from the per-
iod used in model fitting (2002–2013) and sec-
ondly using data collected in later years (2014
and 2015; see Model applications: potential indirect
effects of travel time).
Because our interest lay explicitly in our abil-

ity to model the full distribution of observed
migration times at both reach and cumulative
migration scales, we assessed model fit by
quantile-to-quantile comparison. We compared
the observed data to model predictions in incre-
ments of 5, from the 5th to the 95th quantiles for
all reaches individually, and for the cumulative
model.
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Model applications: potential indirect effects of
travel time

To explore potential future applications of the
model, we assessed model fit when challenged
with data from outside the training period. We
initialized the model with start times from PIT-
tagged salmon detected at Bonneville Dam in
2014 and 2015 and compared modeled and
observed travel times through the hydrosystem
and to the spawning grounds.

The strongest indirect effects of longer travel
time should be detectable as increased mortality
within the migration itself. We tested whether
slower travel time through one reach was a pre-
dictor of mortality in the next reach by regressing
salmon travel times through the hydrosystem
against the probability of reaching the SFSR weir
using generalized linear models. We included
annual indices of temperature and flow, as well
as conditions on the day of passage for an indi-
vidual fish at Lower Granite Dam in the model.
Environmental conditions could have imposed
independent (but coincidental) effects on sur-
vival and travel time.

We estimated mortality based on the propor-
tion of PIT-tagged adult Chinook salmon from
the SFSR population that were detected at Bon-
neville Dam but never detected at the SFSR weir.
We assumed that detection efficiency at the weir
was high and constant over time because all fish
are handled during a period of relatively low
and stable flows, and the weir acted as a com-
plete barrier to upstream movement. Thus, man-
agement actions were consistent among years
and we assumed temporal variation could be
attributed to covariates.

Some fish that were not detected at the weir
may have still spawned successfully downstream
from the weir. Therefore, the estimates of appar-
ent survival were treated as an index of relative
survival among years, assuming a constant pro-
portion of adults from the SFSR population
spawned above the weir across years. We evalu-
ated this assumption using detections at two
additional PIT antennas installed in 2008 and 2009
below all spawning areas in the SFSR. Detections
at these sites in subsequent years indicated a rela-
tively constant proportion of spawners above and
below the weir across time, even in years with
lower apparent survival (i.e., there was no sign of
spatial re-distribution in spawning activity in

2015, a low survival year, compared with other
years with average apparent survival).
In 2015, temperatures throughout the migration

route approached lethal levels (>22°C) much
earlier in the season than usual. Therefore, late or
slow migrants were more likely to encounter
these stressful conditions than early or fast
migrants. If early or fast migrants were more
likely to survive, we anticipated that the observed
travel time distribution would be faster than
model predictions in years with higher mortality.
To explore whether reduced survival of slower

fish might have resulted from exposure to stress-
ful temperature, we tested the extent to which
slower fish were exposed to higher temperatures
by comparing the temperatures encountered by
modeled fish at Lower Granite Dam as a function
of their travel time from Bonneville Dam to
Lower Granite Dam. We used linear regression
to test this hypothesis and compared the AIC
scores of models that included travel time alone,
year alone, and a travel time 9 year interaction.

RESULTS

Reach model fit
Tailrace and fishway models.—Using observed

start times at each reach, simulated passage
times were very similar to observed passage
times. In tailraces, observed passage times ran-
ged from <1 h to 17 d. The difference between
observed and modeled times across all quantiles
was <1.1 h through the 85th quantile. The 90th
and 95th quantiles differed by 2.4 h and 3.2 h,
respectively, which were 6% and 8% of the
observed times. For fishways, observed salmon
passage times ranged from 1.8 h to 16.9 h (5th–
95th quantiles). For all fishway comparisons, the
difference between modeled and observed quan-
tiles was <0.4 h (5% of observed time at the 95th
quantile). Thus, all model quantiles were within
8% of observed quantiles (Fig. 4).
Based on model selection, there was strong

support for using the mixture model to include
both modes for Snake and Columbia River tail-
race and fishway models. Time of day and tem-
perature were important explanatory variables
that affected the mean of both modes for nearly
all of the top-ranking models, whereas flow was
not included in any of the most parsimonious
models (Appendix S1: Table S1). In the tailrace
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models, temperature consistently had a negative
correlation with passage time, such that salmon
moved faster in warmer water (Appendix S1:
Table S2). In the fishways, however, temperature
had the opposite effect on travel time: Fish
tended to take longer in warmer water.

