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ABSTRACT 21 

Travel-time information is an essential part of Advanced Traveler Information Systems (ATISs) 22 
and Advanced Traffic Management Systems (ATMSs). A key component of these systems is the 23 
prediction of travel times. From the perspective of travelers such information may assist in 24 
making better route choice and departure time decisions. For transportation agencies these data 25 
provide criteria with which to better manage and control traffic to reduce congestion. This study 26 
proposes a dynamic travel time prediction algorithm that matches current traffic patterns to 27 
historical data. Unlike previous approaches that use travel time as the control variable, the 28 
approach uses the temporal-spatial traffic state evolution to match traffic states and predict travel 29 
times. The approach first identifies candidate historical time intervals by matching real-time 30 
traffic state data against historical data for use in prediction purposes. Subsequently, the selected 31 
candidates are used to predict the temporal-spatial evolution of traffic. Lastly, dynamic travel 32 
times are constructed using the identified candidate historical data. The proposed algorithm is 33 
tested on a 37-mile freeway segment from Newport News to Virginia Beach along the I-64 and I-34 
264 freeways using historical INRIX data. The prediction results indicate that the proposed 35 
method produces predictions that are more accurate than the state-of-the-art K-Nearest Neighbor 36 
methods reducing the prediction error by 15 percent to less than 3 minutes on a 50-minute trip. 37 
  38 



Chen, Rakha and McGhee  2 

INTRODUCTION 1 

Congestion has proven to be a serious problem across urban areas in the United States. In 2007, it 2 
cost highway users 4.2 billion extra hours of sitting in traffic and an extra 2.8 billion gallons of 3 
fuel. This all translated into an additional $87.2 billion in congestion costs for road users in 2007, 4 
which showed a 50% increase in cost compared to data from the previous decade. Even though 5 
the recent economic downturn is said to have marginally eased the congestion problem 6 
nationwide, new evidence shows an uptrend in traffic and consequently congestion [1]. 7 

Tackling congestion (both recurrent and non-recurrent) has proven to be a challenge for 8 
highway agencies. Adding capacity in response to congestion is becoming less of an option for 9 
these agencies due to a combination of financial, environmental, and social issues. Therefore, the 10 
main focus has been on improving the performance of existing facilities through continuous 11 
monitoring and dissemination of traffic information. The minimum that can be accomplished is to 12 
inform the public or, specifically, the potential users of what they should expect on the roadways 13 
before and during their trips. Additionally, this information can be applied to provide alternatives 14 
to users so that they may make informed decisions about their trips. This is the essence of 15 
Advanced Traveler Information System (ATIS) applications such as 511 that have been 16 
implemented nationwide. In many states relevant traffic information is also posted on variable 17 
message signs (VMSs) that are strategically positioned along highways. Consequently, there is a 18 
need to provide predicted travel times to road users for better planning their trips and choosing 19 
their route of travel, further reducing congestion.  20 

Various traffic sensing technologies have been used to collect traffic data for use in 21 
computing travel times, including point to point travel time collection (license plate recognition 22 
systems, automatic vehicle identification systems, mobile, Bluetooth, probe vehicle, etc.) and 23 
station based traffic state measuring devices (loop detector, video camera, remote traffic 24 
microwave sensor, etc.). Private companies such as INRIX integrate different sources of 25 
measured data to provide section-based traffic state data (speed, average travel time), which is 26 
used in our study to develop algorithms for predicting travel times. The benefit of using section-27 
based traffic state data is that travel time can be easily calculated from traffic state data. More 28 
importantly, the section-based data provides the flexibility for scalable applications on traffic 29 
networks. 30 

By providing section-based traffic state data, there are two approaches to compute travel 31 
time depending on the trip experience [2, 3]. Dynamic travel time is the actual, realized travel 32 
time that a vehicle could experience during a trip. If a vehicle leaves it’s origin at the current time, 33 
the roadway speed will not only change across space but also across time during the entire trip. 34 
Consequently, dynamic travel time can be obtained by using a prediction algorithm to compute 35 
the speed evolution in future time steps. Instantaneous travel time is the other approach available 36 
to compute travel times without the consideration of speed evolution across time. It is usually 37 
computed using the current speed along the entire roadway; in other words the speed field is 38 
assumed to remain constant in time. The instantaneous travel time is close to the dynamic travel 39 
time when the roadway speed does not change significantly across time space during the trip. 40 
However, this approach may deviate substantially from the actual, experienced travel time under 41 
transient states during which congestion is forming or dissipating during a trip [4].  42 

