Program Progress Performance Report
University Transportation Centers
Cover Page TranLIVE

Submitted to: Office of the Assistant Secretary for Research and Technology

Federal Grant Number: DTRT12-G-UTC17

Project Title: TranLIVE (Transportation for Livability by Integrating Vehicles and the Environment)

Program Director: Ahmed Abdel-Rahim; Director of NIATT and TranLIVE; ahmed@uidaho.edu; 208-885-2957

Submitting Official: Tami Noble; Assistant to the Director, NIATT; tnoble@uidaho.edu; 208-885-0576

Submission Date: 7/30/15

DUNS and EIN Numbers: 075746271 and 82-6000945

Recipient Organization: University of Idaho, Office of Sponsored Programs, 875 Perimeter Dr., MS 3020, Moscow, ID 83844-3020

Recipient Account Number: KLK900

Grant Period: January 1, 2012 to January 31, 2016

Reporting Period End Date: June 30, 2015

Report Frequency: Semi-annual

Signature of Submitting Official:

[Signature] Tami Noble
1. ACCOMPLISHMENTS:

A. University of Idaho:
 i. Developing and Testing Eco-Traffic Signal System Applications
 Provided guidelines on using advanced controller settings to optimize traffic operation at
 signalized intersections operating in an isolated mode.
 ii. Calibration of Multi-Scale Energy and Emissions Models
 Used vehicle-emission and fuel consumption data to develop and optimize a rule-based
 energy management strategy for fuel economy improvements in Hybrid Electric Vehicles.
 iii. Direct Drive AC Rim Motor for Responsive Energy Control of Alternative Electric Vehicle
 Nothing to report
 iv. Daily Travel Feedback to Encourage Eco-Routing
 a. Presented work at the annual meeting of the Transportation Research Board.
 b. Wrote the final report.
 v. Eco-driving Modeling Environment
 Developed a Java-based application to estimate fuel consumption for a center engine
 configuration under different driving cycles based on driver simulator output.

B. Old Dominion University:
 i. Reducing Energy Use and Emissions through Innovative Community Designs: Methodology
 and Application
 a. A report that covers relevant literature was written. Key portions of the reviewed
 literature are contained in research papers presented and published based on the project.
 This information is being integrated into the final report.
 b. Intelligent technologies: eco-friendly traveler information. Several papers related to the
 project were presented at the 2015 TRB annual meeting. A paper discussing generating
 emissions information for route selection was published in the Journal of Intelligent
 Transportation Systems.
 c. Modeling alternative fuel vehicle data. One paper on this topic was published in
 Transportation Research.

C. Syracuse University:
 i. Enhancing TSM&O Strategies through User Cost Analysis and Life Cycle Assessment
 The final report had to be removed and will be sent for peer review after some of the
 assumptions made in the study are re-visited and the outputs adjusted accordingly. The
 substantial effort placed on re-evaluating the procedures and assumptions will result in
 improving the final report considerably.
 ii. Assessing Social and Environmental Impacts of Work-Zones in Arterial Improvement Projects
 Project completed.
 iii. Assessing Environmental Impacts of Traffic Congestion and Vehicular Emissions on
 Groundwater and Fresh Water Supplies
 a. Efforts in the first half of 2015 focused on developing methods for analysis of vehicle-
 emitted trace metals on both the OnCenter green roof and the War Memorial control
 roof. The methods were used to analyze runoff from both roofs as well as fresh
 precipitation. Initial samples collected in May 2015 showed small but measureable
concentrations of Ni, Cu, and Pb in fresh precipitation. Concentrations of these three metals in runoff from the green roof were considerably greater than concentrations in precipitation. This suggests that either atmospheric deposition of metals onto the green roof or else trace metals in the growth medium of the green roof are adding trace metals to the runoff. Analysis of the control roof samples is currently underway and will be reported shortly, as is analysis of dry deposition samples and airborne concentration filters.

b. Dr. Cliff Davidson presented a seminar on the use of green infrastructure for stormwater management at the Center for Science, Technology and Policy in Bangalore, India, on June 25, 2015 (approximately 20 attendees).