There was also strong support for keeping
dam-specific intercepts in both tailrace and fish-
way models, as there was considerable variation
in salmon passage time among dams. Tailrace
intercepts varied from a lognormal mean of

8.3 h at Lower Granite Dam to 17.2 h at John
Day Dam for the first mode (Appendix S1:
Table S2). For the second mode, lognormal mean
tailrace passage time varied from 29.7 h at The
Dalles Dam to 52.2 h at Ice Harbor Dam. Lower
Granite Dam had the slowest salmon passage
time through fishways in both fast and slow
mode (4.3 h and 7.7 h, respectively). Salmon
passed fishways fastest at The Dalles Dam for
mode 1 (2.7 h) and Ice Harbor Dam for mode 2
(3.2 h).
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Fig. 4. Quantile plots of model-predicted Chinook salmon travel times compared with observed times. Sepa-
rate panels show fits within each reach from 2000 to 2013 in fishways, tailraces, and reservoirs, and from Lower
Granite Dam ladder exit to the South Fork Salmon River (SFSR) weir. Large boxes show 5th–95th quantile range
for both modeled (box width) and observed (box height) travel time; small boxes show interquartile ranges. The
1:1 line is also shown. Axes are set to the 99th quantile of their respective datasets.
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The reach-specific mixture models reproduced
the observation of a continually shifting bimodal
distribution of travel times. In all four top
Columbia and Snake River tailrace and fishway
models, the proportion of salmon in the fast
mode peaked in the morning and hit a nadir in
the late afternoon (Fig. 5). In fishways and tail-
races, mean travel time in the fast mode was
<1 d. Thus, the two modes in the mixture model
largely captured the higher probability of an
individual fish exiting the reach within one day
(first mode) vs. the lower probability of an over-
night or longer residence period (second mode).
The majority of fish that entered a reach in the
first half of the day passed the reach before dusk,
while fish that entered a reach later in the day
typically did not exit until the following morn-
ing. Thus, the probability of spending the night
increased with arrival time closer to dusk. How-
ever, fish entered and exited tailraces and fish-
ways at all times of the day and night. Therefore,
even when the majority of fish at a given time of
day were in the fast group, substantial propor-
tions (e.g., 20–50%) were still in the slow mode.
Similarly, the proportion of fish in the slow mode
never exceeded 0.8 (Fig. 5).

The bimodal pattern was weaker in the fishways
than in tailraces. The fishway modes essentially

overlapped because mean times were very simi-
lar in both modes. Consequently, proportions in
the respective modes did not correspond to visu-
ally bimodal behavior in the model.
In the Columbia River dam tailraces, there was

a hint of a third mode of fish that took more than
2 d to pass (Fig. 2), a behavior that was approxi-
mated in the model with a long tail. This phe-
nomenon accounted for the slight bias in upper
quantiles in the tailrace model (Fig. 4B).
Reservoir models.—Differences between mod-

eled and observed quantiles were <1.6 h through
the 95th quantile (6% of observed travel time;
Fig. 4C) through reservoirs. The most parsimo-
nious reservoir model included covariates in
both the mean and shape term, as well as dam-
specific offsets in both (Appendix S1: Tables S3
and S4). In this model, temperature and flow
were selected to modify mean rate, but the shape
term was only modified by flow. This model pro-
duced shorter travel times in warmer water and
at lower flows. The interquartile range of salmon
travel times through reservoirs was 63–82 km/d,
with a median of 73 km/d.
Snake/Salmon model.—The modeled mixture dis-

tribution captured the observed bimodal pattern
of travel times from Lower Granite Dam to the
SFSR weir (Fig. 3). The 5th–95th quantiles ranged
from 18 to 69 d for both modeled and observed
data from 2002 to 2013 (Fig. 4D). At all quantiles,
modeled travel times were within 1.5 d of
observed times, which was always within 5%
of observed times. The full range of travel
times observed (10–95 d) was slightly longer than
the full range modeled (6–88 d), but the majority
of fish behaviors were captured in the model. In
the 5th–95th quantiles, both observed and mod-
eled arrival dates at the weir were 29 June–27
August (median date was 16 July).
The most parsimonious Snake/Salmon model

included only temperature and date at Lower
Granite Dam. Both temperature and date had
negative coefficients (Appendix S1: Table S5),
such that travel was faster with warmer water
and later in the season. These same two covari-
ates were also selected in models to determine
the probability that a fish would hold below the
SFSR weir. Holding was more likely later in the
season, but this was modified by temperature.
Under warmer conditions, fish were more likely
to swim directly to the weir.