Some attempts have been conducted using macroscopic traffic modeling to predict short-43 
term traffic states, however the accuracy degrades rapidly with the increase in the prediction time 44 
span [5, 6]. It should be noted that traffic state in the near future usually cannot provide enough 45 
information to cover the entire trip, especially for long trips. For instance, in the case of a 100-46 
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mile trip, departures at the current time would still be traveling one hour in the future even under 1 
free-flow traffic conditions. For this case, the traffic state for the following one hour or more 2 
should be predicted in order to compute dynamic travel times. An alternative to solving this 3 
problem is to use historical data. The historical dataset provides a pool of past experienced traffic 4 
patterns which can be used to predict future traffic states. The key issue is determining the similar 5 
historical traffic patterns to match with the changeable real-time traffic information. 6 

The purpose of this study is to develop an algorithm to predict dynamic travel times for 7 
departures at the current time or in the future (look ahead time duration). The proposed method 8 
seeks historical candidates with similar traffic patterns to the current conditions. Afterward, the 9 
future traffic state can be predicted by the subsequent traffic state of each candidate. Dynamic 10 
travel times for each candidate are aggregated with associated weights to compute future travel 11 
times. A freeway stretch from Newport News to Virginia Beach is selected to test the proposed 12 
algorithm using five-minute aggregated traffic data for 2010 provided by INRIX. The travel time 13 
prediction results during the summer season demonstrate that the proposed method produce 14 
higher prediction accuracies compared to state-of-the-art K-Nearest Neighbor methods, especially 15 
during highly congested weekdays. 16 

The remainder of this paper is organized as follows. A literature review of previous travel 17 
time prediction methods is provided. Subsequently, the proposed methodology of using current 18 
and historical traffic state data to predict dynamic travel times is presented. This is followed by a 19 
description of the test data for the case study and the comparison results of using proposed 20 
approach and the traditional k-NN algorithm for prediction. The last section provides the 21 
summary conclusions of the research and some research recommendations for future research. 22 

LITERATURE REVIW 23 

During the past decades, many studies have been conducted to predict travel times. Some of the 24 
reviews of different methods can be found in earlier publications [7-10]. According to the manner 25 
of modeling, those methods can be classified into time series models including Kalman filter [11, 26 
12], Auto-Regressive Integrated Moving Average (ARIMA) models [12-14] and data-driven 27 
methods, such as neural networks [9, 15], support vector regression (SVR) [16, 17] and K-28 
Nearest Neighbor (k-NN) [8, 18, 19] models. These techniques are implemented through direct 29 
and indirect procedures to predict travel times using different types of state variables. Travel time 30 
is directly used as the state variable in model-based or data-driven methods to predict travel times. 31 
Indirect procedures are performed by using other variables (such as traffic speed, density, flow, 32 
occupancy , etc.) as the state variable to predict traffic status, and then future travel time can be 33 
calculated based on the transition to predicted traffic status.  34 

Time series models construct the time series relationship of travel time or traffic state, and 35 
then current and/or past traffic data are used in the constructed models to predict travel times in 36 
the next time interval [20]. A Kalman filter (KF) is a popular method for data estimation and 37 
tracking, in which time update and measurement update processes are included. A time series 38 
equation is used to predict state variables and then state values are corrected according to the new 39 
measurement data. The main advantage of a KF is that the recursive framework ensures traffic 40 
data is efficiently updated only using data from previous states and not the entire history [5]. 41 
Kalman filters were proposed to predict travel times using Global Positioning System (GPS) 42 
information and probe vehicle data [12, 21]. The state transient parameter in the time series 43 
equation is defined from average historical data to calculate future travel times. The similar idea 44 
was used in the Bayesian dynamic linear model for real-time short-term travel time prediction 45 
[11]. The system noise can be adjusted for unforeseen events (incidents, accidents or bad weather) 46 
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and integrated into the recursive Bayesian filter framework to quantify random variations on 1 
travel times. The experiment results based on loop detector data from a segment of I-66 2 
demonstrates the proposed method produces higher prediction accuracy under both recurrent and 3 
non-recurrent traffic conditions. However, in these methods a problem exists in that the travel 4 
time in the previous time interval is needed to calculate the future travel time. For real-time 5 
applications, the travel time is usually greater than the time interval step size. Hence, the actual 6 
travel time from the previous time interval is not available to apply in the algorithms used to 7 
predict travel times for the next time interval. 8 