iv. A Sustainable Asset Management Framework for Transportation System Management and Operation Systems
The research team has completed reviewing literature on inspection and management of various components of TSM&O systems. Currently, the team is focusing on development of a risk based prioritization tool for efficient management of TSM&O deployments.

v. Sustainability Workshops
a. Dr. Cliff Davidson organized three international sustainability workshops in January 2015 that included transportation components as part of the Center for Sustainable Engineering. The workshops were offered at TERI University in New Delhi on January 12, 2015 (approximately 20 attendees), India Institute of Technology Gandhinagar on January 14, 2015 (approximately 25 attendees), and India Institute of Technology Bombay on January 16, 2015 (approximately 25 attendees).

b. Dr. Cliff Davidson was a co-organizer of a workshop in June 2015 that included transportation components as part of the Center for Sustainable Engineering. The workshop was held at the National Meeting of the Association of Environmental Engineering and Science Professors, Yale University, on June 14, 2015. There were approximately 50 attendees.

c. Dr. Cliff Davidson organized an international sustainability workshop in June 2015 that included transportation components as part of the Center for Sustainable Engineering. The workshop was offered at India Institute of Science in Bangalore on June 26, 2015. There were 29 attendees.

D. Texas Southern University:
 a. What we have done:
 1) Reviewed more literature.
 2) Working on draft of the final report.
 b. What we have learned:
 The frame developed in this study needs to be in a more general way for practitioners to use to carry out similar evaluation studies in the future. More data needs to be collected to further verify the collected field data for improving the model results.

 ii. Education and Outreach Activities
 a. Supported faculty and student travels to present research papers in academic conferences such as:
2) The 28th International Conference of Transportation Professionals Association (ICTPA), May 14-16, 2015, Los Angeles, California.

iii. **Develop an Integrated Data Management System at the Microscopic, Mesoscopic, and Macroscopic Levels to Assess the Environmental Impacts of Transportation System**
 a. Further tested part of the database for sample use of emission estimation for different purposes, especially for vehicle-to-infrastructure communications.
 b. Incorporating with a project from Texas Department of Transportation (TxDOT), vehicle emissions have been tested in junction with the records of pavement roughness information. Vehicle emissions on 11 roadway segments in El Paso, Texas, 14 roadway segments in Houston, Texas, and 1 segment in College Station, Texas have been tested.

iv. **Use the Driving Simulator to Synthesize the Related Vehicle Specific Power (VSP) for Emission and Fuel Consumption Estimations**
The driving simulator is capable of testing driving performance in work zones when the Drivers’ Smart Advisory System (DSAS) message is provided.

Developed a kNN model to estimate vehicle emissions in relationship with vehicle activity information.

vi. **Improve the Environment for a Livable Community: Advance the AERIS Program by Developing and Testing Eco-traffic Signal System Control Applications**
 a. The impacts of foggy weather conditions on driver behavior at yellow intervals were characterized, and how driver behavior is influenced by the advanced warning message from the Drivers Smart Signal System (DSSS) at high-speed signalized intersection approaches was discussed using driving simulator test.
 b. Tested impacts of weather condition (fog) on emissions due to changed drivers’ reactions during yellow change interval.

vii. **Developing Short Range Vehicle-to-Infrastructure Communication Systems**
Designed smartphone applications and tested in work zone (advance warning area and activity area) and signalized intersections using the driving simulator.

E. **Virginia Tech:**
 i. **Develop Mesoscopic Fuel Consumption and CO₂ Emission Models**
 Developing mesoscopic modeling framework.

 ii. **Develop Macroscopic Fuel Consumption and CO₂ Emission Models**
 a. Characterized vehicle power distributions along freeway weaving sections.
 b. Reviewing naturalistic data to characterize typical vehicle power distributions for different facility types depending on the type of intersection control.

 iii. **Develop Multi-scale Energy and Emission Models**
 a. Extending VT-CPFM to model heavy-duty truck fuel consumption and CO, HC, and NOx emissions.
 b. Extending VT-CPFM to model hybrid electric light-duty vehicles.