Fig. 5. The proportion of Chinook salmon drawn
from the fast distribution (p) as a function of time of
day at reach entry in the different reach types. Shaded
areas represent approximate nighttime hours.
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Cumulative model validation
Cumulative travel through the full migration,

Bonneville Dam to SFSR weir, took 23–108 d
(observed) and 22–108 d (modeled). For 2002–
2013, model estimates were within 2.7 d of times
observed through the 95th quantile (3%;
Fig. 6A). The cumulative model thus performed
as well as the independent reach models. Mod-
eled reach-specific passage times were within 4 h
of observed through the 95th quantile for all
reach types within the hydrosystem and were
within 1.2 d in the Snake/Salmon section.

Analysis of years outside the training dataset.—
In 2014–2015 comparisons, cumulative model

quantiles were within 2.2 d of observed through
the 95th quantile (4% of 55 d observed at the 90th
quantile), with a median of 39 d for modeled and
38 d for observed (Fig. 6B). In 2014, the model
travel times from Bonneville Dam to Lower Gran-
ite Dam were within 0–1.8 d (13%) of those
observed across quantiles (Fig. 7A). The observed
fish travel times below the median tended to be
faster than modeled, whereas observed and mod-
eled times were very similar for fish moving at
above the median rate (less than half a day, or
4%, difference). The median travel time in 2014
was observed to be 0.8 d faster than the 2002–
2013 average, while the modeled median was
0.1 d faster than the long-term average. In the
Snake/Salmon section, model predictions differed
by 0–7% of observed times (max difference of
2.5 d, at an observed travel time of 34 d, Fig. 7B).
In 2015, the model-predicted travel times

through the hydrosystem were 2 d faster than the
2000–2013 average due to environmental condi-
tions—both low flows and high temperatures
produce faster migration. However, observed
times through the hydrosystem were 4 d faster
than average. Across quantiles, observed salmon
were consistently 1.1–1.8 d faster through the
hydrosystem than modeled fish (Fig. 7C). For the
upstream Snake/Salmon section in 2015, modeled
times were within 0.5 d of observed times
through the 70th quantile (which was always
within 2% of observed times, Fig. 7D).

Model applications
Identifying high-impact reaches.—We summa-

rized model results by characterizing time spent
within each reach type (i.e., tailraces, fishways,
reservoirs within the hydrosystem) and over the
entire migration (Fig. 8). Modeled median times
from Bonneville Dam to Lower Granite Dam
were 14 d (14 d observed) and 30 d from Lower
Granite Dam to the SFSR weir (29 d observed).
For the entire migration from Bonneville Dam to
the weir, median modeled time was 43 d (45 d
observed). Thus, based on medians, 30% of total
migration time was spent within the hydrosys-
tem (excluding Lower Granite Reservoir).
In the hydrosystem, model results indicated

that 65% of salmon spent <2 d in dam fishways,
and this time constituted <15% of total hydrosys-
tem passage time. Some fish spent almost a quar-
ter of their hydrosystem time in fishways (up to
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Fig. 6. Quantile plots of model-predicted compared
with observed Chinook salmon travel times for the
entire migration from Bonneville Dam to the South
Fork Salmon River (SFSR) weir for 2002–2013 (left)
and 2014–2015 (right). Large boxes show 5th–95th
quantile range for both modeled (box width) and
observed (box height) travel time; small boxes show
interquartile ranges. The 1:1 line is also shown.
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3.25 d). The interquartile range was similar in
fishways and reservoirs (21 and 28 h, respec-
tively), but was much wider in tailraces (88 h).
The slower half of fish (50th–95th quantiles) spent
6–13 d in tailraces. Tailrace time constituted 44–
66% of the total hydrosystem time and 14–29% of
full migration time (50th–95th quantiles).