A seasonal ARIMA model was proposed to quantify the seasonal recurrent pattern of 9 
traffic conditions (occupancy) [13, 14]. Moreover, an embedded adaptive Kalman filter was 10 
developed in order to update the occupancy estimate in real-time using new traffic volume 11 
measurements. Consequently, multi-step look ahead occupancy information are estimated to 12 
obtain a data matrix representing the temporal-spatial traffic condition for the future trip. Since 13 
travel time cannot be directly computed through traffic conditions (occupancy), future traffic 14 
speed can be calculated using occupancy data by assuming an average vehicle length and using a 15 
constant conversion factor known as the g-factor in the literature. Consequently, dynamic 16 
freeway corridor travel times are predicted with the consideration of traffic state evolution along 17 
the corridor. However, this approach may be difficult to implement since the described recurrent 18 
pattern of traffic conditions may not be found everywhere.  19 

Data-driven methods usually predict travel times using a large amount of historical traffic 20 
data. Time series models are not specified in the data-driven methods, considering the complex 21 
stochasticity of traffic systems. Neural networks can be trained from historical data to discover 22 
hidden dependencies which can be used for predicting future states. A space neural network 23 
(SSNN) method was proposed to predict freeway travel times for missing data [9]. The missing 24 
data problem was tackled by simple imputation schemes, such as exponential forecasts and 25 
spatial interpolation. Travel time was the direct state variable used for the training process and the 26 
experiment results demonstrated the SSNN methods produced accurate travel time predictions on 27 
inductive loop detector data. Supported vector machine (SVM) is a successor to ANNs, which 28 
has greater generalization ability and is superior to the empirical risk minimization principle as 29 
adopted in ANNs [17]. The application of SVM to time series forecasting is called SVR. The 30 
SVR predictor was demonstrated to perform well for travel time prediction. The point to point 31 
travel time is usually used as the input to ANNs and SVRs. However, both methods require long 32 
training processes and are nontransferable to other sites [8]. 33 

The k-NN method can be used to find several candidate sequences from historical data, by 34 
matching with current to short past data sequences. Travel time and occupancy sequences were 35 
used to predict dynamic travel times using the k-NN method with combined data from vehicle 36 
detectors and automatic toll collection systems [8]. The occupancy was used since travel time 37 
sequence was collected for the recent past time intervals. The results from the case study 38 
demonstrated the improvement of prediction accuracy by combining two types of sequences for 39 
the matching process. Moreover, a k-NN method was proposed by selecting candidates through 40 
the Euclidean distance and data trend measures to predict freeway travel times under different 41 
weather conditions [18]. Unlike ANNs and SVRs, k-NN methods are easy to implement at 42 
different sites without data training required.  43 

In summary, existing methods are either insufficient or have limitations for predicting 44 
dynamic travel times for departures at the current time or future times. The proposed approach 45 
used in this study is a data-driven method, yet outperforms the previous methods by fully 46 
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utilizing the relationship between traffic states and travel times. Moreover, other than previous 1 
studies using travel time sequences as input, the proposed method uses temporal-spatial traffic 2 
data to match traffic patterns between real-time and historical data. The temporal-spatial traffic 3 
matrix can be further applied with advanced pattern matching techniques to extract candidates 4 
more efficiently and accurately to obtain better travel time prediction results.  5 

METHODOLOGY 6 

The Dynamic Travel Time Prediction Framework 7 

The proposed algorithm comprises three stages: identify current traffic status, obtain similar 8 
traffic patterns from historical data, and predict travel times. The framework of the three stages is 9 
demonstrated in Figure 1. The current traffic status is initially selected to represent the traffic 10 
status of all freeway sections from short-past to the current time interval. The traffic status in this 11 
case is a matrix across temporal and spatial axes. Thereafter, the historical traffic speed data with 12 
the same dimension to current traffic status is selected as a candidate. Based on the dissimilarity 13 
to the current speed matrix, several candidates are extracted to represent the historical recurrent 14 
traffic patterns that are similar to the current status. Finally, the subsequence dynamic travel times 15 
of those candidates are aggregated to represent the travel time distributions in the future. 16 