F. **Multi-institution:**
 i. **Developing and Field Implementing a Dynamic Eco-routing System –Virginia Tech, lead; University of Idaho and Old Dominion University, partners**
 a. Develop a simulation environment for testing the eco-routing system.
 b. Study the dynamics of driver routing behavior.
c. Develop algorithms to enhance the minimum path search.
d. Conduct simulation/field tests.

ii. **Smartphone-based Solutions to Monitor and Reduce Fuel Consumption and Co₂ Footprint** – *Old Dominion University, lead; Virginia Tech and Texas Southern University, partners*
 a. New algorithms based on support vector machines (SVMs), neural networks, and clustering techniques were developed to estimate whether the vehicle is in motion or stopping. The performance of the algorithms was tested on large datasets collected by the research team. Overall, the algorithms were found to be effective in detecting when the vehicle stops and for how long.
 b. A module for estimating vehicle speed from accelerometer data was developed. The core algorithm for this module utilizes the Principal Component Analysis (PCA) technique to map the accelerometer readings from smartphones to the orientation/direction of travel of the vehicle. The performance of the module was evaluated offline on the collected data by the research team. Overall, the algorithms were found to be good in estimating vehicle speed independent of the phone orientation. Currently, we are integrating this module with GoGreen App for online speed estimation as well as improving the algorithm performance under different driving scenarios.
 c. Algorithms have been developed and finalized to predict the mode of travel based on sensor data from smartphones. The performance of the algorithms was tested and the results were published in a journal paper.
 d. Shortest path algorithms are being developed to determine the eco-friendly shortest paths while considering both travel time and fuel consumption in the path cost function.

iii. **Eco-traffic Signal System** – *University of Idaho, lead; Virginia Tech and Syracuse University, partners*
 a. Developed connected-vehicle lab integrating DSRC receivers and roadside units.
 b. Validated the data exchange mechanics between the DSRC units, roadside units, a microprocessor interface, and the traffic controller.

iv. **Studying the impact of accelerated construction methods in work zones using micro-simulation, on vehicle emissions and the environment** – *Syracuse University, lead; Virginia Tech and University of Idaho, partners*
 In order to achieve the project objectives, a comprehensive literature review was completed on the MRR activities and accelerated construction techniques to get familiar with the construction methods, construction sequencing, contracting requirements and traffic management plans (TMPs) used by various transportation agencies. During this reporting period, case studies related to highway construction, maintenance or repair activities were identified. Data on these case studies were collected from New York State’s Online Data Repository (data.ny.gov). More specifically, the databases accessed are “Transportation Projects in your Neighborhood”, “Capital Projects by NYS Thruway Authority” and “511 NY Events”. Work zones for different MRR activities were identified and their corresponding traffic management plans (TMPs) are listed. As a part of this research project, Mr. Sudipta Ghorai spent two days at the Virginia Tech Transportation Institute and worked with Dr. Rakha and Dr. Du on work-zone traffic modeling. Dr. Rakha provided Syracuse University with licenses for the software INTEGRATION (large) and QueensOD, which can be used to model complex networks and generate origin-destination matrix for simulating traffic around the work-zones. The research team is now in the process of modeling this information in INTEGRATION and obtaining the emission impact results.
2. **PRODUCTS:**

 A. University of Idaho:

 i. **Developing and Testing Eco-Traffic Signal System Applications**

 ii. **Calibration of Multi-Scale Energy and Emissions Models**
 Final report being drafted.

 iv. **Direct Drive AC Rim Motor for Responsive Energy Control of Alternative Electric Vehicle**
 Final report being drafted.

 v. **Daily Travel Feedback to Encourage Eco-Routing**

 vi. **Eco-driving Modeling Environment**
 Java-based application to estimate fuel consumption for a center engine configuration under different driving cycles.