Total time in tailraces was strongly correlated
with total time in the hydrosystem (r = 0.95, P <
0.001, based on linear regression; Fig. 8). Fishway
and reservoir passage times were also statistically

significant predictors of hydrosystem time (P <
0.001), but the correlation coefficients were much
lower than for tailraces (r = 0.13 and r = 0.27,
respectively). Similarly, times for all three reach
types were statistically significant predictors of
time from Lower Granite Dam to the SFSR weir,
but the correlations were low (r ≤ 0.10).
Impact of environmental conditions on travel time.—

Changes in environmental conditions from year
to year are expected to alter travel times. Among
years from 2002 through 2015, median modeled
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migration times varied by 3 d through the
hydrosystem (range of medians: 12–15 d) and by
10 d for the migration as a whole (36–46 d; App-
endix S1: Fig. S1). The cumulative model
produced a pattern of median annual migration
times similar to that of the median times obser-
ved across years, in that years were correctly
assigned as having faster or slower salmon than
average. Median times were negatively related to
annual temperature and positively related to
annual flow for both the modeled and observed

data. However, interannual variation was lower
in the model than in the observation dataset (ob-
served range of 11–20 d in median travel time in
the hydrosystem, and 34–57 d in the Snake/Sal-
mon section).
Delayed mortality.—If longer travel times have

negative indirect effects on fish, one would expect
that delayed mortality would be correlated with
travel times. We found that survival through the
Snake/Salmon reach was strongly associated with
travel time through the hydrosystem, in addition
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to environmental variables. Therefore, slower fish
that survived the hydrosystem were more likely
to die during the remainder of the migration.
Among salmon that survived the entire migra-
tion, travel times through the Snake/Salmon sec-
tion were not correlated with travel times
through the hydrosystem (r = 0.002, P > 0.05).

Travel time, annual flow, individual tempera-
ture, and day at Lower Granite Dam were in the
top model based on AIC scores, with individual
flow added in the next most important model
(Appendix S1: Table S6). The top two models
captured 98% of the cumulative model weight.
Salmon that passed Lower Granite Dam later in
the season and those with longer travel times
from Bonneville Dam to Lower Granite Dam had
lower survival.

Based on the survival analysis, we observed a
general relationship between survival and travel
time, and this relationship was stronger in some
years than others (Fig. 9). Very few slow fish sur-
vived in 2015, a year in which a strong relation-
ship between survival and travel time was
apparent. In contrast, there was a weak relation-
ship between travel time and survival in 2011, a
cooler-than-average year.

Temperature exposure.—Temperature exposure
was strongly correlated with travel time: Averaged
across all years, the mean temperature salmon
encountered at Lower Granite Dam increased by
about 0.5°C for every week added to salmon travel
time through the hydrosystem up to about
8 weeks (Fig. 9). Mean temperature increased
from 14°C to almost 19°C as hydrosystem travel
times increased from 2 to 12 weeks. However,
there was also a strong year effect, such that tem-
peratures experienced by slow migrants in cool
years could be less than the temperatures experi-
enced by fast migrants in warm years. In 2015, for
example, the mean temperature at Lower Granite
Dam increased from about 18–21°C throughout
the migration period, whereas in 2011 the maxi-
mum temperature was only 17°C. The most parsi-
monious model used to evaluate temperature
exposure included the year 9 travel time interac-
tion, indicating that travel time increased tempera-
ture exposure in some years more than others.
Thus, although temperature exposure generally
increased with longer travel times, the biological
significance of temperature as a stressor was likely
much higher in some years.

DISCUSSION

Long-distance migrants are especially difficult
to protect because they can span multiple juris-
dictional boundaries, habitat types, and climate
zones. Even in species with relatively simple
migrations, migratory behaviors can be complex.
Individual variation in behaviors can affect sur-
vival depending upon decisions made en route
in response to local conditions, and choices made
in one habitat can have impacts on behavior and
survival in subsequent habitats (Alerstam et al.
2003). Therefore, improved understanding of
migratory behavior, especially regarding stops or
changes in migration rate, will help managers
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identify specific factors that increase costs of
migration and decrease survival. To this end,
mixture models offer a promising approach for
modeling switches in behavior, such as slowed
or paused migration at obstacles or stopovers at
various spatial and temporal scales.