The proposed algorithm fully utilizes the relationship between traffic state and travel time, 17 
and the selected candidate traffic state maps are used to predict future travel times. Consequently, 18 
the full coverage of historical traffic state data is required in the proposed approach. However, the 19 
problem of missing data is common in the field and thus must be addressed. Many traffic state 20 
estimation methods were proposed in order to obtain full coverage traffic state data by solving the 21 
mentioned problems [22, 23]. In the following sections, the traffic status is the full coverage 22 
traffic data after the process of state estimation. A detailed description of state estimation 23 
methods is beyond the scope of this paper and thus is not discussed further in this paper.  24 

 25 

Figure 1: Framework of Proposed Dynamic Travel Time Prediction Algorithm. 26 

Matching Traffic Patterns 27 

A candidate selection scheme is proposed to select temporal-spatial traffic state candidates from a 28 
historical dataset by matching with the real-time traffic state. Suppose c denotes the current time; 29 
the current traffic state [c-L+1, c-L+2, ... , c] and the matching temporal-spatial traffic data [t-30 
L+1, t-L+2, ... , t] from a historical dataset are denoted by tail time c and t, respectively. Here, L 31 
is the data length across time intervals to be matched. It should be noted that the traffic data of 32 
each time interval is a vector that covers all spatial sections (N sections) of the freeway stretch, 33 
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therefore the traffic data for L time intervals is a matrix with dimension L by N. Various pattern-1 
matching methods can be used to define the dissimilarity between the current traffic status and 2 
historical data, such as the Euclidean distance [24-27], data trends [18, 28], image pattern 3 
recognition [29, 30], neural networks [15, 31], etc. In this study, the average Euclidean distance 4 
between the current temporal-spatial traffic data and each data matrix with the same dimension 5 
from the historical dataset is calculated using Equation (1) to represent a dissimilarity measure. 6 
Other advanced methods can be adopted to increase the matching speed and accuracy and are 7 
being considered as part of future research efforts. 8 

( )( , ) ( , ) ( , )d c h M c L M h L L N= - ´ . (1) 

where M(c,L) and M(h,L) represent the traffic data of the current and historical time intervals, 9 
respectively; d(c,h) is the average Euclidean distance between the traffic speed matrix data of 10 
different time intervals.  11 

A small dissimilarity measure indicates the matching historical data is similar to the 12 
current traffic pattern. Consequently, several candidates are selected according to the ascending 13 
order of the dissimilarity measure. Here, the maximum number of candidates is denoted by K, 14 
and the minimum acceptable dissimilarity is defined by dMIN. The set of candidates Hc is selected 15 
as 16 

{ }

{ }

1 2 '

1

1

            , , , ,

            arg min ( , )

                     ( , ) ( , )

                     ' max | , ( , )

                     ,        

c K

i i

i MIN

i j

H h h h

where h d c h

d c h d c h

K i i K d c h d

h h i je

+

=

=

£

= £ £

- £ ¹

L

. (2) 

where hi is the selected candidate from historical dataset; K' denotes the resulting number of the 17 
selected candidates; ɛ is used to avoid selecting adjacent candidates from the same day in the 18 
history data. The selected candidates represent the best matching to the current traffic status and 19 
will be used to calculate future travel times. 20 

Dynamic Travel Time Prediction 21 

The future dynamic travel times on the current day can be calculated based on the selected 22 
historical candidates. Considering the stochastic nature of a traffic system, the travel time 23 
prediction problem can be recognized as a time series prediction for nonlinear dynamic (chaotic) 24 
systems [32, 33]. The future traffic state for the current day can be predicted by the subsequent 25 
traffic state of each candidate from the historical dataset. The linear combination of each 26 
candidate's subsequent traffic state is used to predict the future traffic status, and the 27 
corresponding weight is defined as the inverse of the dissimilarity measure of each candidate. The 28 
prediction traffic state starting from time interval c+p is obtained as 29 
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where M(hi+p) represents the p steps ahead subsequent traffic state for ith candidate; and w(hi) 
denotes the weight of ith candidate data. 