 B. Old Dominion University:

 i. **Reducing Energy Use and Emissions through Innovative Community Designs: Methodology and Application**

C. Syracuse University:

vi. Sudipta Ghorai, Song He, and Sharareh Pirzadeh attended the poster session on the Nunan Lecture and Research Day organized by Syracuse University on April 6th, 2015. The titles of their posters were “Socio - Environmental Impacts of Pavement Maintenance, Repair and Rehabilitation Activities”, “A Sustainable Asset Management Framework for Transportation System Management and Operation Systems” and “Improving Sustainability of Work-Zones by Implementing Lean Construction and Total Quality Management Techniques” respectively.

D. Texas Southern University:

ii. Education and Outreach Activities – Nothing to report.

iii. Develop an Integrated Data Management System at the Microscopic, Mesoscopic, and Macroscopic Levels to Assess the Environmental Impacts of the Transportation System

iv. **Use the Driving Simulator to Synthesize the Related Vehicle Specific Power (VSP) for Emission and Fuel Consumption Estimations**

vi. **Improve the Environment for a Livable Community: Advance the AERIS Program by Developing and Testing Eco-traffic Signal System Control Applications**

vii. **Developing Short Range Vehicle-to-Infrastructure Communication Systems**

E. Virginia Tech:

i. Develop Mesoscopic Fuel Consumption and CO2 Emission Models

ii. Develop Macroscopic Fuel Consumption and CO2 Emission Models

iii. Develop Multi-scale Energy and Emission Models

F. Multi-institution:

i. Developing and Field Implementing a Dynamic Eco-routing System –Virginia Tech, lead; University of Idaho and Old Dominion University, partners

ii. **Smartphone-based Solutions to Monitor and Reduce Fuel Consumption and Co2 Footprint – Old Dominion University, lead; Virginia Tech and Texas Southern University, partners**

a. The following papers were presented or will be presented:

5) Ruksana Rahman, Fengxiang Qiao, Qing Li, and Lei Yu. (2015). Identifying suitable warning message from smartphone app to enhance safety in work zone. Presenter: Fengxiang Qiao. Accepted for presentation in the 2015 Intelligent Transportation System World Conference, October 3 - 11, 2015, Bordeaux, France.

b. Journal paper:

c. The following presentation was done:

iii. **Eco-traffic Signal System – University of Idaho, lead; Virginia Tech and Syracuse University, partners**

a. A connected vehicle traffic signal system lab in which data are exchanged between the vehicle, the road side unit, and the traffic controller that will facilitate field deployment.

b. A laboratory prototype for connected vehicle traffic signal system applications.

iv. **Studying the impact of accelerated construction methods in work zones using micro-simulation, on vehicle emissions and the environment – Syracuse University, lead; Virginia Tech and University of Idaho, partners**

3. PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS:

A. University of Idaho:
 UI has been working with the Idaho Transportation Department, Decagon Devices, Inc., Harbrick, AutonomouStuff, LLC., and Econolite Controls holding various meetings to collaborate on projects and holding training meetings.

B. Old Dominion University:
 Dr. Khattak worked collaboratively with foreign collaborators at University of Aveiro, Portugal (J. Bandeira, T. Almeida, & M. Coelho) on research papers that are related to the TranLIVE theme and were submitted for review in refereed journals.

C. Syracuse University:
 Nothing to report

D. Texas Southern University:
 i. Dr. Xumei Chen from Beijing Jiaotong University in China and Dr. Yi Qi, TSU, were awarded a project “Dynamic Model on Emission Control and Estimation at Multimodal Signalized Intersections with Traveler Information System” by the National Science Foundation of China (grant #71373018) based on some results from “A Systematic Evaluation of the Impacts of Traffic Condition Information on the Reduction of On-road Mobile Emissions” project.
 ii. One exchange graduate student from Beijing Jiaotong University visited TSU in summer 2015, exchanging research ideas and activities with TSU graduate students.
 iii. Exchanged ideas and potential collaborative work with researchers at the University of Texas, El Paso.
 iv. Professor Haibo Zou from Chang-an University, and Professor Liqing Wei from Chongqing Jiaotong University (both from China) worked as visiting scholars at TSU.
 v. Conducted collaborative research with National Science Foundation (NSF) CREST center on complex network, especially its subcenter on wireless communications at TSU.
 vi. Texas Department of Transportation (TxDOT) project vehicle emissions have been tested in conjunction with the records of pavement roughness information.