The model framework presented here captures
the diversity of movement rates observed in a very
large database of migratory behavior. The results
demonstrate that N-dimensional mixture models
constitute a general framework for modeling vari-
ation in complex migratory behavior in which
travel time distributions with multiple modes
are observed. Additionally, the flexibility of an
N-dimensional model allows for any number of
behaviors to be incorporated. Telemetry-based ani-
mal movement datasets such as ours are becoming
more common in other systems where environ-
mental data likely exist (Hussey et al. 2015). Link-
ing telemetry data to mechanistic models of
movement is a growing need as large biotelemetry
datasets accumulate (Costa et al. 2012, L�opez-
L�opez 2016). While our model used a large sample
size and a high level of spatial complexity, the mix-
ture model structure used here could be applied to
systems informed by smaller datasets or where
less spatial resolution is available. Models with
fewer segments would be sufficient to address
management concerns for many other species. For
instance, the bimodality in behavior (e.g., Fig. 3)
would likely be detectable and relevant to the
analysis of samples of tens to hundreds of individ-
uals migrating through spatially complex habitats,
particularly those for which high-resolution track-
ing data were available. It could even apply to
movements sequenced over time within a small
habitat (Skalski and Gilliam 2000, 2003).

Chinook salmon case study
Minimizing anthropogenic stressors and antici-

pating impacts of climate change on population
viability are management imperatives for threat-
ened and vulnerable species (Groves et al. 2008,
McClure et al. 2013, Link et al. 2015). We capital-
ized on a large 15-yr database of individual Chi-
nook salmon movements to build a simulation
model of migration travel time with several key
features. First, the model accounts for a propor-
tion of the population which slows down at dams
and/or holds position near spawning grounds by
aggregating fish into distinct distributions at each

dam and near the final point of detection. In this
case, the resulting mixture distribution is bimodal
in the most complex reaches (i.e., some fish pro-
ceed directly through these reaches, whereas
others pause for a period), which closely matches
the observed population distribution of travel
times. Although the model was fit to one popula-
tion of Chinook salmon, hydraulic complexity
among habitats is associated with diel variability
in behavior across five species of migrating
anadromous fishes in the lower Columbia River
(Keefer et al. 2013). Migrating adults of these spe-
cies swim at a relatively constant rate through
reservoirs, regardless of time of day. However,
when these and other visually orienting species
(including salmon, steelhead, and American shad,
Alosa sapidissima) encounter high velocity and
turbulence at dams, their movements tend to be
primarily diurnal (Keefer et al. 2013).
Second, the model explicitly estimates travel

times through short reaches at dams, where ener-
getic costs differ markedly, allowing appropriate
cataloging of time spent in different types of
migration environments (e.g., low-velocity reser-
voirs vs. turbulent dam tailraces). Third, travel
times are conditioned by the environmental state
and by reach, an attribute that facilitates hypoth-
esis exploration across scenarios of altered condi-
tions, such as potential climate changes and
reach-specific management actions. The model
predicts not only arrival timing on the spawning
ground, but also the amount of time spent in
each tailrace, fishway, and reservoir along the
migration route.
Our cumulative model included multiple

behavioral elements (diel behaviors, variation in
prespawn holding strategy) and reproduced
travel times for the vast majority of individual
salmon across a subcontinental-scale migration
and through a complex environment. The large
amount of data against which we tested this
model was unprecedented for anadromous fish
and was particularly useful for demonstrating
the flexibility of the model structure. Previous
simulation models of anadromous fish migra-
tion, including sockeye salmon in the Fraser
River (Rand et al. 2006) and American shad in
the Connecticut River (Castro-Santos and Letcher
2010), largely consisted of extrapolations from
small-scale studies of relatively few fish. In con-
trast, our model was fit using thousands of
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observations at specific reaches and tested
against nearly two thousand individual Chinook
salmon migration histories. The extensive data
available for the Columbia River Basin thus
increase our confidence in the management util-
ity of the model for scenario exploration.