The next step is to calculate the dynamic travel time based on the subsequent traffic state 1 
of each candidate. Dynamic travel time is the actual, realized travel time that a vehicle could 2 
experience during a trip. If a vehicle leaves a trip origin at the current time, the roadway speed 3 
will not only change across space but also across time during the entire trip. Therefore, the traffic 4 
state evolution over space and time is considered in our approach as shown in Figure 2 in the 5 
computation of dynamic travel times. The speed values of shaded cells are used to compute 6 
dynamic travel times. In this paper, the traffic state is assumed to be homogenous within each cell. 7 
Therefore the trajectory slope, which represents the traffic speed, is a constant value in each cell. 8 
Assume the trip starts from time interval tn. In this way, once the vehicle enters a new cell, the 9 
trajectory within this cell can be drawn as the straight dotted line in Figure 2 with the slope value 10 
equal to the traffic stream speed. Finally, the dynamic travel time can be calculated when the 11 
trajectory reaches the downstream boundary of the last freeway section (destination).  12 
 13 

 14 

Figure 2: Illustration of Dynamic Travel Time. 15 

The procedure for estimating dynamic travel times is shown in Figure 3. The dynamic 16 
travel time of each subsequent candidate can be obtained and the corresponding weight (recurrent 17 
probability) is defined by the dissimilarity measure of Equation (4). Finally, the travel time 18 
distribution of the future trip can be represented as 19 

{ }( ) ( ), ( ) | 1, , 'i iTT c p TT h p w h i K+ = + = L . (5) 

where TT(c+p) represents the dynamic travel time starting from time interval c+p; and TT(hi+p) 
denotes the subsequent travel time of ith candidate according to the calculation of Figure 3. The 
travel time prediction result can also be calculated as the average value using Equation (6). 

'

1

( ) ( ) ( )
K

i i
i

TT c p w h TT h p
=

+ = × +å . (6) 

 20 



Chen, Rakha and McGhee  8 

0 0 0

0

1

( )

0

n
i

n n

x x u t t

t

 

   


0

0 0 0

1

0

( ) n
i

i i

x

t t x x u

 


   

0

0

n
i

x x
u

t t

 

 

0

0

( 1)

( 1)

TT n t t

TD i x x

   

   

NTD x

 1 

Figure 3: The Flow Chart of Dynamic Travel Time Calculation. 2 

CASE STUDY 3 

The performance of the proposed dynamic travel time prediction approach is tested on a study 4 
section. The description of the test data is first introduced and followed by the comparison 5 
between the proposed approach and traditional k-NN methods for travel time prediction.  6 

Data Description 7 

The case study is conducted based on privately developed INRIX traffic data collected during 8 
2010, which is mainly collected by GPS equipped vehicles. The collected probe data is 9 
supplemented by traditional road sensors, as well as mobile devices and other sources [34]. As a 10 
result, the traffic data is the average speed of a roadway segment and aggregated at 5-minute 11 
intervals. The INRIX data on the main segments along I-64 and I-264 are used to construct the 12 
travel database in our study. Since heavy traffic volumes are usually observed along I-64 and I-13 
264 heading to Virginia Beach during summer seasons and weekends, efficient and accurate 14 
travel time prediction can be helpful to travelers in planning their trips and reducing traffic 15 
congestion around the area. A 37-mile freeway stretch is selected to test the prediction algorithm, 16 
which includes most of the congested areas heading towards Virginia Beach from Richmond. The 17 
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selected freeway stretch is located from Newport News to Virginia Beach along I-64 and I-264 1 
and includes 59 sections as shown in Figure 4. The average length of all the sections is 0.65 miles 2 
and the longest section is the 3.7 miles segment located at Hampton Roads Bridge-Tunnel 3 
(HRBT). 4 