E. Virginia Tech:
 i. Develop Multi-scale Energy and Emission Models
 The research team collaborated with researchers from the International Islamic University of Malaysia (IIUM).

F. Multi-institution:
 i. Developing and Field Implementing a Dynamic Eco-routing System – Virginia Tech, lead; University of Idaho and Old Dominion University, partners – Nothing to report
 ii. Smartphone-based Solutions to Monitor and Reduce Fuel Consumption and Co2 Footprint – Old Dominion University, lead; Virginia Tech and Texas Southern University, partners – Nothing to report
 iii. Eco-traffic Signal System – University of Idaho, lead; Virginia Tech and Syracuse University, partners – Harbrick, AutonomouStuff, LLC – Moscow, Idaho
 iv. Studying the impact of accelerated construction methods in work zones using micro-simulation, on vehicle emissions and the environment – Syracuse University, lead; Virginia Tech and University of Idaho, partners – Nothing to report.
4. **IMPACT:**

A. **University of Idaho:**

i. **Developing and Testing Eco-Traffic Signal System Applications**
 a. Education:
 1) One Bachelor of Science in Civil Engineering student graduated and joined the transportation engineering graduate program at the University of Idaho.
 2) Two undergraduate Civil Engineering students joined as undergraduate research interns.
 1) One Ph.D. student graduated in May 2015 and joined the transportation engineering workforce in a lead consultant firm in the area of traffic signal system operations.
 b. Research:
 1) Guidelines for actuated control parameters to minimize fuel consumption and vehicle emissions for fully actuated signaled intersections operating on isolated or free mode of operation.
 2) Guidelines for optimizing coordinated corridors to minimize fuel consumptions and emissions.
 3) Guidelines on using advanced controller parameters to minimize fuel consumption and vehicle emissions for fully actuated signaled intersections operating on isolated or free mode of operation.
 4) Architecture for a hardware-in-the-loop simulation environment for connected-vehicle applications for corridor operations integrating.
 c. Tech Transfer: Publication of results at various meetings and conferences.

ii. **Calibration of Multi-Scale Energy and Emissions Models**
 a. Education:
 1) One undergraduate electrical engineering student continued working as research intern.
 b. Research:
 1) Calibrated fuel consumption and emission models for three traffic engineering software tools: VISSIM and Integration, and Transyt 7-F.
 2) Developed a rule-based energy management strategy for fuel economy improvements in Hybrid Electric Vehicles.

iii. **Direct Drive AC Rim Motor for Responsive Energy Control of Alternative Electric Vehicle**
 Nothing to report

iv. **Daily Travel Feedback to Encourage Eco-Routing**
 Tech transfer will continue through conference presentations and journal publications.

v. **Eco-driving Modeling Environment**
 a. Education: One computer science undergraduate student, one mechanical engineering undergraduate student, and one psychology graduate student.
 b. Research: An Eco-Driving modeling environment that integrates the NADS MiniSim driver simulator model and the GT-Suite advanced engine modeling tool.

B. **Old Dominion University:**

i. **Real-time Prediction of Queues at Signalized Intersections to Support Eco-driving Applications**
 a. In terms of education, this project is contributing by training a post-docs (Dr. J. Liu, and X. Wang) and several graduate students (J. Liu, M. Zhang, G. Amoli, S. Son) who worked on
modeling and smart growth land use strategies, microscopic driving decisions, energy use and emissions issues.

b. In terms of research, the project has generated nine international conference presentations and six refereed papers in high-impact journals. These represent important contributions to the state of the art in energy and emissions modeling.

c. Various products and applications were developed in order to support more eco-friendly driving decisions.

d. The study contributed toward greater consciousness about the energy and environmental issues.