The model accurately reconstructed salmon
migration durations and our test applications pro-
vided indirect evidence of reduced survival by
slow migrants during adverse conditions. Future
applications can explicitly add fitness-related
functions to quantify the costs of especially slow
migration in specific reaches and exposure to
additional stressors. The ability to quantify indi-
rect effects of travel time through the hydrosys-
tem will improve estimates of the fitness cost
related to these anthropogenic factors and will
help prioritize conservation efforts under alterna-
tive climate and management scenarios.

High-cost migration segments.—Migration travel
time through the hydrosystem was most strongly
correlated with time salmon spent in the tailraces
at dams. In general, adult migrants spend dispro-
portionately longer time in dam tailraces relative
to other reaches while searching for fishway open-
ings, moving in and out of fishways, and waiting
for suitable environmental cues, including day-
light (e.g., Keefer et al. 2004a, 2013, Caudill et al.
2013). The next step toward quantifying the fitness
impact of time spent in these turbulent locations is
to integrate equations on energetics (e.g., Bower-
man et al. 2017) with the travel-time model.

For any given migration, increased duration is
generally associated with higher energetic costs
and lower survival (Naughton et al. 2005, Cau-
dill et al. 2007, 2013), both of which are affected
by environmental conditions (Crossin et al. 2008,
Keefer et al. 2008, Nadeau et al. 2010). Snake
River spring- and summer-run Chinook salmon
undergo a reproductive migration of 1000–
1500 km with little or no food intake, so energy
expenditure is expected to be closely tied to
fitness. Energetic costs are the product of
duration and metabolic rate for any given set of
conditions, which are strongly influenced by
temperature and flow in migrating fishes. Ener-
getic costs are a primary explanation for negative
cumulative effects of passing dams and stressful
environmental conditions on population viabil-
ity, through either effects on survival or reduced
allocation to reproduction (National Research

Council 1996, Rand et al. 2006). Salmon energetic
rates in regulated rivers are typically highest in
tailraces (e.g., Brown et al. 2006), so the consider-
able amount of time spent in tailraces (44–66% of
total time in the first 460 km of the migration)
likely has a disproportionate effect on the total
energetic cost of the migration.
In contrast, prespawn holding in tributaries for

spring-run Pacific salmon has a low daily ener-
getic cost, but relatively long duration. Both the
duration and metabolic cost of holding are influ-
enced by temperature, illustrating the importance
of accurately modeling the duration of each com-
ponent of the migration to effectively calculate
energetic costs. Individual-level decisions relative
to the allocation of time spent in active migration
vs. holding, and distribution of time within the
hydrosystem, can result in quite different survival
outcomes, which would not be fully appreciated
by summaries of mean travel times in each reach.
For example, two fish simulated by the model
that had the same total travel times of 75 d dif-
fered dramatically in the amount of time they
spent in tailraces (3 d compared with 62 d). These
fish might both arrive at the spawning grounds at
the same time, but energetic reserves for spawn-
ing would likely be very different as a result of
differences in migration behavior and en route
environmental experiences.
Climate effects.—Across all reaches, temperature

had the largest influence on salmon travel time,
which is an important consideration in the context
of climate change. In most reaches, travel times
decreased under higher water temperatures,
although passage time through fishways incre-
ased (see Caudill et al. 2013 for mechanisms).
However, we advise caution when applying our
travel-time model without modification to tem-
peratures beyond the range of what was used in
the model, because of known non-linear relation-
ships (Salinger and Anderson 2006) including
temperature-driven blockages to migration (Hyatt
et al. 2003, Strange 2010). Temperatures above
20°C are encountered much more frequently
by late-summer- and fall-run Chinook salmon,
sockeye salmon, and steelhead than by the
spring-/summer-run analyzed here. Populations
migrating during the warmest season are known
to use thermal refugia more extensively than
spring/summer Chinook salmon (Goniea et al.
2006, Keefer et al. 2009). However, the Columbia
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River has been warming during summer over sev-
eral decades (Crozier et al. 2011) and will likely
exceed 20°C for much longer periods in the future
due to climate change (Mantua et al. 2010),
increasing exposure to stressful temperatures for
many populations, including the case study pop-
ulation. As a result, behavior of this population
could change in the future, but the current model
structure could easily accommodate temporary or
permanent migration barriers as another mixture
mode triggered by environmental conditions if
these data become available.