 5 

Figure 4: Selected 37-mile Freeway Stretch for Algorithm Testing. 6 

A procedure of data reduction is conducted on the raw data to obtain daily traffic data, 7 
which is a speed matrix along time and space. The data samples for typical weekday and weekend 8 
traffic occurring in June 2010 are presented in Figure 5. The figure illustrates a significant 9 
amount of missing data, especially for June 5 and 6, 2010 (Saturday and Sunday). It appears from 10 
inspection of the data that the weekends involve more missing data than weekdays, which may 11 
pose a problem especially when making travel time predictions for weekends. According to the 12 
speed map of Figure 5 (a), most missing data (white areas) for a typical weekday occur between 13 
21:00 p.m. and 5:00 a.m. (i.e., during the night and early morning hours). Normally there are few 14 
traffic volumes during this time period and free-flow speed could be assumed. However, 15 
sometimes the missing data also occur around a congested area (e.g., Figure 5 (c) and (e)). 16 
Consequently, free-flow speed cannot be simply assumed for all missing data.  17 

As demonstrated earlier, various traffic data estimation algorithms have been developed 18 
for different data sources. Since ramp traffic data are not available, large errors will be introduced 19 
if macroscopic traffic models are used to estimate missing data. Alternatively, a statistical 20 
approach of data imputation is employed here that utilizes neighboring speed data over temporal 21 
and spatial conditions to estimate missing data. Here, the average value of eight neighboring cells 22 
is used to estimate the missing speed data in our dataset. Advanced approaches such as using 23 
kernel regression over temporal and spatial coordinates can be considered in the future. The 24 
samples of estimated speed maps for typical weekday and weekend traffic in June 2010 are 25 
presented in the right-hand column of Figure 5. Consequently, the full coverage daily temporal-26 
spatial traffic data on the selected freeway stretch is estimated and can be used in the proposed 27 
travel time prediction algorithm. 28 
 29 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5: Samples of Daily Temporal-spatial Traffic State Variation. 1 

As heavy congestion for the selected freeway stretch usually happens during the summer 2 
holiday season and weekends, the evaluation of the travel-time prediction algorithm focuses on 3 
traffic data from June to August of 2010. Here, traffic data from June and July are used as the 4 
historical data set; the data from August are used for the testing data set. The dynamic travel time 5 
of August 2010, which serves as the ground truth data, is calculated every five minutes using the 6 
daily temporal-spatial traffic data as demonstrated on Figure 2. The prediction span p equals zero 7 
for this test, which indicates that predictions are made from the current time. Different values of p 8 
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will be used for the future research to evaluate the prediction performance considering different 1 
look ahead times. Finally, the average travel time is predicted using Equation (6). 2 

Test Results 3 

Different parameters are tested to identify the best combination to minimize the prediction error. 4 
The L parameter, which represents the data length across the time axis (look ahead time duration), 5 
is varied between 10 to 60 minutes at 10-minute intervals. H is another parameter representing 6 
the shift distance across the time axis when searching for a traffic data slice from the historical 7 
data set. The size of H should not be too small otherwise, many overlapping candidates may be 8 
extracted by matching to the real-time traffic pattern, and the computation time would be 9 
significant. Conversely, detailed information may be ignored if the value of H is too large. 10 
Therefore, the domain of the H value is also tested from 10 to 60 minutes at 10-minute 11 
increments. The value of ɛ is chosen as 12 to avoid selecting adjacent candidates from the same 12 
day in the history dataset. The maximum number of candidates K is 20 and the minimum 13 
acceptable dissimilarity dMIN is set at 0.3. 14 

Both relative and absolute prediction errors are calculated to evaluate the proposed 15 
algorithm. The relative error is computed as the Mean Absolute Percentage Error (MAPE) using 16 
Equation (7). This error is the average absolute percentage change between the predicted and the 17 
true values. The corresponding absolute error is presented by the Mean Absolute Deviation 18 
(MAD) of Equation (8). This error is the absolute difference between the predicted and the true 19 
values.  20 
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Here J is the total number of days in the testing data set (i.e., 30 days); I is the total 21 
number of time intervals in one day (i.e., 204 intervals occurring every five minutes between 5:00 22 

a.m. and 22:00 p.m.); and y௜
௝ and ݕො௜

୨ denote the ground truth and the predicted value, respectively, 23 
of the dynamic travel time for the ith time interval on the jth day in August 2010. 24 

The relative and absolute errors calculated by the proposed method across various 25 
parameters are presented in Table 1. Both the minimum relative error of 5.96 percent and the 26 
minimum absolute error of 2.96 minutes are obtained assuming that L = 20 minutes and H = 40 27 
minutes. According to the tables, prediction errors are comparatively stable values of 6 and 3 28 
minutes when L is less than 40 minutes. The change of the H value seems to have little impact on 29 
the average prediction accuracy. The optimum values of parameters can be used as a reference for 30 
applications on different sites. 31 
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Table 1: Relative (MAPE) and Absolute (MAE) Errors by Proposed Travel Time Prediction 1 
Method 2 

MAPE (%) 
Time Interval of H (min.) 