C. Syracuse University:

i. Enhancing TSM&O Strategies through User Cost Analysis and Life Cycle Assessment

The hypothetical case studies demonstrate that the B/C ratio for ATCS applications may range between 6.5 and 13.0 and the B/C ratio for ramp meters may be approximately 6.4.

D. Texas Southern University:

This project will provide transportation planners or environmental analysts with qualitative assessments of the impacts on air quality of different types of traffic condition information. It will also help the traffic engineer to appropriately deploy the most effective traveler information systems to achieve more environmental benefits. In addition, since very few studies have been performed to directly investigate the impacts of the traveler information on on-road mobile emissions, the proposed research will fill this gap and will help the researchers and practitioners to better understand the related issues in the future. Furthermore, the operating mode ID distributions developed by this study can be used as input to run MOVES and obtain the emission level of any pollutants. The results of this study will facilitate the evaluation of transportation operation and demand management strategies with respect to their impacts on air quality. Finally, the results of project can be incorporated into some teaching curriculums, such as the class TMGT 885 “Quantitative Assessment of Transportation Environmental Impact” at TSU.

ii. Education and Outreach Activities

a. The education program helps to promote interests of K-12 and college students in STEM programs, especially in transportation and environment related areas. The developed curricula and experiences can be easily further expanded and applied to other schools.

b. The education program has brought awareness to students, teachers, community organizers, organizations and families about the impact of transportation on the environment. In addition, these groups have come to understand that their personal decisions regarding transportation impact the quality of their environment.

c. The students learned new transportation and environmental concepts and terms; the students made a connection to how goods, services and people are transported efficiently through various modes and networks of transportation infrastructure.

iii. Develop an Integrated Data Management System at the Microscopic, Mesoscopic, and Macroscopic Levels to Assess the Environmental Impacts of Transportation System

Once the emission and activity database is fully developed, researchers, students at different levels (graduate students, undergraduate students, K-12 students) from different geographic areas (within or outside the consortium, within or outside the country) can utilize this database easily for various transportation and environment related research and education purposes through web access.
iv. **Use the Driving Simulator to Synthesize the Related Vehicle Specific Power (VSP) for Emission and Fuel Consumption Estimations**

The developed algorithm will help to calibrate the simulation results from the driving simulator, which will make better use of the driving simulator for vehicle emission and fuel consumption analyses.

The developed models are important to further research in developing suitable urban transportation management systems and vehicle emission reduction strategies. They also provide very good examples for undergraduate and graduate level courses. The developed techniques can be expanded for direct use by industry and government.

vi. **Improve the Environment for a Livable Community: Advance the AERIS Program by Developing and Testing Eco-traffic Signal System Control Applications**

a. Results from the emission analysis demonstrate that the DSSS helps to reduce emission rates at yellow intervals when approaching an intersection. While the DSSS message in foggy weather conditions cannot fully recover drivers’ behaviors to normal weather conditions, it can somehow reduce the risk of safety such as running red lights and sharp decelerations, and may also reduce emissions.

b. The findings can be a good reference in developing optimal strategies for eco-traffic signal system control at intersections and in dynamic traffic assignment.

vii. **Developing Short Range Vehicle-to-Infrastructure Communication Systems**

The developed system can help to not only enhance safety, but also reduce vehicle emissions. With more tests, it can be widely used in research, industry and for education purposes.

E. **Virginia Tech:**

i. **Develop Mesoscopic Fuel Consumption and CO₂ Emission Models**

a. Education: The funding of a graduate student assistantship.

b. Research: Development of mesoscopic fuel consumption models for light duty cars and buses.

ii. **Develop Macroscopic Fuel Consumption and CO₂ Emission Models**

a. Education: The funding of a graduate student assistantship.

b. Research: Development of macroscopic fuel consumption models for light duty cars and buses.

iii. **Develop Multi-scale Energy and Emission Models**

a. Education: The funding of a graduate student assistantship.

b. Research: Development of fuel consumption models for light duty cars and buses.

c. Technology Transfer: Publication of results at various conferences.