Implications for salmon survival.—An important
aspect of migration and survival studies is that
differential survival can bias observed travel
times to a given destination, and hence estimates
of model performance. Migration timing and
duration is intimately linked to survival in many
animal populations (Gienapp et al. 2007, Reed
et al. 2011). Slower individual travel times were
associated with a lower probability of survival in
most years in our population (Fig. 9; Caudill
et al. 2007). If the duration–survival relationship
were constant over time, survival could be mod-
eled as a simple function of travel time. How-
ever, we found that the relationship between
travel time and survival was stronger in some
years than others, probably because the costs of
longer travel times are higher in some years.

In 2015, for example, higher mortality of
slower-than-average fish likely drove observed
travel times to be shorter on average than they
would have been in the absence of en route mor-
tality. The slow fish that did not return to the
SFSR weir may have died from acute heat stress
during migration, as temperatures approached or
exceeded lethal limits (~25°C) in the Columbia,
Snake, and Salmon rivers in early July (NOAA
Fisheries 2016). Mortality can also be increased at
sublethal temperatures (18–25°C) through tem-
perature-mediated disease or exacerbated ener-
getic costs leading to exhaustion (Crossin et al.
2008, Martins et al. 2012, Ray et al. 2012). Warmer
temperatures may also have caused fish to seek
thermal refugia that exposed them to some addi-
tional source of mortality, such as fishery harvest
(Goniea et al. 2006, Keefer et al. 2009). Regardless
of the cause of mortality, without an estimate of
the travel time of unsuccessful fish, it is difficult
to estimate the magnitude of the bias imposed by
differential mortality.

Innate variation among individuals can also
affect migration rate (Moser et al. 2014), and
adding a random effect to capture this possibility
might remove the slight skew in the model fit
in certain reaches. However, the correlation
between travel times of survivors in successive
segments in our data was low. For example, the
correlation between salmon passage time from
Bonneville Dam to McNary Dam and from
McNary Dam to Lower Granite Dam was r =
0.13 on average across years, and in some years
as low as r = 0.04. Nonetheless, during years
with a strong relationship between travel time
and survival, such as in 2015, the correlation
among times was higher (r = 0.29). Thus, correla-
tion in travel times in this case appears to be a
result of differential survival rather than an
inherent fish effect. An important application of
this model is the ability to systematically explore
the factors that contribute to cumulative effects,
including individual effects that may be much
more influential in some species or situations.

CONCLUSION

Existing migration impediments and increas-
ing threats such as climate change have been
difficult to model due to a lack of both suitable
data and analytical structures (Kunz et al.
2008). Rapidly advancing technology has made
linking long-range tracking of individuals to
data on environmental conditions possible for
many more species, filling data gaps and pro-
viding insight into individual behaviors. How-
ever, applications of telemetry data suitable for
estimates of population-level fitness and vari-
ability are still very rare (Crossin et al. 2014).
The cumulative travel-time model developed
here for Chinook salmon provides a crucial step-
ping-stone to bridge the gap between high-resolu-
tion, individual-based behavioral data, data on
environmental conditions, and population-level
impacts on viability. Future research incorporat-
ing individual covariates in specific reaches to
explore the probability of being in the fast or slow
groups, summing energetic balances across the
entire migration, and integrating survival with
the travel-time model will further enhance the
applicability of this model to decision makers
in the Columbia River Basin. The modeling
approach developed here provides the essential
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framework that has been lacking for these investi-
gations.

The mixture model approach presented here is
flexible and can be easily modified to accommo-
date a variety of migratory conditions and discrete
changes in freshwater, marine, and terrestrial sys-
tems. For example, meteorological conditions dur-
ing flight can affect the decision to use stopover
sites, and the conditions of those sites combine to
affect the duration of migration and energetic
status of migratory birds arriving on breeding
grounds (Battley et al. 2005). Other alternative
movement behaviors mediated by environmental
conditions include resting or active migration in
humpback whales Megaptera novaeangliae (Braith-
waite et al. 2015), and avian soaring vs. flapping
(Mandel et al. 2008). Current optimization
approaches might fail to capture the real tradeoffs
animals confront in an increasingly complex eco-
sphere (Kunz et al. 2008). We present this frame-
work such that behavioral decisions conditioned
on the environment can be incorporated into
efforts to estimate the costs of migration in chang-
ing environments in support of future recovery
planning and management decisions.
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