10 20 30 40 50 60 

T
im

e Interval of 
L

 (m
in) 

10 6.09 5.98 6.13 5.98 6.00 6.03 
20 6.07 6.01 6.14 5.96 5.99 6.05 
30 6.17 6.05 6.14 5.99 5.97 5.98 
40 6.24 6.12 6.14 6.10 6.06 6.02 
50 6.27 6.15 6.20 6.15 6.21 6.12 
60 6.37 6.32 6.31 6.25 6.33 6.20 

 3 

MAD (min.) 
Time Interval of H (min.) 

10 20 30 40 50 60 

T
im

e Interval of 
L

 (m
in) 

10 3.02 2.98 3.05 2.99 2.99 3.00 
20 3.05 3.00 3.06 2.96 3.00 3.02 
30 3.11 3.04 3.08 3.01 3.00 3.00 
40 3.15 3.08 3.08 3.07 3.04 3.03 
50 3.17 3.09 3.11 3.10 3.12 3.09 
60 3.22 3.19 3.18 3.14 3.19 3.14 

 4 
To better evaluate the proposed method used during this study, a traditional k-NN 5 

algorithm [18, 19] is tested to predict travel time using the same historical and testing data sets. 6 
However, instantaneous travel time is used in the k-NN method instead of dynamic travel times 7 
as is used in the literature. Assuming the purpose is to predict, the travel time starts from time 8 
interval t, the traditional k-NN method uses the travel time sequence between recent past t-L and 9 
time interval t-1 to find a similar data sequence in the historical dataset. However, the dynamic 10 
travel time for the recent past travel time sequence may not be available since the trip has not 11 
been completed (the travel time is around 38 minutes for free-flow conditions for the selected 37-12 
mile freeway stretch). Therefore, instantaneous travel times between time interval t-L and t-1 are 13 
used in the K-NN method to predict travel times in the next time interval t.  14 
 15 
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Table 2: Relative (MAPE) and Absolute (MAE) Errors by K-NN Method 1 

MAPE (%) Time Interval of H (min.) 
10 20 30 40 50 60 

T
im

e Interval of 
L

 (m
in) 

10 6.80 6.68 6.85 6.68 6.70 6.74 
20 6.78 6.71 6.86 6.85 6.69 6.76 
30 6.61 6.59 6.61 6.69 6.66 6.68 
40 6.97 6.84 6.86 6.81 6.77 6.73 
50 7.01 6.87 6.93 6.87 6.94 6.83 
60 7.11 7.06 7.05 6.98 7.07 6.92 

 
MAD (min.) 

Time Interval of H (min.) 
10 20 30 40 50 60 

T
im

e Interval of 
L

 (m
in) 

10 3.51 3.53 3.55 3.51 3.53 3.52 
20 3.52 3.49 3.51 3.50 3.53 3.56 
30 3.52 3.48 3.47 3.51 3.56 3.54 
40 3.56 3.58 3.54 3.60 3.59 3.64 
50 3.59 3.61 3.58 3.67 3.64 3.68 
60 3.67 3.64 3.64 3.68 3.71 3.73 

 2 
The same parameter of 20 candidates is used to select the historical travel time sequence 3 

using the average Euclidean distance. The weight of each sequence is also calculated using the 4 
inverse of dissimilarity measure estimated in Equation (4) and then the weighted average travel 5 
time for the future trip is computed. The relative and absolute errors calculated by the traditional 6 
k-NN method across various parameters are presented in Table 2. The optimum parameter of L, 7 
which represents the domain of continuous time included in the traffic map slice, is 30 minutes; 8 
the corresponding minimum relative and absolute prediction errors are 6.59 and 3.47 minutes, 9 
respectively. Therefore, the average performance of the proposed method includes fewer errors 10 
compared to the traditional K-NN method. The main difference between the two methods is that 11 
the travel time sequence is used to obtain similar traffic patterns from historical data in the k-NN 12 
method, while the traffic status across the temporal and spatial axes are used in the proposed 13 
method. The temporal-spatial traffic status provides more dynamic information given that it 14 
accounts for the spatial variation in the information. Consequently, such information serves a 15 
better pattern-matching result from the historical data and results in a more accurate travel time 16 
prediction performance. Moreover, the instantaneous travel time predicted by the k-NN method 17 
may deviate substantially from the dynamic travel time under transient states during the trip. 18 
Based on the testing results, we observed that the predicted travel time using the k-NN method is 19 
usually underestimated when congestion is forming and is overestimated when congestion is 20 
dissipating. 21 