F. **Multi-institution:**

i. **Developing and Field Implementing a Dynamic Eco-routing System** – Virginia Tech, lead; University of Idaho and Old Dominion University, partners

a. Education: The funding of a graduate student assistantship.

ii. **Smartphone-based Solutions to Monitor and Reduce Fuel Consumption and Co2 Footprint** – Old Dominion University, lead; Virginia Tech and Texas Southern University, partners

The results of the research are being disseminated through journal publications and presentations at international conferences and workshops.

iii. **Eco-traffic Signal System** – University of Idaho, lead; Virginia Tech and Syracuse University, partners
a. Education: One computer science graduate student and one civil engineering Ph.D. student.
b. Research:
 1. A connected vehicle traffic signal system lab in which data are exchanged between the vehicle, the road side unit, and the traffic controller that will facilitate field deployment.
 2. A laboratory prototype for connected vehicle traffic signal system application
iv. Studying the impact of accelerated construction methods in work zones using micro-simulation, on vehicle emissions and the environment – Syracuse University, lead; Virginia Tech and University of Idaho, partners
 Nothing to report
5. CHANGES/PROBLEMS
 A. University of Idaho:
 Field deployment implementation delay issues due to the time needed to integrate different test components.
 B. Old Dominion University:
 Nothing to report
 C. Syracuse University:
 i. Enhancing TSM&O Strategies through User Cost Analysis and Life Cycle Assessment
 Some irregularities were noticed and the final report had to be removed and will be sent for peer review after some of the assumptions made in the study are re-visited and the outputs adjusted accordingly. The substantial effort placed on re-evaluating the procedures and assumptions will result in improving the final report considerably.
 D. Texas Southern University:
 i. Develop an Integrated Data Management System at the Microscopic, Mesoscopic, and Macroscopic Levels to Assess the Environmental Impacts of Transportation System
 Need to do new tests with pavement roughness in conjunction with TxDOT.
 ii. Develop Multi-scale Energy and Emission Models for Arterial Traffic Systems
 Delay in systematically summarizing all developed models and analytical results
 vii. Improve the Environment for a Livable Community: Advance the AERIS Program by Developing and Testing Eco-traffic Signal System Control Applications
 Data processing tests and summary of findings are still on-going.
 iii. Developing Short Range Vehicle-to-Infrastructure Communication Systems
 The driver’s performance for work zone, intersection, and other locations need to be systematically analyzed.
 E. Virginia Tech:
 i. Develop Mesoscopic Fuel Consumption and CO₂ Emission Models
 This project has been delayed because it requires that the microscopic models be developed first before developing this model.
 ii. Develop Macroscopic Fuel Consumption and CO₂ Emission Models
 This project has been delayed because it requires that the microscopic models be developed first before developing this model. Furthermore, additional time will be needed to analyze the naturalistic data.
iii. **Develop Multi-scale Energy and Emission Models**
 The scope of the project has been reduced from multi-level modeling to expanding the microscopic modeling framework to consider: (1) buses; (2) trucks; and (3) hybrid vehicles. We are still collecting data on buses and received truck data from the University of California, Riverside.

F. **Multi-institution:**
 i. **Developing and Field Implementing a Dynamic Eco-routing System – Virginia Tech, lead; University of Idaho and Old Dominion University, partners**
 Additional time is needed to complete this effort and to conduct field tests.
 ii. **Eco-traffic Signal System – University of Idaho, lead; Virginia Tech and Syracuse University, partners**
 Field deployment implementation delay issues due to the time needed to integrate different test components.

6. **SPECIAL REPORTING REQUIREMENTS**
 Financials will be sent by the University of Idaho’s Office of Sponsored Programs as needed.

Completed by:
University of Idaho: Ahmed Abdel-Rahim
Old Dominion University: Mecit Cetin
Syracuse University: O. Sam Salem
Texas Southern University: Fengxiang Qiao
Virginia Tech: Hesham Rakha