

Minimizing Spray Drift and Spray Drift Damage

Outline

- Drift Concerns
- Misapplication Causes
- Drift Factors
- Importance of Droplet Size
- Nozzle Selection
- Strategies for Drift Reduction
- Current Issues and Drift Control

What is Drift?

 Movement of spray particles and vapors off-target causing less effective control and possible injury to susceptible vegetation and wildlife.

Adapted from National Coalition on Drift Minimization 1997 as adopted from the AAPCO Pesticide Drift Enforcement Policy - March 1991

Types of Spray Drift

- Vapor associated with volatilization, gases, fumes.
- Particle off-target movement of spray droplets.

Drift Concerns

- Spotty pest control.
- Wasted chemicals.
- Off-target damage.

Result - Higher Costs.

Drift Concerns

- Environmental impact.
- Residential encroachment of farmland.
- Public more aware of pesticide concerns! (Negative!!!)

MISAPPLICATION – WHAT'S THE CAUSE?

Misapplication Facts

Source: Farmland Insurance

Contributions to Drift

DRIFT FACTORS

Spray Characteristics, Equipment/Application Factors, Weather Factors

Spray Characteristics Affecting Drift

- Droplet size
- Evaporation

- Chemical
- Formulation
- Additives

Equipment & Application Factors Affecting Drift

- Nozzle pressure
- Nozzle type
- Nozzle size

- Nozzle orientation
- Height of release
- Technology

Weather and Other Factors Affecting Drift

- Temperature & humidity
- Air movement (direction and velocity)

- Air stability/inversions
- Topography

IMPORTANCE OF DROPLET SIZE

Droplet Size

- Particle drift potential is greater with smaller droplets.
- Spray droplets are measured in microns and expressed as Volume Median Diameter (VMD).

One micron (μm) =1/25,000 inch

Comparison of Micron Sizes

2000μm #2 Pencil lead

850μm paper clip

420μm staple

• 300μm toothbrush bristle

150μm sewing thread

100μm human hair

Drift Potential Influenced by:

- Volume Median Diameter (VMD)
 - How large is the average droplet size.
- Droplet Spectrum (Range big to small)

% Volume in droplets less than 200 microns in size

1/2 of spray volume = smaller droplets

1/2 of spray volume = larger droplets

Why is this a problem?

- Need consistent size of droplets above the 150-200 micron diameter.
- VMD only represents an average of the total spectrum of droplets.

Sample reference graph developed from measurements averaged from three types of laser instruments

University of Idaho Evaporation and Deceleration of Various Size Droplets*

Droplet Diameter (microns)	Terminal Velocity (ft/sec)	Final Drop diameter (microns)	Time to evaporate (sec)	Deceleration distance (in)
20	.04	7	0.3	<1
50	.25	17	1.8	3
100	.91	33	7	9
150	1.7	50	16	16
200	2.4	67	29	25

^{*}Conditions assumed: 90 F, 36% R.H., 25 psi., 3.75% pesticide solution

Evaporation of Droplets

High Relative Humidity Low Temperature Low Relative Humidity High Temperature

Droplet Size Classification

Insecticides and Fungicides
Herbicides, Preemergent and Foliar Sprays
Soil Applied
Herbicides

NOZZLE SELECTION

Nozzles

- Control the amount (GPA).
- Determine the uniformity of the application.
- Affects the coverage.
- Influences drift potential.

Considerations

- Getting adequate coverage while reducing the fine droplets.
- Different types of nozzles available.
- Label mandated types of nozzles for specific applications.

STRATEGIES FOR DRIFT REDUCTION

Reducing Drift

- Select nozzle for lower amounts of fine droplets.
- Increase flow rates higher application volumes.
- Use recommended pressures.

Reducing Drift

- Use lower spray (boom) heights.
- Avoid adverse weather conditions.
- Consider using buffer zones.

Shielded (Hooded) sprayer: Willmar Fabrications, LLC

Reducing Drift

- Consider using new technologies:
 - drift reduction nozzles.
 - drift reduction additives.
 - shields, electrostatics, air-assist.

Shielded (Hooded) sprayer: Willmar Fabrications, LLC

CURRENT ISSUES AND DRIFT CONTROL

Perception of Harm

- Exaggerated potential for harm to humans or environment is becoming normal.
- Hype and sensationalism replacing science.
- Issue with any type of pesticide drift.

Pollinator Protection

- Pollinator protection is a priority for EPA.
- Insecticides are being scrutinized.
- Herbicides and fungicides are being evaluated.
- All drift to areas with pollinators potentially hazardous.

Organic Operations

- Organic operations near conventional farms pose challenges.
- Farms can lose organic certification if drift occurs.
- Potential for significant damages.

Urban Encroachment

- Residential properties on traditional agricultural areas.
- Greater potential for exposure.
- More potential for perceived damages.

Endangered Species

- May be a significant issue for some species and locations.
- Current rules include required buffers zones for specific pesticides to protect salmon.
- Possibility to extend to other species.

Drift Reduction Technology

- encourage the manufacturing and use of DRT products.
 - Nozzles
 - Spray shields
 - DR Adjuvants
- Rated system.
- May lower restrictions on use.

SUMMARY

Summary

- Drift is a significant concern to applicator and public.
- Consider all factors before application.
 - Environmental
 - Equipment
 - Chemical
 - Formulation

Summary

 Newer technologies, adjuvants, and application techniques can significantly reduce drift.

 Environmental impact receiving much attention.

Questions?

Thank You!