A comparison of the two methods for a typical weekday (i.e., August 2, 2010) is presented 22 
in Figure 6 (a). The typical weekday traffic occurring on the selected 37-mile freeway stretch 23 
usually includes two peak hours during the morning and afternoon peak. The heavy traffic jam 24 
occurred during the afternoon peak hours. The ground truth curve in Figure 6 indicates that the 25 
travel time during this period could be more than two times (78 minutes) the travel time occurring 26 
during a free-flow period (38 minutes). The red curve obtained from the proposed method is a 27 
better fit to the ground truth data for congested and uncongested time periods. However, the blue 28 
curve obtained by the k-NN method underestimates the actual travel time during congested 29 
afternoon periods and overestimates the actual travel time as the peak ends around 18:00 pm. 30 
Consequently, the proposed method produces more accurate travel time prediction results 31 
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compared to the k-NN method for the subject day. Specifically, the proposed approach offers a 15 1 
percent reduction in the prediction error compared to state-of-the-art k-NN method. 2 
 3 

 4 
(a) 5 

 6 
(b) 7 

Figure 6: Comparison of Prediction Results for Typical Weekday (August 2, 2010) and 8 
Weekend (August 7, 2010)  9 

Another comparison of the two methods for typical weekend traffic occurring on August 7, 10 
2010, is presented in Figure 6 (b). Unlike typical weekday traffic, light traffic congestion occurs 11 
during the weekend that lasts for an extended time as many travelers go to Virginia Beach during 12 
that time period. Although the prediction accuracy is almost the same during this day when using 13 
the two methods, the green curve calculated by traditional k-NN approach also indicates that the 14 
deviation from ground truth data happens under transient states during which congestion is 15 
forming or dissipating. The red curve from the proposed method seems to be a smooth result from 16 
the ground truth curve, because the current matching method by average Euclidean distance may 17 
not work well to reflect the dynamic change in traffic patterns. It is expected that the prediction 18 
results under this situation will be improved by using more advanced data matching algorithms as 19 
part of future research efforts. 20 
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CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 1 

This study develops a travel time prediction algorithm by matching traffic patterns from historical 2 
data to current real-time conditions. The real-time and historical temporal-spatial traffic data is 3 
used as the input of proposed approach to predict future traffic patterns based on past experience. 4 
The average Euclidean distance is used as the criterion to calculate a dissimilarity measure in the 5 
matching process to select candidate similar traffic patterns. The selected similar traffic patterns 6 
are then used to predict dynamic travel times for departures from the current time or from future 7 
time intervals. A freeway stretch from Newport News to Virginia Beach is selected as the test site 8 
to evaluate the prediction accuracy of the proposed algorithm. The section-based INRIX data 9 
along the selected freeway is used to obtain daily temporal-spatial traffic data. The proposed 10 
method is demonstrated to enhance predictions relative to state-of-the-art k-NN methods by 11 
reducing the prediction error by 15 percent to within 3 minutes on a 50-minute trip.  12 

The proposed algorithm employed during this study provides a framework to use traffic 13 
data across temporal and spatial axes to predict dynamic travel times. It is proposed that other 14 
popular pattern recognition techniques and data-mining areas be incorporated within the proposed 15 
algorithm to more efficiently and accurately obtain similar traffic patterns from historical data. 16 
On the other hand, since the historical dataset only included two months of previous traffic state 17 
data, more extensive testing will be performed to further test the proposed method. Moreover, the 18 
performance to predict travel time reliability based on the proposed algorithm, as well as weather 19 
and incident impacts on traffic prediction should be examined in future studies.  20 
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